Properties

Label 6223.2.a.o.1.7
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,-11,38,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08520 q^{2} +2.29235 q^{3} +2.34805 q^{4} +0.933672 q^{5} -4.78000 q^{6} -0.725759 q^{8} +2.25486 q^{9} -1.94689 q^{10} +2.78681 q^{11} +5.38255 q^{12} -0.193825 q^{13} +2.14030 q^{15} -3.18275 q^{16} -2.51616 q^{17} -4.70182 q^{18} -7.64841 q^{19} +2.19231 q^{20} -5.81105 q^{22} -5.15083 q^{23} -1.66369 q^{24} -4.12826 q^{25} +0.404165 q^{26} -1.70813 q^{27} +5.69651 q^{29} -4.46295 q^{30} +0.00490923 q^{31} +8.08819 q^{32} +6.38833 q^{33} +5.24670 q^{34} +5.29452 q^{36} +6.30470 q^{37} +15.9485 q^{38} -0.444315 q^{39} -0.677621 q^{40} +0.548648 q^{41} +1.75331 q^{43} +6.54357 q^{44} +2.10530 q^{45} +10.7405 q^{46} -11.3206 q^{47} -7.29598 q^{48} +8.60823 q^{50} -5.76792 q^{51} -0.455112 q^{52} +12.5271 q^{53} +3.56179 q^{54} +2.60197 q^{55} -17.5328 q^{57} -11.8784 q^{58} -5.48337 q^{59} +5.02554 q^{60} -9.56485 q^{61} -0.0102367 q^{62} -10.5000 q^{64} -0.180970 q^{65} -13.3209 q^{66} +14.4966 q^{67} -5.90809 q^{68} -11.8075 q^{69} -15.3167 q^{71} -1.63648 q^{72} -6.92829 q^{73} -13.1466 q^{74} -9.46340 q^{75} -17.9589 q^{76} +0.926486 q^{78} -9.73689 q^{79} -2.97165 q^{80} -10.6802 q^{81} -1.14404 q^{82} -0.0567325 q^{83} -2.34927 q^{85} -3.65600 q^{86} +13.0584 q^{87} -2.02255 q^{88} +2.59339 q^{89} -4.38996 q^{90} -12.0944 q^{92} +0.0112537 q^{93} +23.6057 q^{94} -7.14111 q^{95} +18.5409 q^{96} -8.05520 q^{97} +6.28385 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} - 11 q^{3} + 38 q^{4} - 16 q^{5} - 11 q^{6} + 47 q^{9} - 12 q^{10} - 2 q^{11} - 30 q^{12} - 21 q^{13} + 7 q^{15} + 46 q^{16} - 58 q^{17} - 13 q^{18} - 17 q^{19} - 44 q^{20} + 21 q^{22} + 7 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08520 −1.47446 −0.737229 0.675643i \(-0.763866\pi\)
−0.737229 + 0.675643i \(0.763866\pi\)
\(3\) 2.29235 1.32349 0.661744 0.749730i \(-0.269817\pi\)
0.661744 + 0.749730i \(0.269817\pi\)
\(4\) 2.34805 1.17403
\(5\) 0.933672 0.417551 0.208776 0.977964i \(-0.433052\pi\)
0.208776 + 0.977964i \(0.433052\pi\)
\(6\) −4.78000 −1.95143
\(7\) 0 0
\(8\) −0.725759 −0.256594
\(9\) 2.25486 0.751619
\(10\) −1.94689 −0.615661
\(11\) 2.78681 0.840255 0.420127 0.907465i \(-0.361985\pi\)
0.420127 + 0.907465i \(0.361985\pi\)
\(12\) 5.38255 1.55381
\(13\) −0.193825 −0.0537575 −0.0268788 0.999639i \(-0.508557\pi\)
−0.0268788 + 0.999639i \(0.508557\pi\)
\(14\) 0 0
\(15\) 2.14030 0.552623
\(16\) −3.18275 −0.795689
\(17\) −2.51616 −0.610259 −0.305130 0.952311i \(-0.598700\pi\)
−0.305130 + 0.952311i \(0.598700\pi\)
\(18\) −4.70182 −1.10823
\(19\) −7.64841 −1.75467 −0.877333 0.479881i \(-0.840680\pi\)
−0.877333 + 0.479881i \(0.840680\pi\)
\(20\) 2.19231 0.490216
\(21\) 0 0
\(22\) −5.81105 −1.23892
\(23\) −5.15083 −1.07402 −0.537012 0.843575i \(-0.680447\pi\)
−0.537012 + 0.843575i \(0.680447\pi\)
\(24\) −1.66369 −0.339599
\(25\) −4.12826 −0.825651
\(26\) 0.404165 0.0792632
\(27\) −1.70813 −0.328729
\(28\) 0 0
\(29\) 5.69651 1.05782 0.528908 0.848679i \(-0.322602\pi\)
0.528908 + 0.848679i \(0.322602\pi\)
\(30\) −4.46295 −0.814820
\(31\) 0.00490923 0.000881724 0 0.000440862 1.00000i \(-0.499860\pi\)
0.000440862 1.00000i \(0.499860\pi\)
\(32\) 8.08819 1.42980
\(33\) 6.38833 1.11207
\(34\) 5.24670 0.899802
\(35\) 0 0
\(36\) 5.29452 0.882420
\(37\) 6.30470 1.03649 0.518244 0.855233i \(-0.326586\pi\)
0.518244 + 0.855233i \(0.326586\pi\)
\(38\) 15.9485 2.58718
\(39\) −0.444315 −0.0711474
\(40\) −0.677621 −0.107141
\(41\) 0.548648 0.0856845 0.0428422 0.999082i \(-0.486359\pi\)
0.0428422 + 0.999082i \(0.486359\pi\)
\(42\) 0 0
\(43\) 1.75331 0.267377 0.133689 0.991023i \(-0.457318\pi\)
0.133689 + 0.991023i \(0.457318\pi\)
\(44\) 6.54357 0.986481
\(45\) 2.10530 0.313839
\(46\) 10.7405 1.58360
\(47\) −11.3206 −1.65128 −0.825639 0.564199i \(-0.809185\pi\)
−0.825639 + 0.564199i \(0.809185\pi\)
\(48\) −7.29598 −1.05308
\(49\) 0 0
\(50\) 8.60823 1.21739
\(51\) −5.76792 −0.807671
\(52\) −0.455112 −0.0631127
\(53\) 12.5271 1.72074 0.860368 0.509673i \(-0.170234\pi\)
0.860368 + 0.509673i \(0.170234\pi\)
\(54\) 3.56179 0.484698
\(55\) 2.60197 0.350849
\(56\) 0 0
\(57\) −17.5328 −2.32228
\(58\) −11.8784 −1.55970
\(59\) −5.48337 −0.713874 −0.356937 0.934128i \(-0.616179\pi\)
−0.356937 + 0.934128i \(0.616179\pi\)
\(60\) 5.02554 0.648794
\(61\) −9.56485 −1.22465 −0.612327 0.790605i \(-0.709766\pi\)
−0.612327 + 0.790605i \(0.709766\pi\)
\(62\) −0.0102367 −0.00130007
\(63\) 0 0
\(64\) −10.5000 −1.31250
\(65\) −0.180970 −0.0224465
\(66\) −13.3209 −1.63969
\(67\) 14.4966 1.77104 0.885519 0.464604i \(-0.153803\pi\)
0.885519 + 0.464604i \(0.153803\pi\)
\(68\) −5.90809 −0.716461
\(69\) −11.8075 −1.42146
\(70\) 0 0
\(71\) −15.3167 −1.81776 −0.908879 0.417059i \(-0.863061\pi\)
−0.908879 + 0.417059i \(0.863061\pi\)
\(72\) −1.63648 −0.192861
\(73\) −6.92829 −0.810895 −0.405447 0.914118i \(-0.632884\pi\)
−0.405447 + 0.914118i \(0.632884\pi\)
\(74\) −13.1466 −1.52826
\(75\) −9.46340 −1.09274
\(76\) −17.9589 −2.06002
\(77\) 0 0
\(78\) 0.926486 0.104904
\(79\) −9.73689 −1.09549 −0.547743 0.836647i \(-0.684513\pi\)
−0.547743 + 0.836647i \(0.684513\pi\)
\(80\) −2.97165 −0.332241
\(81\) −10.6802 −1.18669
\(82\) −1.14404 −0.126338
\(83\) −0.0567325 −0.00622720 −0.00311360 0.999995i \(-0.500991\pi\)
−0.00311360 + 0.999995i \(0.500991\pi\)
\(84\) 0 0
\(85\) −2.34927 −0.254814
\(86\) −3.65600 −0.394237
\(87\) 13.0584 1.40001
\(88\) −2.02255 −0.215605
\(89\) 2.59339 0.274899 0.137449 0.990509i \(-0.456110\pi\)
0.137449 + 0.990509i \(0.456110\pi\)
\(90\) −4.38996 −0.462743
\(91\) 0 0
\(92\) −12.0944 −1.26093
\(93\) 0.0112537 0.00116695
\(94\) 23.6057 2.43474
\(95\) −7.14111 −0.732663
\(96\) 18.5409 1.89233
\(97\) −8.05520 −0.817881 −0.408941 0.912561i \(-0.634102\pi\)
−0.408941 + 0.912561i \(0.634102\pi\)
\(98\) 0 0
\(99\) 6.28385 0.631551
\(100\) −9.69336 −0.969336
\(101\) −6.45591 −0.642387 −0.321194 0.947014i \(-0.604084\pi\)
−0.321194 + 0.947014i \(0.604084\pi\)
\(102\) 12.0273 1.19088
\(103\) −12.6560 −1.24704 −0.623518 0.781809i \(-0.714297\pi\)
−0.623518 + 0.781809i \(0.714297\pi\)
\(104\) 0.140671 0.0137939
\(105\) 0 0
\(106\) −26.1216 −2.53715
\(107\) 13.9590 1.34946 0.674732 0.738063i \(-0.264259\pi\)
0.674732 + 0.738063i \(0.264259\pi\)
\(108\) −4.01077 −0.385937
\(109\) −16.2293 −1.55448 −0.777241 0.629203i \(-0.783382\pi\)
−0.777241 + 0.629203i \(0.783382\pi\)
\(110\) −5.42562 −0.517312
\(111\) 14.4526 1.37178
\(112\) 0 0
\(113\) 0.0544202 0.00511942 0.00255971 0.999997i \(-0.499185\pi\)
0.00255971 + 0.999997i \(0.499185\pi\)
\(114\) 36.5594 3.42410
\(115\) −4.80919 −0.448460
\(116\) 13.3757 1.24190
\(117\) −0.437049 −0.0404052
\(118\) 11.4339 1.05258
\(119\) 0 0
\(120\) −1.55334 −0.141800
\(121\) −3.23369 −0.293972
\(122\) 19.9446 1.80570
\(123\) 1.25769 0.113402
\(124\) 0.0115271 0.00103517
\(125\) −8.52280 −0.762302
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) 5.71815 0.505418
\(129\) 4.01920 0.353871
\(130\) 0.377357 0.0330964
\(131\) 5.77731 0.504766 0.252383 0.967627i \(-0.418786\pi\)
0.252383 + 0.967627i \(0.418786\pi\)
\(132\) 15.0001 1.30560
\(133\) 0 0
\(134\) −30.2282 −2.61132
\(135\) −1.59483 −0.137261
\(136\) 1.82613 0.156589
\(137\) −8.77617 −0.749799 −0.374899 0.927065i \(-0.622323\pi\)
−0.374899 + 0.927065i \(0.622323\pi\)
\(138\) 24.6210 2.09588
\(139\) 11.7256 0.994555 0.497277 0.867592i \(-0.334333\pi\)
0.497277 + 0.867592i \(0.334333\pi\)
\(140\) 0 0
\(141\) −25.9507 −2.18544
\(142\) 31.9384 2.68021
\(143\) −0.540155 −0.0451700
\(144\) −7.17665 −0.598054
\(145\) 5.31867 0.441692
\(146\) 14.4469 1.19563
\(147\) 0 0
\(148\) 14.8038 1.21686
\(149\) 11.2603 0.922479 0.461239 0.887276i \(-0.347405\pi\)
0.461239 + 0.887276i \(0.347405\pi\)
\(150\) 19.7331 1.61120
\(151\) 12.8444 1.04526 0.522630 0.852559i \(-0.324951\pi\)
0.522630 + 0.852559i \(0.324951\pi\)
\(152\) 5.55090 0.450238
\(153\) −5.67359 −0.458682
\(154\) 0 0
\(155\) 0.00458361 0.000368165 0
\(156\) −1.04328 −0.0835289
\(157\) −9.37504 −0.748210 −0.374105 0.927386i \(-0.622050\pi\)
−0.374105 + 0.927386i \(0.622050\pi\)
\(158\) 20.3033 1.61525
\(159\) 28.7166 2.27737
\(160\) 7.55172 0.597016
\(161\) 0 0
\(162\) 22.2703 1.74972
\(163\) 7.37682 0.577798 0.288899 0.957360i \(-0.406711\pi\)
0.288899 + 0.957360i \(0.406711\pi\)
\(164\) 1.28826 0.100596
\(165\) 5.96461 0.464344
\(166\) 0.118299 0.00918175
\(167\) −2.44535 −0.189227 −0.0946133 0.995514i \(-0.530161\pi\)
−0.0946133 + 0.995514i \(0.530161\pi\)
\(168\) 0 0
\(169\) −12.9624 −0.997110
\(170\) 4.89870 0.375713
\(171\) −17.2461 −1.31884
\(172\) 4.11686 0.313908
\(173\) −2.71740 −0.206600 −0.103300 0.994650i \(-0.532940\pi\)
−0.103300 + 0.994650i \(0.532940\pi\)
\(174\) −27.2293 −2.06425
\(175\) 0 0
\(176\) −8.86973 −0.668581
\(177\) −12.5698 −0.944803
\(178\) −5.40773 −0.405326
\(179\) 4.73487 0.353901 0.176950 0.984220i \(-0.443377\pi\)
0.176950 + 0.984220i \(0.443377\pi\)
\(180\) 4.94335 0.368455
\(181\) −9.91117 −0.736691 −0.368346 0.929689i \(-0.620076\pi\)
−0.368346 + 0.929689i \(0.620076\pi\)
\(182\) 0 0
\(183\) −21.9260 −1.62081
\(184\) 3.73826 0.275588
\(185\) 5.88653 0.432786
\(186\) −0.0234661 −0.00172062
\(187\) −7.01207 −0.512773
\(188\) −26.5813 −1.93864
\(189\) 0 0
\(190\) 14.8906 1.08028
\(191\) 7.35311 0.532052 0.266026 0.963966i \(-0.414289\pi\)
0.266026 + 0.963966i \(0.414289\pi\)
\(192\) −24.0696 −1.73707
\(193\) −22.0783 −1.58923 −0.794616 0.607112i \(-0.792328\pi\)
−0.794616 + 0.607112i \(0.792328\pi\)
\(194\) 16.7967 1.20593
\(195\) −0.414845 −0.0297077
\(196\) 0 0
\(197\) −15.5041 −1.10462 −0.552310 0.833639i \(-0.686253\pi\)
−0.552310 + 0.833639i \(0.686253\pi\)
\(198\) −13.1031 −0.931196
\(199\) 21.9047 1.55278 0.776392 0.630250i \(-0.217048\pi\)
0.776392 + 0.630250i \(0.217048\pi\)
\(200\) 2.99612 0.211857
\(201\) 33.2312 2.34395
\(202\) 13.4619 0.947173
\(203\) 0 0
\(204\) −13.5434 −0.948226
\(205\) 0.512258 0.0357776
\(206\) 26.3903 1.83870
\(207\) −11.6144 −0.807256
\(208\) 0.616899 0.0427742
\(209\) −21.3147 −1.47437
\(210\) 0 0
\(211\) −24.5809 −1.69222 −0.846109 0.533010i \(-0.821061\pi\)
−0.846109 + 0.533010i \(0.821061\pi\)
\(212\) 29.4144 2.02019
\(213\) −35.1112 −2.40578
\(214\) −29.1072 −1.98973
\(215\) 1.63702 0.111644
\(216\) 1.23969 0.0843501
\(217\) 0 0
\(218\) 33.8413 2.29202
\(219\) −15.8820 −1.07321
\(220\) 6.10955 0.411906
\(221\) 0.487697 0.0328060
\(222\) −30.1365 −2.02263
\(223\) 21.2711 1.42442 0.712210 0.701967i \(-0.247694\pi\)
0.712210 + 0.701967i \(0.247694\pi\)
\(224\) 0 0
\(225\) −9.30862 −0.620575
\(226\) −0.113477 −0.00754837
\(227\) −18.9942 −1.26069 −0.630346 0.776314i \(-0.717087\pi\)
−0.630346 + 0.776314i \(0.717087\pi\)
\(228\) −41.1680 −2.72642
\(229\) 19.5367 1.29102 0.645509 0.763753i \(-0.276645\pi\)
0.645509 + 0.763753i \(0.276645\pi\)
\(230\) 10.0281 0.661235
\(231\) 0 0
\(232\) −4.13429 −0.271429
\(233\) −12.2178 −0.800415 −0.400208 0.916425i \(-0.631062\pi\)
−0.400208 + 0.916425i \(0.631062\pi\)
\(234\) 0.911333 0.0595757
\(235\) −10.5697 −0.689492
\(236\) −12.8752 −0.838107
\(237\) −22.3203 −1.44986
\(238\) 0 0
\(239\) 13.3637 0.864424 0.432212 0.901772i \(-0.357733\pi\)
0.432212 + 0.901772i \(0.357733\pi\)
\(240\) −6.81205 −0.439716
\(241\) 4.66456 0.300471 0.150235 0.988650i \(-0.451997\pi\)
0.150235 + 0.988650i \(0.451997\pi\)
\(242\) 6.74290 0.433450
\(243\) −19.3583 −1.24184
\(244\) −22.4588 −1.43778
\(245\) 0 0
\(246\) −2.62254 −0.167207
\(247\) 1.48246 0.0943265
\(248\) −0.00356292 −0.000226245 0
\(249\) −0.130051 −0.00824163
\(250\) 17.7717 1.12398
\(251\) −5.22865 −0.330030 −0.165015 0.986291i \(-0.552767\pi\)
−0.165015 + 0.986291i \(0.552767\pi\)
\(252\) 0 0
\(253\) −14.3544 −0.902453
\(254\) −2.08520 −0.130837
\(255\) −5.38535 −0.337244
\(256\) 9.07647 0.567280
\(257\) −6.58612 −0.410831 −0.205416 0.978675i \(-0.565855\pi\)
−0.205416 + 0.978675i \(0.565855\pi\)
\(258\) −8.38082 −0.521767
\(259\) 0 0
\(260\) −0.424926 −0.0263528
\(261\) 12.8448 0.795074
\(262\) −12.0468 −0.744256
\(263\) −13.5267 −0.834092 −0.417046 0.908885i \(-0.636935\pi\)
−0.417046 + 0.908885i \(0.636935\pi\)
\(264\) −4.63639 −0.285350
\(265\) 11.6963 0.718495
\(266\) 0 0
\(267\) 5.94495 0.363825
\(268\) 34.0387 2.07924
\(269\) −2.96880 −0.181011 −0.0905054 0.995896i \(-0.528848\pi\)
−0.0905054 + 0.995896i \(0.528848\pi\)
\(270\) 3.32554 0.202386
\(271\) 15.0827 0.916211 0.458105 0.888898i \(-0.348528\pi\)
0.458105 + 0.888898i \(0.348528\pi\)
\(272\) 8.00833 0.485576
\(273\) 0 0
\(274\) 18.3001 1.10555
\(275\) −11.5047 −0.693757
\(276\) −27.7246 −1.66883
\(277\) 7.56049 0.454266 0.227133 0.973864i \(-0.427065\pi\)
0.227133 + 0.973864i \(0.427065\pi\)
\(278\) −24.4503 −1.46643
\(279\) 0.0110696 0.000662720 0
\(280\) 0 0
\(281\) 30.5712 1.82373 0.911864 0.410493i \(-0.134643\pi\)
0.911864 + 0.410493i \(0.134643\pi\)
\(282\) 54.1124 3.22235
\(283\) 28.7658 1.70995 0.854975 0.518669i \(-0.173572\pi\)
0.854975 + 0.518669i \(0.173572\pi\)
\(284\) −35.9644 −2.13410
\(285\) −16.3699 −0.969670
\(286\) 1.12633 0.0666013
\(287\) 0 0
\(288\) 18.2377 1.07467
\(289\) −10.6689 −0.627583
\(290\) −11.0905 −0.651256
\(291\) −18.4653 −1.08246
\(292\) −16.2680 −0.952011
\(293\) −10.6589 −0.622697 −0.311349 0.950296i \(-0.600781\pi\)
−0.311349 + 0.950296i \(0.600781\pi\)
\(294\) 0 0
\(295\) −5.11967 −0.298079
\(296\) −4.57569 −0.265957
\(297\) −4.76023 −0.276216
\(298\) −23.4799 −1.36016
\(299\) 0.998363 0.0577368
\(300\) −22.2206 −1.28290
\(301\) 0 0
\(302\) −26.7831 −1.54119
\(303\) −14.7992 −0.850191
\(304\) 24.3430 1.39617
\(305\) −8.93044 −0.511356
\(306\) 11.8306 0.676308
\(307\) −12.1106 −0.691191 −0.345595 0.938384i \(-0.612323\pi\)
−0.345595 + 0.938384i \(0.612323\pi\)
\(308\) 0 0
\(309\) −29.0120 −1.65044
\(310\) −0.00955775 −0.000542843 0
\(311\) −18.2756 −1.03631 −0.518156 0.855286i \(-0.673381\pi\)
−0.518156 + 0.855286i \(0.673381\pi\)
\(312\) 0.322466 0.0182560
\(313\) 25.3365 1.43210 0.716052 0.698047i \(-0.245947\pi\)
0.716052 + 0.698047i \(0.245947\pi\)
\(314\) 19.5488 1.10320
\(315\) 0 0
\(316\) −22.8627 −1.28613
\(317\) −25.7654 −1.44713 −0.723566 0.690255i \(-0.757498\pi\)
−0.723566 + 0.690255i \(0.757498\pi\)
\(318\) −59.8797 −3.35789
\(319\) 15.8751 0.888834
\(320\) −9.80354 −0.548034
\(321\) 31.9988 1.78600
\(322\) 0 0
\(323\) 19.2447 1.07080
\(324\) −25.0777 −1.39320
\(325\) 0.800161 0.0443850
\(326\) −15.3821 −0.851938
\(327\) −37.2031 −2.05734
\(328\) −0.398186 −0.0219862
\(329\) 0 0
\(330\) −12.4374 −0.684656
\(331\) −13.1557 −0.723104 −0.361552 0.932352i \(-0.617753\pi\)
−0.361552 + 0.932352i \(0.617753\pi\)
\(332\) −0.133211 −0.00731090
\(333\) 14.2162 0.779043
\(334\) 5.09904 0.279007
\(335\) 13.5350 0.739498
\(336\) 0 0
\(337\) 24.3915 1.32869 0.664346 0.747426i \(-0.268710\pi\)
0.664346 + 0.747426i \(0.268710\pi\)
\(338\) 27.0292 1.47020
\(339\) 0.124750 0.00677549
\(340\) −5.51622 −0.299159
\(341\) 0.0136811 0.000740873 0
\(342\) 35.9615 1.94457
\(343\) 0 0
\(344\) −1.27248 −0.0686075
\(345\) −11.0243 −0.593530
\(346\) 5.66632 0.304623
\(347\) −3.88385 −0.208496 −0.104248 0.994551i \(-0.533244\pi\)
−0.104248 + 0.994551i \(0.533244\pi\)
\(348\) 30.6618 1.64364
\(349\) 6.73196 0.360353 0.180177 0.983634i \(-0.442333\pi\)
0.180177 + 0.983634i \(0.442333\pi\)
\(350\) 0 0
\(351\) 0.331079 0.0176717
\(352\) 22.5402 1.20140
\(353\) 13.2967 0.707711 0.353855 0.935300i \(-0.384870\pi\)
0.353855 + 0.935300i \(0.384870\pi\)
\(354\) 26.2105 1.39307
\(355\) −14.3008 −0.759007
\(356\) 6.08941 0.322738
\(357\) 0 0
\(358\) −9.87314 −0.521811
\(359\) 6.68500 0.352821 0.176410 0.984317i \(-0.443551\pi\)
0.176410 + 0.984317i \(0.443551\pi\)
\(360\) −1.52794 −0.0805294
\(361\) 39.4983 2.07886
\(362\) 20.6668 1.08622
\(363\) −7.41275 −0.389069
\(364\) 0 0
\(365\) −6.46875 −0.338590
\(366\) 45.7200 2.38982
\(367\) 11.2531 0.587405 0.293702 0.955897i \(-0.405113\pi\)
0.293702 + 0.955897i \(0.405113\pi\)
\(368\) 16.3938 0.854588
\(369\) 1.23712 0.0644021
\(370\) −12.2746 −0.638125
\(371\) 0 0
\(372\) 0.0264242 0.00137003
\(373\) 2.79234 0.144582 0.0722910 0.997384i \(-0.476969\pi\)
0.0722910 + 0.997384i \(0.476969\pi\)
\(374\) 14.6216 0.756063
\(375\) −19.5372 −1.00890
\(376\) 8.21601 0.423708
\(377\) −1.10413 −0.0568655
\(378\) 0 0
\(379\) 16.7969 0.862797 0.431399 0.902161i \(-0.358020\pi\)
0.431399 + 0.902161i \(0.358020\pi\)
\(380\) −16.7677 −0.860165
\(381\) 2.29235 0.117441
\(382\) −15.3327 −0.784489
\(383\) 3.42162 0.174836 0.0874182 0.996172i \(-0.472138\pi\)
0.0874182 + 0.996172i \(0.472138\pi\)
\(384\) 13.1080 0.668914
\(385\) 0 0
\(386\) 46.0377 2.34326
\(387\) 3.95346 0.200966
\(388\) −18.9140 −0.960214
\(389\) −8.81296 −0.446835 −0.223417 0.974723i \(-0.571721\pi\)
−0.223417 + 0.974723i \(0.571721\pi\)
\(390\) 0.865034 0.0438027
\(391\) 12.9603 0.655433
\(392\) 0 0
\(393\) 13.2436 0.668051
\(394\) 32.3291 1.62872
\(395\) −9.09106 −0.457421
\(396\) 14.7548 0.741458
\(397\) −10.5507 −0.529522 −0.264761 0.964314i \(-0.585293\pi\)
−0.264761 + 0.964314i \(0.585293\pi\)
\(398\) −45.6757 −2.28952
\(399\) 0 0
\(400\) 13.1392 0.656961
\(401\) −18.2483 −0.911277 −0.455639 0.890165i \(-0.650589\pi\)
−0.455639 + 0.890165i \(0.650589\pi\)
\(402\) −69.2936 −3.45605
\(403\) −0.000951534 0 −4.73993e−5 0
\(404\) −15.1588 −0.754179
\(405\) −9.97180 −0.495503
\(406\) 0 0
\(407\) 17.5700 0.870913
\(408\) 4.18612 0.207244
\(409\) −31.0961 −1.53760 −0.768801 0.639488i \(-0.779146\pi\)
−0.768801 + 0.639488i \(0.779146\pi\)
\(410\) −1.06816 −0.0527526
\(411\) −20.1180 −0.992349
\(412\) −29.7170 −1.46405
\(413\) 0 0
\(414\) 24.2183 1.19027
\(415\) −0.0529696 −0.00260018
\(416\) −1.56770 −0.0768627
\(417\) 26.8792 1.31628
\(418\) 44.4453 2.17389
\(419\) −25.8715 −1.26390 −0.631952 0.775007i \(-0.717746\pi\)
−0.631952 + 0.775007i \(0.717746\pi\)
\(420\) 0 0
\(421\) −2.01873 −0.0983869 −0.0491934 0.998789i \(-0.515665\pi\)
−0.0491934 + 0.998789i \(0.515665\pi\)
\(422\) 51.2560 2.49510
\(423\) −25.5263 −1.24113
\(424\) −9.09168 −0.441531
\(425\) 10.3874 0.503861
\(426\) 73.2138 3.54722
\(427\) 0 0
\(428\) 32.7764 1.58431
\(429\) −1.23822 −0.0597819
\(430\) −3.41351 −0.164614
\(431\) 16.6506 0.802031 0.401016 0.916071i \(-0.368657\pi\)
0.401016 + 0.916071i \(0.368657\pi\)
\(432\) 5.43655 0.261566
\(433\) 1.22543 0.0588905 0.0294452 0.999566i \(-0.490626\pi\)
0.0294452 + 0.999566i \(0.490626\pi\)
\(434\) 0 0
\(435\) 12.1922 0.584574
\(436\) −38.1072 −1.82500
\(437\) 39.3957 1.88455
\(438\) 33.1172 1.58240
\(439\) 20.5160 0.979177 0.489589 0.871953i \(-0.337147\pi\)
0.489589 + 0.871953i \(0.337147\pi\)
\(440\) −1.88840 −0.0900259
\(441\) 0 0
\(442\) −1.01694 −0.0483711
\(443\) −27.2725 −1.29576 −0.647878 0.761744i \(-0.724344\pi\)
−0.647878 + 0.761744i \(0.724344\pi\)
\(444\) 33.9354 1.61050
\(445\) 2.42138 0.114784
\(446\) −44.3545 −2.10025
\(447\) 25.8125 1.22089
\(448\) 0 0
\(449\) 5.50357 0.259730 0.129865 0.991532i \(-0.458546\pi\)
0.129865 + 0.991532i \(0.458546\pi\)
\(450\) 19.4103 0.915012
\(451\) 1.52898 0.0719968
\(452\) 0.127782 0.00601034
\(453\) 29.4438 1.38339
\(454\) 39.6068 1.85884
\(455\) 0 0
\(456\) 12.7246 0.595884
\(457\) 10.1859 0.476475 0.238237 0.971207i \(-0.423430\pi\)
0.238237 + 0.971207i \(0.423430\pi\)
\(458\) −40.7378 −1.90355
\(459\) 4.29793 0.200610
\(460\) −11.2922 −0.526503
\(461\) −26.3546 −1.22746 −0.613728 0.789518i \(-0.710331\pi\)
−0.613728 + 0.789518i \(0.710331\pi\)
\(462\) 0 0
\(463\) −11.3537 −0.527652 −0.263826 0.964570i \(-0.584985\pi\)
−0.263826 + 0.964570i \(0.584985\pi\)
\(464\) −18.1306 −0.841692
\(465\) 0.0105072 0.000487261 0
\(466\) 25.4766 1.18018
\(467\) −29.9352 −1.38523 −0.692617 0.721305i \(-0.743542\pi\)
−0.692617 + 0.721305i \(0.743542\pi\)
\(468\) −1.02621 −0.0474367
\(469\) 0 0
\(470\) 22.0400 1.01663
\(471\) −21.4909 −0.990246
\(472\) 3.97960 0.183176
\(473\) 4.88614 0.224665
\(474\) 46.5423 2.13776
\(475\) 31.5746 1.44874
\(476\) 0 0
\(477\) 28.2469 1.29334
\(478\) −27.8659 −1.27456
\(479\) −12.7527 −0.582685 −0.291342 0.956619i \(-0.594102\pi\)
−0.291342 + 0.956619i \(0.594102\pi\)
\(480\) 17.3112 0.790143
\(481\) −1.22201 −0.0557190
\(482\) −9.72654 −0.443032
\(483\) 0 0
\(484\) −7.59289 −0.345131
\(485\) −7.52092 −0.341507
\(486\) 40.3659 1.83104
\(487\) 18.2165 0.825467 0.412734 0.910852i \(-0.364574\pi\)
0.412734 + 0.910852i \(0.364574\pi\)
\(488\) 6.94177 0.314239
\(489\) 16.9102 0.764708
\(490\) 0 0
\(491\) −16.9535 −0.765100 −0.382550 0.923935i \(-0.624954\pi\)
−0.382550 + 0.923935i \(0.624954\pi\)
\(492\) 2.95313 0.133137
\(493\) −14.3334 −0.645542
\(494\) −3.09122 −0.139080
\(495\) 5.86706 0.263705
\(496\) −0.0156249 −0.000701578 0
\(497\) 0 0
\(498\) 0.271181 0.0121519
\(499\) 21.9257 0.981529 0.490764 0.871292i \(-0.336718\pi\)
0.490764 + 0.871292i \(0.336718\pi\)
\(500\) −20.0120 −0.894963
\(501\) −5.60559 −0.250439
\(502\) 10.9028 0.486615
\(503\) −26.9633 −1.20223 −0.601117 0.799161i \(-0.705277\pi\)
−0.601117 + 0.799161i \(0.705277\pi\)
\(504\) 0 0
\(505\) −6.02771 −0.268229
\(506\) 29.9318 1.33063
\(507\) −29.7144 −1.31966
\(508\) 2.34805 0.104178
\(509\) −21.5261 −0.954128 −0.477064 0.878869i \(-0.658299\pi\)
−0.477064 + 0.878869i \(0.658299\pi\)
\(510\) 11.2295 0.497252
\(511\) 0 0
\(512\) −30.3626 −1.34185
\(513\) 13.0645 0.576811
\(514\) 13.7334 0.605753
\(515\) −11.8166 −0.520701
\(516\) 9.43728 0.415453
\(517\) −31.5483 −1.38749
\(518\) 0 0
\(519\) −6.22923 −0.273433
\(520\) 0.131340 0.00575965
\(521\) 12.9036 0.565316 0.282658 0.959221i \(-0.408784\pi\)
0.282658 + 0.959221i \(0.408784\pi\)
\(522\) −26.7840 −1.17230
\(523\) 21.6556 0.946931 0.473466 0.880812i \(-0.343003\pi\)
0.473466 + 0.880812i \(0.343003\pi\)
\(524\) 13.5654 0.592608
\(525\) 0 0
\(526\) 28.2058 1.22983
\(527\) −0.0123524 −0.000538080 0
\(528\) −20.3325 −0.884858
\(529\) 3.53110 0.153526
\(530\) −24.3890 −1.05939
\(531\) −12.3642 −0.536561
\(532\) 0 0
\(533\) −0.106342 −0.00460618
\(534\) −12.3964 −0.536444
\(535\) 13.0331 0.563470
\(536\) −10.5210 −0.454438
\(537\) 10.8540 0.468383
\(538\) 6.19053 0.266893
\(539\) 0 0
\(540\) −3.74475 −0.161148
\(541\) −3.63466 −0.156266 −0.0781330 0.996943i \(-0.524896\pi\)
−0.0781330 + 0.996943i \(0.524896\pi\)
\(542\) −31.4505 −1.35091
\(543\) −22.7198 −0.975002
\(544\) −20.3512 −0.872551
\(545\) −15.1528 −0.649076
\(546\) 0 0
\(547\) −10.3932 −0.444381 −0.222191 0.975003i \(-0.571321\pi\)
−0.222191 + 0.975003i \(0.571321\pi\)
\(548\) −20.6069 −0.880284
\(549\) −21.5674 −0.920473
\(550\) 23.9895 1.02292
\(551\) −43.5693 −1.85611
\(552\) 8.56940 0.364738
\(553\) 0 0
\(554\) −15.7651 −0.669796
\(555\) 13.4940 0.572787
\(556\) 27.5324 1.16763
\(557\) 22.4511 0.951284 0.475642 0.879639i \(-0.342216\pi\)
0.475642 + 0.879639i \(0.342216\pi\)
\(558\) −0.0230823 −0.000977153 0
\(559\) −0.339836 −0.0143735
\(560\) 0 0
\(561\) −16.0741 −0.678649
\(562\) −63.7471 −2.68901
\(563\) 30.2139 1.27336 0.636682 0.771127i \(-0.280307\pi\)
0.636682 + 0.771127i \(0.280307\pi\)
\(564\) −60.9336 −2.56577
\(565\) 0.0508107 0.00213762
\(566\) −59.9824 −2.52125
\(567\) 0 0
\(568\) 11.1162 0.466427
\(569\) 47.0362 1.97186 0.985931 0.167155i \(-0.0534582\pi\)
0.985931 + 0.167155i \(0.0534582\pi\)
\(570\) 34.1345 1.42974
\(571\) −27.5118 −1.15133 −0.575666 0.817685i \(-0.695257\pi\)
−0.575666 + 0.817685i \(0.695257\pi\)
\(572\) −1.26831 −0.0530308
\(573\) 16.8559 0.704165
\(574\) 0 0
\(575\) 21.2640 0.886769
\(576\) −23.6759 −0.986497
\(577\) −16.8224 −0.700327 −0.350164 0.936689i \(-0.613874\pi\)
−0.350164 + 0.936689i \(0.613874\pi\)
\(578\) 22.2468 0.925345
\(579\) −50.6112 −2.10333
\(580\) 12.4885 0.518558
\(581\) 0 0
\(582\) 38.5038 1.59604
\(583\) 34.9108 1.44586
\(584\) 5.02826 0.208071
\(585\) −0.408060 −0.0168712
\(586\) 22.2258 0.918141
\(587\) −8.96942 −0.370208 −0.185104 0.982719i \(-0.559262\pi\)
−0.185104 + 0.982719i \(0.559262\pi\)
\(588\) 0 0
\(589\) −0.0375478 −0.00154713
\(590\) 10.6755 0.439505
\(591\) −35.5407 −1.46195
\(592\) −20.0663 −0.824721
\(593\) −39.7027 −1.63040 −0.815198 0.579182i \(-0.803372\pi\)
−0.815198 + 0.579182i \(0.803372\pi\)
\(594\) 9.92602 0.407269
\(595\) 0 0
\(596\) 26.4397 1.08301
\(597\) 50.2132 2.05509
\(598\) −2.08179 −0.0851305
\(599\) −47.1062 −1.92471 −0.962354 0.271799i \(-0.912381\pi\)
−0.962354 + 0.271799i \(0.912381\pi\)
\(600\) 6.86814 0.280391
\(601\) −13.9775 −0.570154 −0.285077 0.958505i \(-0.592019\pi\)
−0.285077 + 0.958505i \(0.592019\pi\)
\(602\) 0 0
\(603\) 32.6877 1.33114
\(604\) 30.1593 1.22716
\(605\) −3.01921 −0.122748
\(606\) 30.8593 1.25357
\(607\) 22.5493 0.915249 0.457625 0.889146i \(-0.348700\pi\)
0.457625 + 0.889146i \(0.348700\pi\)
\(608\) −61.8618 −2.50883
\(609\) 0 0
\(610\) 18.6217 0.753972
\(611\) 2.19422 0.0887686
\(612\) −13.3219 −0.538505
\(613\) 43.6758 1.76405 0.882025 0.471202i \(-0.156180\pi\)
0.882025 + 0.471202i \(0.156180\pi\)
\(614\) 25.2531 1.01913
\(615\) 1.17427 0.0473513
\(616\) 0 0
\(617\) 2.20142 0.0886258 0.0443129 0.999018i \(-0.485890\pi\)
0.0443129 + 0.999018i \(0.485890\pi\)
\(618\) 60.4958 2.43350
\(619\) 42.2248 1.69716 0.848580 0.529068i \(-0.177458\pi\)
0.848580 + 0.529068i \(0.177458\pi\)
\(620\) 0.0107626 0.000432235 0
\(621\) 8.79829 0.353063
\(622\) 38.1082 1.52800
\(623\) 0 0
\(624\) 1.41415 0.0566112
\(625\) 12.6838 0.507351
\(626\) −52.8316 −2.11158
\(627\) −48.8606 −1.95131
\(628\) −22.0131 −0.878418
\(629\) −15.8637 −0.632526
\(630\) 0 0
\(631\) 30.8546 1.22830 0.614152 0.789188i \(-0.289498\pi\)
0.614152 + 0.789188i \(0.289498\pi\)
\(632\) 7.06663 0.281095
\(633\) −56.3479 −2.23963
\(634\) 53.7261 2.13373
\(635\) 0.933672 0.0370517
\(636\) 67.4280 2.67369
\(637\) 0 0
\(638\) −33.1027 −1.31055
\(639\) −34.5370 −1.36626
\(640\) 5.33888 0.211038
\(641\) −35.0810 −1.38562 −0.692808 0.721122i \(-0.743626\pi\)
−0.692808 + 0.721122i \(0.743626\pi\)
\(642\) −66.7239 −2.63338
\(643\) 3.80378 0.150007 0.0750033 0.997183i \(-0.476103\pi\)
0.0750033 + 0.997183i \(0.476103\pi\)
\(644\) 0 0
\(645\) 3.75261 0.147759
\(646\) −40.1289 −1.57885
\(647\) 25.7342 1.01172 0.505858 0.862617i \(-0.331176\pi\)
0.505858 + 0.862617i \(0.331176\pi\)
\(648\) 7.75124 0.304497
\(649\) −15.2811 −0.599836
\(650\) −1.66849 −0.0654437
\(651\) 0 0
\(652\) 17.3212 0.678349
\(653\) 0.517721 0.0202600 0.0101300 0.999949i \(-0.496775\pi\)
0.0101300 + 0.999949i \(0.496775\pi\)
\(654\) 77.5759 3.03346
\(655\) 5.39412 0.210766
\(656\) −1.74621 −0.0681782
\(657\) −15.6223 −0.609484
\(658\) 0 0
\(659\) 1.28916 0.0502187 0.0251093 0.999685i \(-0.492007\pi\)
0.0251093 + 0.999685i \(0.492007\pi\)
\(660\) 14.0052 0.545153
\(661\) −9.00670 −0.350320 −0.175160 0.984540i \(-0.556044\pi\)
−0.175160 + 0.984540i \(0.556044\pi\)
\(662\) 27.4323 1.06619
\(663\) 1.11797 0.0434184
\(664\) 0.0411741 0.00159787
\(665\) 0 0
\(666\) −29.6436 −1.14867
\(667\) −29.3418 −1.13612
\(668\) −5.74180 −0.222157
\(669\) 48.7608 1.88520
\(670\) −28.2233 −1.09036
\(671\) −26.6554 −1.02902
\(672\) 0 0
\(673\) 22.2110 0.856173 0.428086 0.903738i \(-0.359188\pi\)
0.428086 + 0.903738i \(0.359188\pi\)
\(674\) −50.8612 −1.95910
\(675\) 7.05159 0.271416
\(676\) −30.4365 −1.17063
\(677\) 42.3852 1.62900 0.814499 0.580166i \(-0.197012\pi\)
0.814499 + 0.580166i \(0.197012\pi\)
\(678\) −0.260129 −0.00999018
\(679\) 0 0
\(680\) 1.70500 0.0653840
\(681\) −43.5414 −1.66851
\(682\) −0.0285278 −0.00109239
\(683\) 18.2898 0.699839 0.349920 0.936780i \(-0.386209\pi\)
0.349920 + 0.936780i \(0.386209\pi\)
\(684\) −40.4947 −1.54835
\(685\) −8.19407 −0.313079
\(686\) 0 0
\(687\) 44.7848 1.70865
\(688\) −5.58036 −0.212749
\(689\) −2.42808 −0.0925025
\(690\) 22.9879 0.875136
\(691\) −31.8326 −1.21097 −0.605484 0.795858i \(-0.707020\pi\)
−0.605484 + 0.795858i \(0.707020\pi\)
\(692\) −6.38060 −0.242554
\(693\) 0 0
\(694\) 8.09860 0.307419
\(695\) 10.9479 0.415277
\(696\) −9.47723 −0.359233
\(697\) −1.38049 −0.0522898
\(698\) −14.0375 −0.531326
\(699\) −28.0075 −1.05934
\(700\) 0 0
\(701\) 22.4553 0.848127 0.424063 0.905633i \(-0.360603\pi\)
0.424063 + 0.905633i \(0.360603\pi\)
\(702\) −0.690365 −0.0260561
\(703\) −48.2210 −1.81869
\(704\) −29.2614 −1.10283
\(705\) −24.2295 −0.912534
\(706\) −27.7262 −1.04349
\(707\) 0 0
\(708\) −29.5145 −1.10922
\(709\) −23.9767 −0.900465 −0.450233 0.892911i \(-0.648659\pi\)
−0.450233 + 0.892911i \(0.648659\pi\)
\(710\) 29.8200 1.11912
\(711\) −21.9553 −0.823387
\(712\) −1.88217 −0.0705374
\(713\) −0.0252866 −0.000946992 0
\(714\) 0 0
\(715\) −0.504327 −0.0188608
\(716\) 11.1177 0.415489
\(717\) 30.6342 1.14405
\(718\) −13.9396 −0.520220
\(719\) −32.0616 −1.19570 −0.597848 0.801609i \(-0.703978\pi\)
−0.597848 + 0.801609i \(0.703978\pi\)
\(720\) −6.70064 −0.249718
\(721\) 0 0
\(722\) −82.3617 −3.06518
\(723\) 10.6928 0.397669
\(724\) −23.2719 −0.864895
\(725\) −23.5166 −0.873386
\(726\) 15.4571 0.573665
\(727\) 15.4885 0.574438 0.287219 0.957865i \(-0.407269\pi\)
0.287219 + 0.957865i \(0.407269\pi\)
\(728\) 0 0
\(729\) −12.3354 −0.456868
\(730\) 13.4886 0.499236
\(731\) −4.41162 −0.163170
\(732\) −51.4833 −1.90288
\(733\) −45.9771 −1.69820 −0.849101 0.528230i \(-0.822856\pi\)
−0.849101 + 0.528230i \(0.822856\pi\)
\(734\) −23.4648 −0.866103
\(735\) 0 0
\(736\) −41.6609 −1.53564
\(737\) 40.3992 1.48812
\(738\) −2.57965 −0.0949581
\(739\) 15.5562 0.572245 0.286122 0.958193i \(-0.407634\pi\)
0.286122 + 0.958193i \(0.407634\pi\)
\(740\) 13.8219 0.508102
\(741\) 3.39831 0.124840
\(742\) 0 0
\(743\) 7.57725 0.277982 0.138991 0.990294i \(-0.455614\pi\)
0.138991 + 0.990294i \(0.455614\pi\)
\(744\) −0.00816744 −0.000299433 0
\(745\) 10.5134 0.385182
\(746\) −5.82259 −0.213180
\(747\) −0.127924 −0.00468048
\(748\) −16.4647 −0.602009
\(749\) 0 0
\(750\) 40.7390 1.48758
\(751\) −46.6503 −1.70229 −0.851146 0.524928i \(-0.824092\pi\)
−0.851146 + 0.524928i \(0.824092\pi\)
\(752\) 36.0306 1.31390
\(753\) −11.9859 −0.436790
\(754\) 2.30233 0.0838458
\(755\) 11.9924 0.436450
\(756\) 0 0
\(757\) 13.7608 0.500145 0.250073 0.968227i \(-0.419545\pi\)
0.250073 + 0.968227i \(0.419545\pi\)
\(758\) −35.0248 −1.27216
\(759\) −32.9053 −1.19439
\(760\) 5.18272 0.187997
\(761\) −0.805405 −0.0291959 −0.0145980 0.999893i \(-0.504647\pi\)
−0.0145980 + 0.999893i \(0.504647\pi\)
\(762\) −4.78000 −0.173161
\(763\) 0 0
\(764\) 17.2655 0.624644
\(765\) −5.29727 −0.191523
\(766\) −7.13475 −0.257789
\(767\) 1.06282 0.0383761
\(768\) 20.8064 0.750787
\(769\) 48.5248 1.74985 0.874925 0.484258i \(-0.160911\pi\)
0.874925 + 0.484258i \(0.160911\pi\)
\(770\) 0 0
\(771\) −15.0977 −0.543730
\(772\) −51.8411 −1.86580
\(773\) −18.6869 −0.672121 −0.336060 0.941840i \(-0.609095\pi\)
−0.336060 + 0.941840i \(0.609095\pi\)
\(774\) −8.24375 −0.296316
\(775\) −0.0202666 −0.000727996 0
\(776\) 5.84613 0.209864
\(777\) 0 0
\(778\) 18.3768 0.658839
\(779\) −4.19629 −0.150348
\(780\) −0.974078 −0.0348776
\(781\) −42.6847 −1.52738
\(782\) −27.0249 −0.966408
\(783\) −9.73037 −0.347735
\(784\) 0 0
\(785\) −8.75322 −0.312416
\(786\) −27.6155 −0.985014
\(787\) −6.71735 −0.239448 −0.119724 0.992807i \(-0.538201\pi\)
−0.119724 + 0.992807i \(0.538201\pi\)
\(788\) −36.4044 −1.29685
\(789\) −31.0079 −1.10391
\(790\) 18.9567 0.674448
\(791\) 0 0
\(792\) −4.56056 −0.162052
\(793\) 1.85391 0.0658344
\(794\) 22.0002 0.780758
\(795\) 26.8119 0.950919
\(796\) 51.4334 1.82301
\(797\) −23.0778 −0.817459 −0.408730 0.912655i \(-0.634028\pi\)
−0.408730 + 0.912655i \(0.634028\pi\)
\(798\) 0 0
\(799\) 28.4844 1.00771
\(800\) −33.3901 −1.18052
\(801\) 5.84772 0.206619
\(802\) 38.0513 1.34364
\(803\) −19.3078 −0.681358
\(804\) 78.0285 2.75185
\(805\) 0 0
\(806\) 0.00198414 6.98883e−5 0
\(807\) −6.80552 −0.239566
\(808\) 4.68543 0.164833
\(809\) 53.9924 1.89827 0.949135 0.314869i \(-0.101961\pi\)
0.949135 + 0.314869i \(0.101961\pi\)
\(810\) 20.7932 0.730598
\(811\) −27.2849 −0.958103 −0.479051 0.877787i \(-0.659019\pi\)
−0.479051 + 0.877787i \(0.659019\pi\)
\(812\) 0 0
\(813\) 34.5749 1.21259
\(814\) −36.6370 −1.28412
\(815\) 6.88754 0.241260
\(816\) 18.3579 0.642654
\(817\) −13.4100 −0.469158
\(818\) 64.8415 2.26713
\(819\) 0 0
\(820\) 1.20281 0.0420039
\(821\) −0.485767 −0.0169534 −0.00847669 0.999964i \(-0.502698\pi\)
−0.00847669 + 0.999964i \(0.502698\pi\)
\(822\) 41.9501 1.46318
\(823\) −19.5296 −0.680760 −0.340380 0.940288i \(-0.610556\pi\)
−0.340380 + 0.940288i \(0.610556\pi\)
\(824\) 9.18522 0.319982
\(825\) −26.3727 −0.918179
\(826\) 0 0
\(827\) −33.0521 −1.14933 −0.574667 0.818387i \(-0.694868\pi\)
−0.574667 + 0.818387i \(0.694868\pi\)
\(828\) −27.2712 −0.947740
\(829\) −1.53452 −0.0532959 −0.0266480 0.999645i \(-0.508483\pi\)
−0.0266480 + 0.999645i \(0.508483\pi\)
\(830\) 0.110452 0.00383385
\(831\) 17.3313 0.601215
\(832\) 2.03516 0.0705566
\(833\) 0 0
\(834\) −56.0485 −1.94080
\(835\) −2.28315 −0.0790118
\(836\) −50.0480 −1.73095
\(837\) −0.00838560 −0.000289849 0
\(838\) 53.9472 1.86357
\(839\) −3.69432 −0.127542 −0.0637710 0.997965i \(-0.520313\pi\)
−0.0637710 + 0.997965i \(0.520313\pi\)
\(840\) 0 0
\(841\) 3.45022 0.118973
\(842\) 4.20945 0.145067
\(843\) 70.0799 2.41368
\(844\) −57.7172 −1.98671
\(845\) −12.1027 −0.416344
\(846\) 53.2274 1.83000
\(847\) 0 0
\(848\) −39.8708 −1.36917
\(849\) 65.9412 2.26310
\(850\) −21.6597 −0.742922
\(851\) −32.4745 −1.11321
\(852\) −82.4430 −2.82445
\(853\) −13.0036 −0.445235 −0.222618 0.974906i \(-0.571460\pi\)
−0.222618 + 0.974906i \(0.571460\pi\)
\(854\) 0 0
\(855\) −16.1022 −0.550683
\(856\) −10.1308 −0.346265
\(857\) 8.79211 0.300333 0.150166 0.988661i \(-0.452019\pi\)
0.150166 + 0.988661i \(0.452019\pi\)
\(858\) 2.58194 0.0881459
\(859\) 28.3314 0.966655 0.483328 0.875440i \(-0.339428\pi\)
0.483328 + 0.875440i \(0.339428\pi\)
\(860\) 3.84380 0.131073
\(861\) 0 0
\(862\) −34.7198 −1.18256
\(863\) −17.6452 −0.600648 −0.300324 0.953837i \(-0.597095\pi\)
−0.300324 + 0.953837i \(0.597095\pi\)
\(864\) −13.8157 −0.470019
\(865\) −2.53716 −0.0862662
\(866\) −2.55527 −0.0868315
\(867\) −24.4569 −0.830599
\(868\) 0 0
\(869\) −27.1348 −0.920487
\(870\) −25.4233 −0.861929
\(871\) −2.80980 −0.0952066
\(872\) 11.7785 0.398872
\(873\) −18.1633 −0.614735
\(874\) −82.1479 −2.77869
\(875\) 0 0
\(876\) −37.2919 −1.25998
\(877\) −12.6152 −0.425986 −0.212993 0.977054i \(-0.568321\pi\)
−0.212993 + 0.977054i \(0.568321\pi\)
\(878\) −42.7800 −1.44376
\(879\) −24.4338 −0.824132
\(880\) −8.28142 −0.279167
\(881\) 34.6918 1.16880 0.584398 0.811467i \(-0.301331\pi\)
0.584398 + 0.811467i \(0.301331\pi\)
\(882\) 0 0
\(883\) −1.63980 −0.0551838 −0.0275919 0.999619i \(-0.508784\pi\)
−0.0275919 + 0.999619i \(0.508784\pi\)
\(884\) 1.14514 0.0385151
\(885\) −11.7361 −0.394504
\(886\) 56.8686 1.91054
\(887\) 46.9777 1.57736 0.788679 0.614806i \(-0.210766\pi\)
0.788679 + 0.614806i \(0.210766\pi\)
\(888\) −10.4891 −0.351990
\(889\) 0 0
\(890\) −5.04905 −0.169244
\(891\) −29.7637 −0.997120
\(892\) 49.9457 1.67231
\(893\) 86.5845 2.89744
\(894\) −53.8242 −1.80015
\(895\) 4.42081 0.147772
\(896\) 0 0
\(897\) 2.28859 0.0764140
\(898\) −11.4760 −0.382961
\(899\) 0.0279655 0.000932701 0
\(900\) −21.8571 −0.728571
\(901\) −31.5204 −1.05010
\(902\) −3.18822 −0.106156
\(903\) 0 0
\(904\) −0.0394959 −0.00131362
\(905\) −9.25379 −0.307606
\(906\) −61.3961 −2.03975
\(907\) −17.9824 −0.597096 −0.298548 0.954395i \(-0.596502\pi\)
−0.298548 + 0.954395i \(0.596502\pi\)
\(908\) −44.5995 −1.48009
\(909\) −14.5572 −0.482830
\(910\) 0 0
\(911\) −5.69883 −0.188811 −0.0944053 0.995534i \(-0.530095\pi\)
−0.0944053 + 0.995534i \(0.530095\pi\)
\(912\) 55.8027 1.84781
\(913\) −0.158103 −0.00523244
\(914\) −21.2396 −0.702542
\(915\) −20.4717 −0.676773
\(916\) 45.8731 1.51569
\(917\) 0 0
\(918\) −8.96204 −0.295791
\(919\) 30.9677 1.02153 0.510765 0.859720i \(-0.329362\pi\)
0.510765 + 0.859720i \(0.329362\pi\)
\(920\) 3.49031 0.115072
\(921\) −27.7618 −0.914783
\(922\) 54.9545 1.80983
\(923\) 2.96877 0.0977182
\(924\) 0 0
\(925\) −26.0274 −0.855777
\(926\) 23.6748 0.778001
\(927\) −28.5375 −0.937295
\(928\) 46.0745 1.51247
\(929\) −9.62268 −0.315710 −0.157855 0.987462i \(-0.550458\pi\)
−0.157855 + 0.987462i \(0.550458\pi\)
\(930\) −0.0219097 −0.000718446 0
\(931\) 0 0
\(932\) −28.6881 −0.939708
\(933\) −41.8939 −1.37155
\(934\) 62.4208 2.04247
\(935\) −6.54698 −0.214109
\(936\) 0.317192 0.0103677
\(937\) −27.5737 −0.900795 −0.450397 0.892828i \(-0.648718\pi\)
−0.450397 + 0.892828i \(0.648718\pi\)
\(938\) 0 0
\(939\) 58.0801 1.89537
\(940\) −24.8183 −0.809482
\(941\) −48.4998 −1.58105 −0.790524 0.612431i \(-0.790192\pi\)
−0.790524 + 0.612431i \(0.790192\pi\)
\(942\) 44.8127 1.46008
\(943\) −2.82600 −0.0920271
\(944\) 17.4522 0.568021
\(945\) 0 0
\(946\) −10.1886 −0.331259
\(947\) 27.5695 0.895889 0.447945 0.894061i \(-0.352156\pi\)
0.447945 + 0.894061i \(0.352156\pi\)
\(948\) −52.4093 −1.70217
\(949\) 1.34288 0.0435917
\(950\) −65.8393 −2.13611
\(951\) −59.0634 −1.91526
\(952\) 0 0
\(953\) −6.77555 −0.219482 −0.109741 0.993960i \(-0.535002\pi\)
−0.109741 + 0.993960i \(0.535002\pi\)
\(954\) −58.9004 −1.90697
\(955\) 6.86540 0.222159
\(956\) 31.3786 1.01486
\(957\) 36.3912 1.17636
\(958\) 26.5919 0.859145
\(959\) 0 0
\(960\) −22.4731 −0.725317
\(961\) −31.0000 −0.999999
\(962\) 2.54814 0.0821553
\(963\) 31.4755 1.01428
\(964\) 10.9526 0.352761
\(965\) −20.6139 −0.663586
\(966\) 0 0
\(967\) 21.4389 0.689430 0.344715 0.938707i \(-0.387976\pi\)
0.344715 + 0.938707i \(0.387976\pi\)
\(968\) 2.34688 0.0754316
\(969\) 44.1155 1.41719
\(970\) 15.6826 0.503538
\(971\) 12.5837 0.403829 0.201915 0.979403i \(-0.435284\pi\)
0.201915 + 0.979403i \(0.435284\pi\)
\(972\) −45.4544 −1.45795
\(973\) 0 0
\(974\) −37.9850 −1.21712
\(975\) 1.83425 0.0587429
\(976\) 30.4426 0.974443
\(977\) −16.0849 −0.514601 −0.257301 0.966331i \(-0.582833\pi\)
−0.257301 + 0.966331i \(0.582833\pi\)
\(978\) −35.2612 −1.12753
\(979\) 7.22728 0.230985
\(980\) 0 0
\(981\) −36.5947 −1.16838
\(982\) 35.3514 1.12811
\(983\) −48.8867 −1.55924 −0.779621 0.626251i \(-0.784588\pi\)
−0.779621 + 0.626251i \(0.784588\pi\)
\(984\) −0.912781 −0.0290984
\(985\) −14.4757 −0.461235
\(986\) 29.8879 0.951824
\(987\) 0 0
\(988\) 3.48089 0.110742
\(989\) −9.03101 −0.287169
\(990\) −12.2340 −0.388822
\(991\) −41.3328 −1.31298 −0.656490 0.754335i \(-0.727960\pi\)
−0.656490 + 0.754335i \(0.727960\pi\)
\(992\) 0.0397068 0.00126069
\(993\) −30.1575 −0.957019
\(994\) 0 0
\(995\) 20.4518 0.648367
\(996\) −0.305366 −0.00967589
\(997\) −32.7780 −1.03809 −0.519045 0.854747i \(-0.673712\pi\)
−0.519045 + 0.854747i \(0.673712\pi\)
\(998\) −45.7194 −1.44722
\(999\) −10.7692 −0.340724
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.o.1.7 38
7.3 odd 6 889.2.f.c.128.32 76
7.5 odd 6 889.2.f.c.382.32 yes 76
7.6 odd 2 6223.2.a.p.1.7 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.32 76 7.3 odd 6
889.2.f.c.382.32 yes 76 7.5 odd 6
6223.2.a.o.1.7 38 1.1 even 1 trivial
6223.2.a.p.1.7 38 7.6 odd 2