Properties

Label 6223.2.a.o.1.11
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $1$
Dimension $38$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38,-2,-11,38,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(1\)
Dimension: \(38\)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.45409 q^{2} +1.33511 q^{3} +0.114369 q^{4} -3.16583 q^{5} -1.94137 q^{6} +2.74187 q^{8} -1.21748 q^{9} +4.60340 q^{10} +2.94763 q^{11} +0.152695 q^{12} -3.25559 q^{13} -4.22674 q^{15} -4.21566 q^{16} +4.63744 q^{17} +1.77032 q^{18} -3.26400 q^{19} -0.362072 q^{20} -4.28611 q^{22} +8.26045 q^{23} +3.66071 q^{24} +5.02251 q^{25} +4.73391 q^{26} -5.63080 q^{27} -0.659879 q^{29} +6.14605 q^{30} -3.38402 q^{31} +0.646188 q^{32} +3.93541 q^{33} -6.74323 q^{34} -0.139241 q^{36} -1.21539 q^{37} +4.74614 q^{38} -4.34658 q^{39} -8.68031 q^{40} -3.84925 q^{41} -5.49619 q^{43} +0.337116 q^{44} +3.85433 q^{45} -12.0114 q^{46} -1.93728 q^{47} -5.62837 q^{48} -7.30316 q^{50} +6.19150 q^{51} -0.372338 q^{52} +1.07878 q^{53} +8.18768 q^{54} -9.33170 q^{55} -4.35781 q^{57} +0.959521 q^{58} +4.73108 q^{59} -0.483407 q^{60} +11.1301 q^{61} +4.92066 q^{62} +7.49170 q^{64} +10.3067 q^{65} -5.72243 q^{66} +8.20739 q^{67} +0.530377 q^{68} +11.0286 q^{69} +10.5442 q^{71} -3.33816 q^{72} -9.44300 q^{73} +1.76728 q^{74} +6.70561 q^{75} -0.373299 q^{76} +6.32031 q^{78} +9.81748 q^{79} +13.3461 q^{80} -3.86533 q^{81} +5.59715 q^{82} +4.61978 q^{83} -14.6814 q^{85} +7.99194 q^{86} -0.881012 q^{87} +8.08202 q^{88} -11.4358 q^{89} -5.60453 q^{90} +0.944736 q^{92} -4.51805 q^{93} +2.81697 q^{94} +10.3333 q^{95} +0.862733 q^{96} +10.2372 q^{97} -3.58867 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q - 2 q^{2} - 11 q^{3} + 38 q^{4} - 16 q^{5} - 11 q^{6} + 47 q^{9} - 12 q^{10} - 2 q^{11} - 30 q^{12} - 21 q^{13} + 7 q^{15} + 46 q^{16} - 58 q^{17} - 13 q^{18} - 17 q^{19} - 44 q^{20} + 21 q^{22} + 7 q^{23}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45409 −1.02819 −0.514097 0.857732i \(-0.671873\pi\)
−0.514097 + 0.857732i \(0.671873\pi\)
\(3\) 1.33511 0.770827 0.385414 0.922744i \(-0.374059\pi\)
0.385414 + 0.922744i \(0.374059\pi\)
\(4\) 0.114369 0.0571843
\(5\) −3.16583 −1.41580 −0.707902 0.706311i \(-0.750358\pi\)
−0.707902 + 0.706311i \(0.750358\pi\)
\(6\) −1.94137 −0.792561
\(7\) 0 0
\(8\) 2.74187 0.969398
\(9\) −1.21748 −0.405825
\(10\) 4.60340 1.45572
\(11\) 2.94763 0.888743 0.444372 0.895843i \(-0.353427\pi\)
0.444372 + 0.895843i \(0.353427\pi\)
\(12\) 0.152695 0.0440792
\(13\) −3.25559 −0.902939 −0.451469 0.892287i \(-0.649100\pi\)
−0.451469 + 0.892287i \(0.649100\pi\)
\(14\) 0 0
\(15\) −4.22674 −1.09134
\(16\) −4.21566 −1.05391
\(17\) 4.63744 1.12474 0.562372 0.826885i \(-0.309889\pi\)
0.562372 + 0.826885i \(0.309889\pi\)
\(18\) 1.77032 0.417267
\(19\) −3.26400 −0.748813 −0.374407 0.927265i \(-0.622154\pi\)
−0.374407 + 0.927265i \(0.622154\pi\)
\(20\) −0.362072 −0.0809618
\(21\) 0 0
\(22\) −4.28611 −0.913801
\(23\) 8.26045 1.72242 0.861212 0.508247i \(-0.169706\pi\)
0.861212 + 0.508247i \(0.169706\pi\)
\(24\) 3.66071 0.747239
\(25\) 5.02251 1.00450
\(26\) 4.73391 0.928397
\(27\) −5.63080 −1.08365
\(28\) 0 0
\(29\) −0.659879 −0.122536 −0.0612682 0.998121i \(-0.519514\pi\)
−0.0612682 + 0.998121i \(0.519514\pi\)
\(30\) 6.14605 1.12211
\(31\) −3.38402 −0.607788 −0.303894 0.952706i \(-0.598287\pi\)
−0.303894 + 0.952706i \(0.598287\pi\)
\(32\) 0.646188 0.114231
\(33\) 3.93541 0.685068
\(34\) −6.74323 −1.15646
\(35\) 0 0
\(36\) −0.139241 −0.0232068
\(37\) −1.21539 −0.199809 −0.0999044 0.994997i \(-0.531854\pi\)
−0.0999044 + 0.994997i \(0.531854\pi\)
\(38\) 4.74614 0.769926
\(39\) −4.34658 −0.696010
\(40\) −8.68031 −1.37248
\(41\) −3.84925 −0.601152 −0.300576 0.953758i \(-0.597179\pi\)
−0.300576 + 0.953758i \(0.597179\pi\)
\(42\) 0 0
\(43\) −5.49619 −0.838162 −0.419081 0.907949i \(-0.637648\pi\)
−0.419081 + 0.907949i \(0.637648\pi\)
\(44\) 0.337116 0.0508222
\(45\) 3.85433 0.574569
\(46\) −12.0114 −1.77099
\(47\) −1.93728 −0.282581 −0.141291 0.989968i \(-0.545125\pi\)
−0.141291 + 0.989968i \(0.545125\pi\)
\(48\) −5.62837 −0.812386
\(49\) 0 0
\(50\) −7.30316 −1.03282
\(51\) 6.19150 0.866983
\(52\) −0.372338 −0.0516339
\(53\) 1.07878 0.148181 0.0740907 0.997252i \(-0.476395\pi\)
0.0740907 + 0.997252i \(0.476395\pi\)
\(54\) 8.18768 1.11420
\(55\) −9.33170 −1.25829
\(56\) 0 0
\(57\) −4.35781 −0.577206
\(58\) 0.959521 0.125991
\(59\) 4.73108 0.615935 0.307967 0.951397i \(-0.400351\pi\)
0.307967 + 0.951397i \(0.400351\pi\)
\(60\) −0.483407 −0.0624075
\(61\) 11.1301 1.42507 0.712534 0.701637i \(-0.247547\pi\)
0.712534 + 0.701637i \(0.247547\pi\)
\(62\) 4.92066 0.624925
\(63\) 0 0
\(64\) 7.49170 0.936463
\(65\) 10.3067 1.27838
\(66\) −5.72243 −0.704383
\(67\) 8.20739 1.00269 0.501346 0.865247i \(-0.332838\pi\)
0.501346 + 0.865247i \(0.332838\pi\)
\(68\) 0.530377 0.0643177
\(69\) 11.0286 1.32769
\(70\) 0 0
\(71\) 10.5442 1.25136 0.625681 0.780079i \(-0.284821\pi\)
0.625681 + 0.780079i \(0.284821\pi\)
\(72\) −3.33816 −0.393406
\(73\) −9.44300 −1.10522 −0.552610 0.833440i \(-0.686368\pi\)
−0.552610 + 0.833440i \(0.686368\pi\)
\(74\) 1.76728 0.205442
\(75\) 6.70561 0.774297
\(76\) −0.373299 −0.0428204
\(77\) 0 0
\(78\) 6.32031 0.715634
\(79\) 9.81748 1.10455 0.552277 0.833661i \(-0.313759\pi\)
0.552277 + 0.833661i \(0.313759\pi\)
\(80\) 13.3461 1.49214
\(81\) −3.86533 −0.429481
\(82\) 5.59715 0.618101
\(83\) 4.61978 0.507086 0.253543 0.967324i \(-0.418404\pi\)
0.253543 + 0.967324i \(0.418404\pi\)
\(84\) 0 0
\(85\) −14.6814 −1.59242
\(86\) 7.99194 0.861793
\(87\) −0.881012 −0.0944544
\(88\) 8.08202 0.861546
\(89\) −11.4358 −1.21219 −0.606094 0.795393i \(-0.707264\pi\)
−0.606094 + 0.795393i \(0.707264\pi\)
\(90\) −5.60453 −0.590769
\(91\) 0 0
\(92\) 0.944736 0.0984956
\(93\) −4.51805 −0.468500
\(94\) 2.81697 0.290548
\(95\) 10.3333 1.06017
\(96\) 0.862733 0.0880523
\(97\) 10.2372 1.03943 0.519713 0.854341i \(-0.326039\pi\)
0.519713 + 0.854341i \(0.326039\pi\)
\(98\) 0 0
\(99\) −3.58867 −0.360674
\(100\) 0.574417 0.0574417
\(101\) −12.6942 −1.26312 −0.631561 0.775326i \(-0.717586\pi\)
−0.631561 + 0.775326i \(0.717586\pi\)
\(102\) −9.00297 −0.891427
\(103\) −13.2391 −1.30448 −0.652242 0.758011i \(-0.726171\pi\)
−0.652242 + 0.758011i \(0.726171\pi\)
\(104\) −8.92642 −0.875307
\(105\) 0 0
\(106\) −1.56863 −0.152359
\(107\) −1.55325 −0.150159 −0.0750793 0.997178i \(-0.523921\pi\)
−0.0750793 + 0.997178i \(0.523921\pi\)
\(108\) −0.643987 −0.0619677
\(109\) 11.9851 1.14796 0.573981 0.818868i \(-0.305398\pi\)
0.573981 + 0.818868i \(0.305398\pi\)
\(110\) 13.5691 1.29376
\(111\) −1.62268 −0.154018
\(112\) 0 0
\(113\) −2.68377 −0.252468 −0.126234 0.992001i \(-0.540289\pi\)
−0.126234 + 0.992001i \(0.540289\pi\)
\(114\) 6.33663 0.593480
\(115\) −26.1512 −2.43861
\(116\) −0.0754694 −0.00700716
\(117\) 3.96360 0.366435
\(118\) −6.87941 −0.633301
\(119\) 0 0
\(120\) −11.5892 −1.05794
\(121\) −2.31149 −0.210135
\(122\) −16.1842 −1.46525
\(123\) −5.13918 −0.463385
\(124\) −0.387026 −0.0347560
\(125\) −0.0712523 −0.00637300
\(126\) 0 0
\(127\) 1.00000 0.0887357
\(128\) −12.1860 −1.07710
\(129\) −7.33803 −0.646078
\(130\) −14.9868 −1.31443
\(131\) 19.9814 1.74579 0.872894 0.487911i \(-0.162241\pi\)
0.872894 + 0.487911i \(0.162241\pi\)
\(132\) 0.450088 0.0391751
\(133\) 0 0
\(134\) −11.9343 −1.03096
\(135\) 17.8262 1.53423
\(136\) 12.7153 1.09032
\(137\) 14.1582 1.20961 0.604806 0.796373i \(-0.293251\pi\)
0.604806 + 0.796373i \(0.293251\pi\)
\(138\) −16.0366 −1.36512
\(139\) −1.17991 −0.100079 −0.0500395 0.998747i \(-0.515935\pi\)
−0.0500395 + 0.998747i \(0.515935\pi\)
\(140\) 0 0
\(141\) −2.58648 −0.217821
\(142\) −15.3321 −1.28664
\(143\) −9.59627 −0.802481
\(144\) 5.13246 0.427705
\(145\) 2.08907 0.173488
\(146\) 13.7309 1.13638
\(147\) 0 0
\(148\) −0.139002 −0.0114259
\(149\) −19.3077 −1.58175 −0.790876 0.611976i \(-0.790375\pi\)
−0.790876 + 0.611976i \(0.790375\pi\)
\(150\) −9.75054 −0.796128
\(151\) −1.19916 −0.0975866 −0.0487933 0.998809i \(-0.515538\pi\)
−0.0487933 + 0.998809i \(0.515538\pi\)
\(152\) −8.94947 −0.725898
\(153\) −5.64596 −0.456449
\(154\) 0 0
\(155\) 10.7133 0.860509
\(156\) −0.497112 −0.0398008
\(157\) 13.2375 1.05647 0.528233 0.849099i \(-0.322855\pi\)
0.528233 + 0.849099i \(0.322855\pi\)
\(158\) −14.2755 −1.13570
\(159\) 1.44029 0.114222
\(160\) −2.04572 −0.161729
\(161\) 0 0
\(162\) 5.62052 0.441590
\(163\) −12.5688 −0.984462 −0.492231 0.870465i \(-0.663818\pi\)
−0.492231 + 0.870465i \(0.663818\pi\)
\(164\) −0.440234 −0.0343765
\(165\) −12.4589 −0.969922
\(166\) −6.71756 −0.521384
\(167\) 14.7279 1.13968 0.569839 0.821757i \(-0.307006\pi\)
0.569839 + 0.821757i \(0.307006\pi\)
\(168\) 0 0
\(169\) −2.40112 −0.184701
\(170\) 21.3480 1.63731
\(171\) 3.97384 0.303887
\(172\) −0.628592 −0.0479297
\(173\) 2.82875 0.215066 0.107533 0.994202i \(-0.465705\pi\)
0.107533 + 0.994202i \(0.465705\pi\)
\(174\) 1.28107 0.0971175
\(175\) 0 0
\(176\) −12.4262 −0.936659
\(177\) 6.31653 0.474779
\(178\) 16.6286 1.24636
\(179\) −7.15827 −0.535034 −0.267517 0.963553i \(-0.586203\pi\)
−0.267517 + 0.963553i \(0.586203\pi\)
\(180\) 0.440814 0.0328563
\(181\) −16.9849 −1.26248 −0.631240 0.775587i \(-0.717454\pi\)
−0.631240 + 0.775587i \(0.717454\pi\)
\(182\) 0 0
\(183\) 14.8600 1.09848
\(184\) 22.6491 1.66971
\(185\) 3.84772 0.282890
\(186\) 6.56964 0.481709
\(187\) 13.6694 0.999608
\(188\) −0.221564 −0.0161592
\(189\) 0 0
\(190\) −15.0255 −1.09006
\(191\) −9.77084 −0.706993 −0.353497 0.935436i \(-0.615007\pi\)
−0.353497 + 0.935436i \(0.615007\pi\)
\(192\) 10.0023 0.721851
\(193\) 8.89861 0.640536 0.320268 0.947327i \(-0.396227\pi\)
0.320268 + 0.947327i \(0.396227\pi\)
\(194\) −14.8857 −1.06873
\(195\) 13.7606 0.985414
\(196\) 0 0
\(197\) −5.85715 −0.417305 −0.208652 0.977990i \(-0.566908\pi\)
−0.208652 + 0.977990i \(0.566908\pi\)
\(198\) 5.21823 0.370844
\(199\) 9.32457 0.661001 0.330501 0.943806i \(-0.392782\pi\)
0.330501 + 0.943806i \(0.392782\pi\)
\(200\) 13.7711 0.973762
\(201\) 10.9578 0.772903
\(202\) 18.4585 1.29874
\(203\) 0 0
\(204\) 0.708113 0.0495778
\(205\) 12.1861 0.851114
\(206\) 19.2508 1.34126
\(207\) −10.0569 −0.699003
\(208\) 13.7245 0.951620
\(209\) −9.62106 −0.665503
\(210\) 0 0
\(211\) −25.8432 −1.77912 −0.889560 0.456818i \(-0.848989\pi\)
−0.889560 + 0.456818i \(0.848989\pi\)
\(212\) 0.123378 0.00847365
\(213\) 14.0776 0.964583
\(214\) 2.25856 0.154392
\(215\) 17.4000 1.18667
\(216\) −15.4389 −1.05049
\(217\) 0 0
\(218\) −17.4274 −1.18033
\(219\) −12.6075 −0.851934
\(220\) −1.06725 −0.0719542
\(221\) −15.0976 −1.01557
\(222\) 2.35952 0.158361
\(223\) −21.8729 −1.46472 −0.732360 0.680918i \(-0.761581\pi\)
−0.732360 + 0.680918i \(0.761581\pi\)
\(224\) 0 0
\(225\) −6.11478 −0.407652
\(226\) 3.90243 0.259586
\(227\) 17.9966 1.19448 0.597240 0.802063i \(-0.296264\pi\)
0.597240 + 0.802063i \(0.296264\pi\)
\(228\) −0.498396 −0.0330071
\(229\) −17.2428 −1.13944 −0.569718 0.821840i \(-0.692948\pi\)
−0.569718 + 0.821840i \(0.692948\pi\)
\(230\) 38.0261 2.50737
\(231\) 0 0
\(232\) −1.80930 −0.118787
\(233\) −17.7700 −1.16415 −0.582074 0.813136i \(-0.697759\pi\)
−0.582074 + 0.813136i \(0.697759\pi\)
\(234\) −5.76343 −0.376767
\(235\) 6.13310 0.400079
\(236\) 0.541087 0.0352218
\(237\) 13.1074 0.851420
\(238\) 0 0
\(239\) −17.2737 −1.11734 −0.558671 0.829389i \(-0.688689\pi\)
−0.558671 + 0.829389i \(0.688689\pi\)
\(240\) 17.8185 1.15018
\(241\) −22.4518 −1.44625 −0.723123 0.690719i \(-0.757294\pi\)
−0.723123 + 0.690719i \(0.757294\pi\)
\(242\) 3.36111 0.216060
\(243\) 11.7318 0.752593
\(244\) 1.27294 0.0814916
\(245\) 0 0
\(246\) 7.47282 0.476450
\(247\) 10.6263 0.676133
\(248\) −9.27856 −0.589189
\(249\) 6.16792 0.390876
\(250\) 0.103607 0.00655268
\(251\) −14.2713 −0.900795 −0.450397 0.892828i \(-0.648718\pi\)
−0.450397 + 0.892828i \(0.648718\pi\)
\(252\) 0 0
\(253\) 24.3487 1.53079
\(254\) −1.45409 −0.0912375
\(255\) −19.6013 −1.22748
\(256\) 2.73604 0.171003
\(257\) −26.0467 −1.62475 −0.812374 0.583137i \(-0.801825\pi\)
−0.812374 + 0.583137i \(0.801825\pi\)
\(258\) 10.6701 0.664294
\(259\) 0 0
\(260\) 1.17876 0.0731035
\(261\) 0.803386 0.0497284
\(262\) −29.0548 −1.79501
\(263\) −25.2766 −1.55862 −0.779312 0.626637i \(-0.784431\pi\)
−0.779312 + 0.626637i \(0.784431\pi\)
\(264\) 10.7904 0.664103
\(265\) −3.41523 −0.209796
\(266\) 0 0
\(267\) −15.2680 −0.934387
\(268\) 0.938668 0.0573383
\(269\) −15.4733 −0.943425 −0.471712 0.881753i \(-0.656364\pi\)
−0.471712 + 0.881753i \(0.656364\pi\)
\(270\) −25.9208 −1.57749
\(271\) 4.27569 0.259729 0.129865 0.991532i \(-0.458546\pi\)
0.129865 + 0.991532i \(0.458546\pi\)
\(272\) −19.5498 −1.18538
\(273\) 0 0
\(274\) −20.5872 −1.24372
\(275\) 14.8045 0.892744
\(276\) 1.26133 0.0759231
\(277\) 20.8137 1.25058 0.625288 0.780394i \(-0.284981\pi\)
0.625288 + 0.780394i \(0.284981\pi\)
\(278\) 1.71570 0.102901
\(279\) 4.11996 0.246656
\(280\) 0 0
\(281\) −3.69664 −0.220523 −0.110261 0.993903i \(-0.535169\pi\)
−0.110261 + 0.993903i \(0.535169\pi\)
\(282\) 3.76097 0.223963
\(283\) −18.3119 −1.08853 −0.544266 0.838913i \(-0.683192\pi\)
−0.544266 + 0.838913i \(0.683192\pi\)
\(284\) 1.20592 0.0715582
\(285\) 13.7961 0.817210
\(286\) 13.9538 0.825107
\(287\) 0 0
\(288\) −0.786718 −0.0463578
\(289\) 4.50581 0.265047
\(290\) −3.03768 −0.178379
\(291\) 13.6678 0.801218
\(292\) −1.07998 −0.0632012
\(293\) 4.09252 0.239088 0.119544 0.992829i \(-0.461857\pi\)
0.119544 + 0.992829i \(0.461857\pi\)
\(294\) 0 0
\(295\) −14.9778 −0.872043
\(296\) −3.33244 −0.193694
\(297\) −16.5975 −0.963085
\(298\) 28.0751 1.62635
\(299\) −26.8927 −1.55524
\(300\) 0.766911 0.0442776
\(301\) 0 0
\(302\) 1.74369 0.100338
\(303\) −16.9482 −0.973650
\(304\) 13.7599 0.789185
\(305\) −35.2362 −2.01762
\(306\) 8.20972 0.469319
\(307\) 24.3046 1.38714 0.693568 0.720391i \(-0.256038\pi\)
0.693568 + 0.720391i \(0.256038\pi\)
\(308\) 0 0
\(309\) −17.6756 −1.00553
\(310\) −15.5780 −0.884771
\(311\) −17.7040 −1.00390 −0.501951 0.864896i \(-0.667384\pi\)
−0.501951 + 0.864896i \(0.667384\pi\)
\(312\) −11.9178 −0.674711
\(313\) −26.9681 −1.52433 −0.762164 0.647384i \(-0.775863\pi\)
−0.762164 + 0.647384i \(0.775863\pi\)
\(314\) −19.2484 −1.08625
\(315\) 0 0
\(316\) 1.12281 0.0631631
\(317\) 18.0931 1.01621 0.508105 0.861295i \(-0.330346\pi\)
0.508105 + 0.861295i \(0.330346\pi\)
\(318\) −2.09430 −0.117443
\(319\) −1.94508 −0.108903
\(320\) −23.7175 −1.32585
\(321\) −2.07377 −0.115746
\(322\) 0 0
\(323\) −15.1366 −0.842223
\(324\) −0.442072 −0.0245596
\(325\) −16.3512 −0.907003
\(326\) 18.2761 1.01222
\(327\) 16.0014 0.884881
\(328\) −10.5542 −0.582756
\(329\) 0 0
\(330\) 18.1163 0.997268
\(331\) −10.0570 −0.552782 −0.276391 0.961045i \(-0.589139\pi\)
−0.276391 + 0.961045i \(0.589139\pi\)
\(332\) 0.528358 0.0289974
\(333\) 1.47971 0.0810874
\(334\) −21.4156 −1.17181
\(335\) −25.9832 −1.41962
\(336\) 0 0
\(337\) 32.0911 1.74812 0.874058 0.485822i \(-0.161480\pi\)
0.874058 + 0.485822i \(0.161480\pi\)
\(338\) 3.49143 0.189909
\(339\) −3.58313 −0.194609
\(340\) −1.67909 −0.0910612
\(341\) −9.97484 −0.540168
\(342\) −5.77831 −0.312455
\(343\) 0 0
\(344\) −15.0699 −0.812512
\(345\) −34.9148 −1.87975
\(346\) −4.11325 −0.221130
\(347\) −26.6402 −1.43012 −0.715060 0.699063i \(-0.753601\pi\)
−0.715060 + 0.699063i \(0.753601\pi\)
\(348\) −0.100760 −0.00540131
\(349\) 6.31366 0.337963 0.168981 0.985619i \(-0.445952\pi\)
0.168981 + 0.985619i \(0.445952\pi\)
\(350\) 0 0
\(351\) 18.3316 0.978468
\(352\) 1.90472 0.101522
\(353\) 7.83647 0.417093 0.208547 0.978012i \(-0.433127\pi\)
0.208547 + 0.978012i \(0.433127\pi\)
\(354\) −9.18478 −0.488165
\(355\) −33.3811 −1.77168
\(356\) −1.30789 −0.0693181
\(357\) 0 0
\(358\) 10.4088 0.550120
\(359\) 35.5778 1.87773 0.938863 0.344291i \(-0.111881\pi\)
0.938863 + 0.344291i \(0.111881\pi\)
\(360\) 10.5681 0.556986
\(361\) −8.34629 −0.439279
\(362\) 24.6976 1.29808
\(363\) −3.08610 −0.161978
\(364\) 0 0
\(365\) 29.8950 1.56477
\(366\) −21.6077 −1.12945
\(367\) 21.4899 1.12176 0.560882 0.827896i \(-0.310462\pi\)
0.560882 + 0.827896i \(0.310462\pi\)
\(368\) −34.8232 −1.81529
\(369\) 4.68637 0.243963
\(370\) −5.59492 −0.290866
\(371\) 0 0
\(372\) −0.516723 −0.0267908
\(373\) −17.1602 −0.888522 −0.444261 0.895897i \(-0.646534\pi\)
−0.444261 + 0.895897i \(0.646534\pi\)
\(374\) −19.8765 −1.02779
\(375\) −0.0951298 −0.00491248
\(376\) −5.31177 −0.273934
\(377\) 2.14830 0.110643
\(378\) 0 0
\(379\) −0.793301 −0.0407491 −0.0203746 0.999792i \(-0.506486\pi\)
−0.0203746 + 0.999792i \(0.506486\pi\)
\(380\) 1.18180 0.0606253
\(381\) 1.33511 0.0683999
\(382\) 14.2077 0.726927
\(383\) −32.7388 −1.67287 −0.836437 0.548064i \(-0.815365\pi\)
−0.836437 + 0.548064i \(0.815365\pi\)
\(384\) −16.2696 −0.830256
\(385\) 0 0
\(386\) −12.9394 −0.658596
\(387\) 6.69148 0.340147
\(388\) 1.17081 0.0594389
\(389\) −1.72700 −0.0875622 −0.0437811 0.999041i \(-0.513940\pi\)
−0.0437811 + 0.999041i \(0.513940\pi\)
\(390\) −20.0090 −1.01320
\(391\) 38.3073 1.93728
\(392\) 0 0
\(393\) 26.6775 1.34570
\(394\) 8.51681 0.429071
\(395\) −31.0805 −1.56383
\(396\) −0.410431 −0.0206249
\(397\) 25.9689 1.30334 0.651671 0.758501i \(-0.274068\pi\)
0.651671 + 0.758501i \(0.274068\pi\)
\(398\) −13.5587 −0.679638
\(399\) 0 0
\(400\) −21.1732 −1.05866
\(401\) −11.3301 −0.565797 −0.282898 0.959150i \(-0.591296\pi\)
−0.282898 + 0.959150i \(0.591296\pi\)
\(402\) −15.9336 −0.794695
\(403\) 11.0170 0.548796
\(404\) −1.45182 −0.0722308
\(405\) 12.2370 0.608060
\(406\) 0 0
\(407\) −3.58251 −0.177579
\(408\) 16.9763 0.840452
\(409\) −1.52148 −0.0752325 −0.0376163 0.999292i \(-0.511976\pi\)
−0.0376163 + 0.999292i \(0.511976\pi\)
\(410\) −17.7196 −0.875111
\(411\) 18.9027 0.932402
\(412\) −1.51413 −0.0745960
\(413\) 0 0
\(414\) 14.6236 0.718711
\(415\) −14.6255 −0.717935
\(416\) −2.10372 −0.103144
\(417\) −1.57532 −0.0771436
\(418\) 13.9899 0.684266
\(419\) 5.70243 0.278582 0.139291 0.990252i \(-0.455518\pi\)
0.139291 + 0.990252i \(0.455518\pi\)
\(420\) 0 0
\(421\) 17.4907 0.852443 0.426221 0.904619i \(-0.359844\pi\)
0.426221 + 0.904619i \(0.359844\pi\)
\(422\) 37.5783 1.82928
\(423\) 2.35859 0.114679
\(424\) 2.95787 0.143647
\(425\) 23.2916 1.12981
\(426\) −20.4701 −0.991780
\(427\) 0 0
\(428\) −0.177643 −0.00858672
\(429\) −12.8121 −0.618574
\(430\) −25.3012 −1.22013
\(431\) −24.8936 −1.19908 −0.599541 0.800344i \(-0.704650\pi\)
−0.599541 + 0.800344i \(0.704650\pi\)
\(432\) 23.7375 1.14207
\(433\) −18.6350 −0.895542 −0.447771 0.894148i \(-0.647782\pi\)
−0.447771 + 0.894148i \(0.647782\pi\)
\(434\) 0 0
\(435\) 2.78914 0.133729
\(436\) 1.37072 0.0656454
\(437\) −26.9621 −1.28977
\(438\) 18.3323 0.875954
\(439\) −10.5952 −0.505683 −0.252842 0.967508i \(-0.581365\pi\)
−0.252842 + 0.967508i \(0.581365\pi\)
\(440\) −25.5863 −1.21978
\(441\) 0 0
\(442\) 21.9532 1.04421
\(443\) 28.2410 1.34177 0.670884 0.741562i \(-0.265915\pi\)
0.670884 + 0.741562i \(0.265915\pi\)
\(444\) −0.185584 −0.00880741
\(445\) 36.2037 1.71622
\(446\) 31.8051 1.50602
\(447\) −25.7780 −1.21926
\(448\) 0 0
\(449\) −14.5768 −0.687920 −0.343960 0.938984i \(-0.611768\pi\)
−0.343960 + 0.938984i \(0.611768\pi\)
\(450\) 8.89142 0.419146
\(451\) −11.3462 −0.534270
\(452\) −0.306939 −0.0144372
\(453\) −1.60102 −0.0752224
\(454\) −26.1687 −1.22816
\(455\) 0 0
\(456\) −11.9486 −0.559542
\(457\) 8.80603 0.411929 0.205964 0.978560i \(-0.433967\pi\)
0.205964 + 0.978560i \(0.433967\pi\)
\(458\) 25.0725 1.17156
\(459\) −26.1125 −1.21883
\(460\) −2.99088 −0.139450
\(461\) −40.8213 −1.90124 −0.950619 0.310360i \(-0.899551\pi\)
−0.950619 + 0.310360i \(0.899551\pi\)
\(462\) 0 0
\(463\) 4.79086 0.222650 0.111325 0.993784i \(-0.464491\pi\)
0.111325 + 0.993784i \(0.464491\pi\)
\(464\) 2.78182 0.129143
\(465\) 14.3034 0.663304
\(466\) 25.8391 1.19697
\(467\) −17.9632 −0.831240 −0.415620 0.909538i \(-0.636435\pi\)
−0.415620 + 0.909538i \(0.636435\pi\)
\(468\) 0.453312 0.0209544
\(469\) 0 0
\(470\) −8.91806 −0.411360
\(471\) 17.6735 0.814353
\(472\) 12.9720 0.597086
\(473\) −16.2007 −0.744911
\(474\) −19.0594 −0.875425
\(475\) −16.3935 −0.752184
\(476\) 0 0
\(477\) −1.31338 −0.0601357
\(478\) 25.1175 1.14885
\(479\) −22.6657 −1.03562 −0.517811 0.855495i \(-0.673253\pi\)
−0.517811 + 0.855495i \(0.673253\pi\)
\(480\) −2.73127 −0.124665
\(481\) 3.95681 0.180415
\(482\) 32.6468 1.48702
\(483\) 0 0
\(484\) −0.264362 −0.0120164
\(485\) −32.4092 −1.47162
\(486\) −17.0590 −0.773812
\(487\) −31.0757 −1.40817 −0.704087 0.710114i \(-0.748643\pi\)
−0.704087 + 0.710114i \(0.748643\pi\)
\(488\) 30.5174 1.38146
\(489\) −16.7807 −0.758850
\(490\) 0 0
\(491\) −8.03230 −0.362492 −0.181246 0.983438i \(-0.558013\pi\)
−0.181246 + 0.983438i \(0.558013\pi\)
\(492\) −0.587761 −0.0264983
\(493\) −3.06014 −0.137822
\(494\) −15.4515 −0.695196
\(495\) 11.3611 0.510644
\(496\) 14.2659 0.640557
\(497\) 0 0
\(498\) −8.96869 −0.401897
\(499\) −11.3248 −0.506967 −0.253484 0.967340i \(-0.581576\pi\)
−0.253484 + 0.967340i \(0.581576\pi\)
\(500\) −0.00814902 −0.000364435 0
\(501\) 19.6634 0.878494
\(502\) 20.7517 0.926193
\(503\) 2.74320 0.122313 0.0611565 0.998128i \(-0.480521\pi\)
0.0611565 + 0.998128i \(0.480521\pi\)
\(504\) 0 0
\(505\) 40.1878 1.78833
\(506\) −35.4052 −1.57395
\(507\) −3.20576 −0.142373
\(508\) 0.114369 0.00507429
\(509\) 19.9495 0.884247 0.442123 0.896954i \(-0.354225\pi\)
0.442123 + 0.896954i \(0.354225\pi\)
\(510\) 28.5019 1.26209
\(511\) 0 0
\(512\) 20.3935 0.901273
\(513\) 18.3790 0.811450
\(514\) 37.8741 1.67056
\(515\) 41.9127 1.84689
\(516\) −0.839241 −0.0369455
\(517\) −5.71037 −0.251142
\(518\) 0 0
\(519\) 3.77670 0.165779
\(520\) 28.2596 1.23926
\(521\) 1.66032 0.0727400 0.0363700 0.999338i \(-0.488421\pi\)
0.0363700 + 0.999338i \(0.488421\pi\)
\(522\) −1.16819 −0.0511304
\(523\) −26.3175 −1.15079 −0.575393 0.817877i \(-0.695151\pi\)
−0.575393 + 0.817877i \(0.695151\pi\)
\(524\) 2.28525 0.0998316
\(525\) 0 0
\(526\) 36.7544 1.60257
\(527\) −15.6932 −0.683606
\(528\) −16.5904 −0.722002
\(529\) 45.2351 1.96674
\(530\) 4.96604 0.215711
\(531\) −5.75998 −0.249962
\(532\) 0 0
\(533\) 12.5316 0.542804
\(534\) 22.2010 0.960732
\(535\) 4.91734 0.212595
\(536\) 22.5036 0.972008
\(537\) −9.55710 −0.412419
\(538\) 22.4995 0.970024
\(539\) 0 0
\(540\) 2.03876 0.0877341
\(541\) −18.1396 −0.779882 −0.389941 0.920840i \(-0.627505\pi\)
−0.389941 + 0.920840i \(0.627505\pi\)
\(542\) −6.21722 −0.267052
\(543\) −22.6768 −0.973155
\(544\) 2.99665 0.128480
\(545\) −37.9428 −1.62529
\(546\) 0 0
\(547\) −29.7917 −1.27380 −0.636901 0.770946i \(-0.719784\pi\)
−0.636901 + 0.770946i \(0.719784\pi\)
\(548\) 1.61925 0.0691709
\(549\) −13.5507 −0.578329
\(550\) −21.5270 −0.917914
\(551\) 2.15384 0.0917569
\(552\) 30.2391 1.28706
\(553\) 0 0
\(554\) −30.2650 −1.28584
\(555\) 5.13714 0.218059
\(556\) −0.134945 −0.00572294
\(557\) 12.6998 0.538108 0.269054 0.963125i \(-0.413289\pi\)
0.269054 + 0.963125i \(0.413289\pi\)
\(558\) −5.99079 −0.253610
\(559\) 17.8934 0.756809
\(560\) 0 0
\(561\) 18.2502 0.770525
\(562\) 5.37523 0.226740
\(563\) −4.56232 −0.192279 −0.0961393 0.995368i \(-0.530649\pi\)
−0.0961393 + 0.995368i \(0.530649\pi\)
\(564\) −0.295812 −0.0124560
\(565\) 8.49637 0.357445
\(566\) 26.6271 1.11922
\(567\) 0 0
\(568\) 28.9107 1.21307
\(569\) 15.5944 0.653750 0.326875 0.945068i \(-0.394004\pi\)
0.326875 + 0.945068i \(0.394004\pi\)
\(570\) −20.0607 −0.840251
\(571\) −17.7970 −0.744782 −0.372391 0.928076i \(-0.621462\pi\)
−0.372391 + 0.928076i \(0.621462\pi\)
\(572\) −1.09751 −0.0458893
\(573\) −13.0452 −0.544970
\(574\) 0 0
\(575\) 41.4882 1.73018
\(576\) −9.12096 −0.380040
\(577\) 43.3194 1.80341 0.901704 0.432353i \(-0.142317\pi\)
0.901704 + 0.432353i \(0.142317\pi\)
\(578\) −6.55184 −0.272520
\(579\) 11.8806 0.493743
\(580\) 0.238924 0.00992076
\(581\) 0 0
\(582\) −19.8741 −0.823809
\(583\) 3.17983 0.131695
\(584\) −25.8915 −1.07140
\(585\) −12.5481 −0.518801
\(586\) −5.95088 −0.245828
\(587\) −34.5184 −1.42472 −0.712362 0.701812i \(-0.752375\pi\)
−0.712362 + 0.701812i \(0.752375\pi\)
\(588\) 0 0
\(589\) 11.0455 0.455120
\(590\) 21.7791 0.896630
\(591\) −7.81995 −0.321670
\(592\) 5.12366 0.210581
\(593\) −28.8753 −1.18577 −0.592884 0.805288i \(-0.702011\pi\)
−0.592884 + 0.805288i \(0.702011\pi\)
\(594\) 24.1342 0.990239
\(595\) 0 0
\(596\) −2.20820 −0.0904514
\(597\) 12.4493 0.509518
\(598\) 39.1043 1.59909
\(599\) −14.4388 −0.589954 −0.294977 0.955504i \(-0.595312\pi\)
−0.294977 + 0.955504i \(0.595312\pi\)
\(600\) 18.3859 0.750602
\(601\) −15.8226 −0.645416 −0.322708 0.946499i \(-0.604593\pi\)
−0.322708 + 0.946499i \(0.604593\pi\)
\(602\) 0 0
\(603\) −9.99230 −0.406918
\(604\) −0.137147 −0.00558042
\(605\) 7.31779 0.297511
\(606\) 24.6442 1.00110
\(607\) −41.2059 −1.67249 −0.836247 0.548353i \(-0.815255\pi\)
−0.836247 + 0.548353i \(0.815255\pi\)
\(608\) −2.10916 −0.0855377
\(609\) 0 0
\(610\) 51.2365 2.07450
\(611\) 6.30699 0.255153
\(612\) −0.645721 −0.0261017
\(613\) 47.2254 1.90742 0.953709 0.300731i \(-0.0972308\pi\)
0.953709 + 0.300731i \(0.0972308\pi\)
\(614\) −35.3410 −1.42625
\(615\) 16.2698 0.656062
\(616\) 0 0
\(617\) −34.7515 −1.39904 −0.699522 0.714611i \(-0.746604\pi\)
−0.699522 + 0.714611i \(0.746604\pi\)
\(618\) 25.7019 1.03388
\(619\) 18.0458 0.725322 0.362661 0.931921i \(-0.381868\pi\)
0.362661 + 0.931921i \(0.381868\pi\)
\(620\) 1.22526 0.0492076
\(621\) −46.5130 −1.86650
\(622\) 25.7432 1.03221
\(623\) 0 0
\(624\) 18.3237 0.733535
\(625\) −24.8870 −0.995478
\(626\) 39.2140 1.56731
\(627\) −12.8452 −0.512988
\(628\) 1.51395 0.0604133
\(629\) −5.63629 −0.224734
\(630\) 0 0
\(631\) 23.2552 0.925773 0.462887 0.886418i \(-0.346814\pi\)
0.462887 + 0.886418i \(0.346814\pi\)
\(632\) 26.9183 1.07075
\(633\) −34.5036 −1.37139
\(634\) −26.3089 −1.04486
\(635\) −3.16583 −0.125632
\(636\) 0.164724 0.00653172
\(637\) 0 0
\(638\) 2.82831 0.111974
\(639\) −12.8373 −0.507834
\(640\) 38.5787 1.52496
\(641\) 35.1576 1.38864 0.694320 0.719667i \(-0.255705\pi\)
0.694320 + 0.719667i \(0.255705\pi\)
\(642\) 3.01544 0.119010
\(643\) 3.69229 0.145610 0.0728049 0.997346i \(-0.476805\pi\)
0.0728049 + 0.997346i \(0.476805\pi\)
\(644\) 0 0
\(645\) 23.2310 0.914720
\(646\) 22.0099 0.865969
\(647\) −32.1683 −1.26467 −0.632334 0.774696i \(-0.717903\pi\)
−0.632334 + 0.774696i \(0.717903\pi\)
\(648\) −10.5982 −0.416338
\(649\) 13.9455 0.547408
\(650\) 23.7761 0.932576
\(651\) 0 0
\(652\) −1.43747 −0.0562958
\(653\) 36.2533 1.41870 0.709350 0.704856i \(-0.248988\pi\)
0.709350 + 0.704856i \(0.248988\pi\)
\(654\) −23.2675 −0.909830
\(655\) −63.2580 −2.47169
\(656\) 16.2271 0.633563
\(657\) 11.4966 0.448526
\(658\) 0 0
\(659\) 27.4080 1.06767 0.533833 0.845590i \(-0.320751\pi\)
0.533833 + 0.845590i \(0.320751\pi\)
\(660\) −1.42490 −0.0554643
\(661\) 9.38996 0.365227 0.182614 0.983185i \(-0.441544\pi\)
0.182614 + 0.983185i \(0.441544\pi\)
\(662\) 14.6237 0.568368
\(663\) −20.1570 −0.782833
\(664\) 12.6668 0.491569
\(665\) 0 0
\(666\) −2.15162 −0.0833737
\(667\) −5.45090 −0.211060
\(668\) 1.68441 0.0651716
\(669\) −29.2028 −1.12905
\(670\) 37.7819 1.45964
\(671\) 32.8075 1.26652
\(672\) 0 0
\(673\) 7.25667 0.279724 0.139862 0.990171i \(-0.455334\pi\)
0.139862 + 0.990171i \(0.455334\pi\)
\(674\) −46.6633 −1.79740
\(675\) −28.2807 −1.08853
\(676\) −0.274613 −0.0105620
\(677\) 7.99835 0.307401 0.153701 0.988117i \(-0.450881\pi\)
0.153701 + 0.988117i \(0.450881\pi\)
\(678\) 5.21019 0.200096
\(679\) 0 0
\(680\) −40.2544 −1.54369
\(681\) 24.0275 0.920737
\(682\) 14.5043 0.555398
\(683\) 32.2856 1.23537 0.617687 0.786424i \(-0.288070\pi\)
0.617687 + 0.786424i \(0.288070\pi\)
\(684\) 0.454483 0.0173776
\(685\) −44.8224 −1.71257
\(686\) 0 0
\(687\) −23.0211 −0.878309
\(688\) 23.1701 0.883351
\(689\) −3.51206 −0.133799
\(690\) 50.7692 1.93275
\(691\) −10.1259 −0.385206 −0.192603 0.981277i \(-0.561693\pi\)
−0.192603 + 0.981277i \(0.561693\pi\)
\(692\) 0.323521 0.0122984
\(693\) 0 0
\(694\) 38.7371 1.47044
\(695\) 3.73541 0.141692
\(696\) −2.41562 −0.0915639
\(697\) −17.8507 −0.676142
\(698\) −9.18061 −0.347491
\(699\) −23.7249 −0.897358
\(700\) 0 0
\(701\) −30.3871 −1.14771 −0.573853 0.818958i \(-0.694552\pi\)
−0.573853 + 0.818958i \(0.694552\pi\)
\(702\) −26.6557 −1.00606
\(703\) 3.96703 0.149619
\(704\) 22.0827 0.832275
\(705\) 8.18838 0.308392
\(706\) −11.3949 −0.428853
\(707\) 0 0
\(708\) 0.722412 0.0271499
\(709\) 44.2150 1.66053 0.830265 0.557369i \(-0.188189\pi\)
0.830265 + 0.557369i \(0.188189\pi\)
\(710\) 48.5389 1.82163
\(711\) −11.9525 −0.448256
\(712\) −31.3554 −1.17509
\(713\) −27.9536 −1.04687
\(714\) 0 0
\(715\) 30.3802 1.13616
\(716\) −0.818682 −0.0305956
\(717\) −23.0623 −0.861278
\(718\) −51.7332 −1.93067
\(719\) −31.7052 −1.18240 −0.591201 0.806524i \(-0.701346\pi\)
−0.591201 + 0.806524i \(0.701346\pi\)
\(720\) −16.2485 −0.605547
\(721\) 0 0
\(722\) 12.1362 0.451664
\(723\) −29.9756 −1.11481
\(724\) −1.94254 −0.0721941
\(725\) −3.31424 −0.123088
\(726\) 4.48745 0.166545
\(727\) −12.7541 −0.473022 −0.236511 0.971629i \(-0.576004\pi\)
−0.236511 + 0.971629i \(0.576004\pi\)
\(728\) 0 0
\(729\) 27.2592 1.00960
\(730\) −43.4699 −1.60889
\(731\) −25.4882 −0.942717
\(732\) 1.69952 0.0628159
\(733\) 27.6964 1.02299 0.511494 0.859287i \(-0.329092\pi\)
0.511494 + 0.859287i \(0.329092\pi\)
\(734\) −31.2482 −1.15339
\(735\) 0 0
\(736\) 5.33780 0.196754
\(737\) 24.1923 0.891136
\(738\) −6.81439 −0.250841
\(739\) 9.10696 0.335005 0.167502 0.985872i \(-0.446430\pi\)
0.167502 + 0.985872i \(0.446430\pi\)
\(740\) 0.440058 0.0161769
\(741\) 14.1872 0.521182
\(742\) 0 0
\(743\) 20.1476 0.739145 0.369572 0.929202i \(-0.379504\pi\)
0.369572 + 0.929202i \(0.379504\pi\)
\(744\) −12.3879 −0.454163
\(745\) 61.1251 2.23945
\(746\) 24.9524 0.913574
\(747\) −5.62447 −0.205788
\(748\) 1.56335 0.0571619
\(749\) 0 0
\(750\) 0.138327 0.00505099
\(751\) −31.2534 −1.14045 −0.570226 0.821488i \(-0.693144\pi\)
−0.570226 + 0.821488i \(0.693144\pi\)
\(752\) 8.16690 0.297816
\(753\) −19.0538 −0.694357
\(754\) −3.12381 −0.113762
\(755\) 3.79636 0.138164
\(756\) 0 0
\(757\) 39.4793 1.43490 0.717449 0.696611i \(-0.245309\pi\)
0.717449 + 0.696611i \(0.245309\pi\)
\(758\) 1.15353 0.0418980
\(759\) 32.5083 1.17998
\(760\) 28.3326 1.02773
\(761\) −18.9290 −0.686177 −0.343088 0.939303i \(-0.611473\pi\)
−0.343088 + 0.939303i \(0.611473\pi\)
\(762\) −1.94137 −0.0703284
\(763\) 0 0
\(764\) −1.11748 −0.0404289
\(765\) 17.8742 0.646243
\(766\) 47.6050 1.72004
\(767\) −15.4025 −0.556151
\(768\) 3.65292 0.131813
\(769\) 20.9761 0.756418 0.378209 0.925720i \(-0.376540\pi\)
0.378209 + 0.925720i \(0.376540\pi\)
\(770\) 0 0
\(771\) −34.7752 −1.25240
\(772\) 1.01772 0.0366286
\(773\) −14.4654 −0.520284 −0.260142 0.965570i \(-0.583769\pi\)
−0.260142 + 0.965570i \(0.583769\pi\)
\(774\) −9.73000 −0.349738
\(775\) −16.9963 −0.610524
\(776\) 28.0690 1.00762
\(777\) 0 0
\(778\) 2.51120 0.0900310
\(779\) 12.5640 0.450151
\(780\) 1.57378 0.0563502
\(781\) 31.0802 1.11214
\(782\) −55.7022 −1.99191
\(783\) 3.71565 0.132786
\(784\) 0 0
\(785\) −41.9077 −1.49575
\(786\) −38.7914 −1.38364
\(787\) −8.55312 −0.304886 −0.152443 0.988312i \(-0.548714\pi\)
−0.152443 + 0.988312i \(0.548714\pi\)
\(788\) −0.669874 −0.0238633
\(789\) −33.7471 −1.20143
\(790\) 45.1938 1.60792
\(791\) 0 0
\(792\) −9.83966 −0.349637
\(793\) −36.2352 −1.28675
\(794\) −37.7611 −1.34009
\(795\) −4.55971 −0.161716
\(796\) 1.06644 0.0377989
\(797\) −12.6558 −0.448292 −0.224146 0.974556i \(-0.571959\pi\)
−0.224146 + 0.974556i \(0.571959\pi\)
\(798\) 0 0
\(799\) −8.98400 −0.317831
\(800\) 3.24548 0.114745
\(801\) 13.9228 0.491936
\(802\) 16.4749 0.581749
\(803\) −27.8345 −0.982257
\(804\) 1.25323 0.0441979
\(805\) 0 0
\(806\) −16.0197 −0.564269
\(807\) −20.6586 −0.727217
\(808\) −34.8059 −1.22447
\(809\) 10.3831 0.365049 0.182525 0.983201i \(-0.441573\pi\)
0.182525 + 0.983201i \(0.441573\pi\)
\(810\) −17.7936 −0.625205
\(811\) 13.5938 0.477342 0.238671 0.971101i \(-0.423288\pi\)
0.238671 + 0.971101i \(0.423288\pi\)
\(812\) 0 0
\(813\) 5.70852 0.200207
\(814\) 5.20929 0.182585
\(815\) 39.7906 1.39381
\(816\) −26.1012 −0.913726
\(817\) 17.9396 0.627627
\(818\) 2.21237 0.0773537
\(819\) 0 0
\(820\) 1.39371 0.0486703
\(821\) 21.8912 0.764008 0.382004 0.924161i \(-0.375234\pi\)
0.382004 + 0.924161i \(0.375234\pi\)
\(822\) −27.4862 −0.958691
\(823\) 5.31624 0.185312 0.0926562 0.995698i \(-0.470464\pi\)
0.0926562 + 0.995698i \(0.470464\pi\)
\(824\) −36.2998 −1.26456
\(825\) 19.7656 0.688151
\(826\) 0 0
\(827\) −46.5790 −1.61971 −0.809855 0.586630i \(-0.800454\pi\)
−0.809855 + 0.586630i \(0.800454\pi\)
\(828\) −1.15019 −0.0399720
\(829\) −8.30663 −0.288501 −0.144251 0.989541i \(-0.546077\pi\)
−0.144251 + 0.989541i \(0.546077\pi\)
\(830\) 21.2667 0.738177
\(831\) 27.7887 0.963978
\(832\) −24.3899 −0.845568
\(833\) 0 0
\(834\) 2.29065 0.0793186
\(835\) −46.6260 −1.61356
\(836\) −1.10035 −0.0380563
\(837\) 19.0548 0.658629
\(838\) −8.29183 −0.286436
\(839\) −22.4382 −0.774654 −0.387327 0.921942i \(-0.626602\pi\)
−0.387327 + 0.921942i \(0.626602\pi\)
\(840\) 0 0
\(841\) −28.5646 −0.984985
\(842\) −25.4329 −0.876477
\(843\) −4.93542 −0.169985
\(844\) −2.95565 −0.101738
\(845\) 7.60154 0.261501
\(846\) −3.42959 −0.117912
\(847\) 0 0
\(848\) −4.54775 −0.156170
\(849\) −24.4485 −0.839070
\(850\) −33.8679 −1.16166
\(851\) −10.0397 −0.344155
\(852\) 1.61004 0.0551590
\(853\) −39.4484 −1.35069 −0.675344 0.737503i \(-0.736005\pi\)
−0.675344 + 0.737503i \(0.736005\pi\)
\(854\) 0 0
\(855\) −12.5805 −0.430245
\(856\) −4.25882 −0.145563
\(857\) −5.88195 −0.200923 −0.100462 0.994941i \(-0.532032\pi\)
−0.100462 + 0.994941i \(0.532032\pi\)
\(858\) 18.6299 0.636015
\(859\) 4.69697 0.160258 0.0801292 0.996784i \(-0.474467\pi\)
0.0801292 + 0.996784i \(0.474467\pi\)
\(860\) 1.99002 0.0678591
\(861\) 0 0
\(862\) 36.1974 1.23289
\(863\) −24.2095 −0.824100 −0.412050 0.911161i \(-0.635187\pi\)
−0.412050 + 0.911161i \(0.635187\pi\)
\(864\) −3.63856 −0.123786
\(865\) −8.95536 −0.304491
\(866\) 27.0970 0.920792
\(867\) 6.01576 0.204306
\(868\) 0 0
\(869\) 28.9383 0.981664
\(870\) −4.05565 −0.137499
\(871\) −26.7199 −0.905370
\(872\) 32.8616 1.11283
\(873\) −12.4635 −0.421826
\(874\) 39.2053 1.32614
\(875\) 0 0
\(876\) −1.44190 −0.0487172
\(877\) −20.8421 −0.703787 −0.351894 0.936040i \(-0.614462\pi\)
−0.351894 + 0.936040i \(0.614462\pi\)
\(878\) 15.4064 0.519941
\(879\) 5.46397 0.184295
\(880\) 39.3393 1.32613
\(881\) 13.1316 0.442416 0.221208 0.975227i \(-0.429000\pi\)
0.221208 + 0.975227i \(0.429000\pi\)
\(882\) 0 0
\(883\) −40.4925 −1.36268 −0.681341 0.731966i \(-0.738603\pi\)
−0.681341 + 0.731966i \(0.738603\pi\)
\(884\) −1.72669 −0.0580749
\(885\) −19.9971 −0.672194
\(886\) −41.0648 −1.37960
\(887\) 23.9662 0.804706 0.402353 0.915485i \(-0.368192\pi\)
0.402353 + 0.915485i \(0.368192\pi\)
\(888\) −4.44918 −0.149305
\(889\) 0 0
\(890\) −52.6433 −1.76461
\(891\) −11.3935 −0.381698
\(892\) −2.50158 −0.0837590
\(893\) 6.32328 0.211600
\(894\) 37.4835 1.25363
\(895\) 22.6619 0.757504
\(896\) 0 0
\(897\) −35.9047 −1.19882
\(898\) 21.1959 0.707316
\(899\) 2.23304 0.0744762
\(900\) −0.699339 −0.0233113
\(901\) 5.00276 0.166666
\(902\) 16.4983 0.549334
\(903\) 0 0
\(904\) −7.35855 −0.244742
\(905\) 53.7715 1.78743
\(906\) 2.32802 0.0773433
\(907\) 45.7912 1.52047 0.760235 0.649648i \(-0.225084\pi\)
0.760235 + 0.649648i \(0.225084\pi\)
\(908\) 2.05825 0.0683055
\(909\) 15.4549 0.512607
\(910\) 0 0
\(911\) 53.5661 1.77472 0.887362 0.461073i \(-0.152535\pi\)
0.887362 + 0.461073i \(0.152535\pi\)
\(912\) 18.3710 0.608325
\(913\) 13.6174 0.450670
\(914\) −12.8047 −0.423543
\(915\) −47.0443 −1.55524
\(916\) −1.97204 −0.0651579
\(917\) 0 0
\(918\) 37.9698 1.25319
\(919\) 5.37163 0.177194 0.0885969 0.996068i \(-0.471762\pi\)
0.0885969 + 0.996068i \(0.471762\pi\)
\(920\) −71.7033 −2.36399
\(921\) 32.4493 1.06924
\(922\) 59.3577 1.95484
\(923\) −34.3275 −1.12990
\(924\) 0 0
\(925\) −6.10430 −0.200708
\(926\) −6.96632 −0.228928
\(927\) 16.1182 0.529393
\(928\) −0.426406 −0.0139974
\(929\) −20.0345 −0.657312 −0.328656 0.944450i \(-0.606596\pi\)
−0.328656 + 0.944450i \(0.606596\pi\)
\(930\) −20.7984 −0.682006
\(931\) 0 0
\(932\) −2.03233 −0.0665710
\(933\) −23.6368 −0.773835
\(934\) 26.1201 0.854676
\(935\) −43.2752 −1.41525
\(936\) 10.8677 0.355222
\(937\) −42.0847 −1.37485 −0.687424 0.726257i \(-0.741258\pi\)
−0.687424 + 0.726257i \(0.741258\pi\)
\(938\) 0 0
\(939\) −36.0055 −1.17499
\(940\) 0.701434 0.0228783
\(941\) 25.0121 0.815372 0.407686 0.913122i \(-0.366336\pi\)
0.407686 + 0.913122i \(0.366336\pi\)
\(942\) −25.6988 −0.837313
\(943\) −31.7966 −1.03544
\(944\) −19.9446 −0.649142
\(945\) 0 0
\(946\) 23.5573 0.765913
\(947\) −20.1076 −0.653408 −0.326704 0.945127i \(-0.605938\pi\)
−0.326704 + 0.945127i \(0.605938\pi\)
\(948\) 1.49908 0.0486878
\(949\) 30.7426 0.997946
\(950\) 23.8375 0.773392
\(951\) 24.1563 0.783322
\(952\) 0 0
\(953\) −19.3053 −0.625360 −0.312680 0.949859i \(-0.601227\pi\)
−0.312680 + 0.949859i \(0.601227\pi\)
\(954\) 1.90977 0.0618312
\(955\) 30.9329 1.00096
\(956\) −1.97557 −0.0638945
\(957\) −2.59690 −0.0839457
\(958\) 32.9579 1.06482
\(959\) 0 0
\(960\) −31.6655 −1.02200
\(961\) −19.5484 −0.630593
\(962\) −5.75355 −0.185502
\(963\) 1.89105 0.0609382
\(964\) −2.56778 −0.0827025
\(965\) −28.1715 −0.906873
\(966\) 0 0
\(967\) 51.0868 1.64284 0.821420 0.570324i \(-0.193182\pi\)
0.821420 + 0.570324i \(0.193182\pi\)
\(968\) −6.33781 −0.203705
\(969\) −20.2091 −0.649208
\(970\) 47.1257 1.51312
\(971\) −19.4338 −0.623661 −0.311831 0.950138i \(-0.600942\pi\)
−0.311831 + 0.950138i \(0.600942\pi\)
\(972\) 1.34175 0.0430365
\(973\) 0 0
\(974\) 45.1868 1.44788
\(975\) −21.8307 −0.699143
\(976\) −46.9209 −1.50190
\(977\) 0.106157 0.00339628 0.00169814 0.999999i \(-0.499459\pi\)
0.00169814 + 0.999999i \(0.499459\pi\)
\(978\) 24.4006 0.780246
\(979\) −33.7084 −1.07732
\(980\) 0 0
\(981\) −14.5915 −0.465872
\(982\) 11.6797 0.372713
\(983\) −33.5457 −1.06994 −0.534971 0.844870i \(-0.679678\pi\)
−0.534971 + 0.844870i \(0.679678\pi\)
\(984\) −14.0910 −0.449204
\(985\) 18.5428 0.590822
\(986\) 4.44972 0.141708
\(987\) 0 0
\(988\) 1.21531 0.0386642
\(989\) −45.4010 −1.44367
\(990\) −16.5201 −0.525042
\(991\) −45.5223 −1.44606 −0.723032 0.690814i \(-0.757252\pi\)
−0.723032 + 0.690814i \(0.757252\pi\)
\(992\) −2.18671 −0.0694282
\(993\) −13.4272 −0.426100
\(994\) 0 0
\(995\) −29.5200 −0.935848
\(996\) 0.705417 0.0223520
\(997\) 55.6680 1.76302 0.881511 0.472163i \(-0.156527\pi\)
0.881511 + 0.472163i \(0.156527\pi\)
\(998\) 16.4672 0.521261
\(999\) 6.84362 0.216522
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.o.1.11 38
7.3 odd 6 889.2.f.c.128.28 76
7.5 odd 6 889.2.f.c.382.28 yes 76
7.6 odd 2 6223.2.a.p.1.11 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.f.c.128.28 76 7.3 odd 6
889.2.f.c.382.28 yes 76 7.5 odd 6
6223.2.a.o.1.11 38 1.1 even 1 trivial
6223.2.a.p.1.11 38 7.6 odd 2