Properties

Label 6223.2.a.n.1.25
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $34$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [34,6,0,46,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(34\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.25
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.70641 q^{2} -3.21112 q^{3} +0.911827 q^{4} +1.53579 q^{5} -5.47948 q^{6} -1.85687 q^{8} +7.31128 q^{9} +2.62068 q^{10} +5.61106 q^{11} -2.92798 q^{12} -5.24831 q^{13} -4.93160 q^{15} -4.99223 q^{16} +4.61362 q^{17} +12.4760 q^{18} +3.11627 q^{19} +1.40037 q^{20} +9.57475 q^{22} +6.41879 q^{23} +5.96262 q^{24} -2.64135 q^{25} -8.95575 q^{26} -13.8440 q^{27} +2.89372 q^{29} -8.41533 q^{30} -4.61069 q^{31} -4.80504 q^{32} -18.0178 q^{33} +7.87272 q^{34} +6.66662 q^{36} +0.0252223 q^{37} +5.31762 q^{38} +16.8529 q^{39} -2.85176 q^{40} +1.87857 q^{41} +2.40675 q^{43} +5.11631 q^{44} +11.2286 q^{45} +10.9531 q^{46} +6.54578 q^{47} +16.0306 q^{48} -4.50722 q^{50} -14.8149 q^{51} -4.78555 q^{52} +3.89106 q^{53} -23.6236 q^{54} +8.61740 q^{55} -10.0067 q^{57} +4.93786 q^{58} -7.83767 q^{59} -4.49677 q^{60} -10.9905 q^{61} -7.86772 q^{62} +1.78510 q^{64} -8.06030 q^{65} -30.7457 q^{66} -13.5525 q^{67} +4.20682 q^{68} -20.6115 q^{69} -13.6677 q^{71} -13.5761 q^{72} +10.7232 q^{73} +0.0430395 q^{74} +8.48168 q^{75} +2.84150 q^{76} +28.7580 q^{78} +14.0466 q^{79} -7.66701 q^{80} +22.5210 q^{81} +3.20561 q^{82} +7.16815 q^{83} +7.08556 q^{85} +4.10690 q^{86} -9.29206 q^{87} -10.4190 q^{88} -11.8620 q^{89} +19.1606 q^{90} +5.85282 q^{92} +14.8055 q^{93} +11.1698 q^{94} +4.78593 q^{95} +15.4295 q^{96} +10.5446 q^{97} +41.0240 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 34 q + 6 q^{2} + 46 q^{4} + 30 q^{8} + 66 q^{9} + 16 q^{11} + 12 q^{15} + 54 q^{16} + 48 q^{18} + 30 q^{22} + 46 q^{23} + 80 q^{25} + 28 q^{29} - 2 q^{30} + 36 q^{32} + 98 q^{36} + 52 q^{37} - 2 q^{39}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.70641 1.20661 0.603306 0.797510i \(-0.293850\pi\)
0.603306 + 0.797510i \(0.293850\pi\)
\(3\) −3.21112 −1.85394 −0.926970 0.375135i \(-0.877596\pi\)
−0.926970 + 0.375135i \(0.877596\pi\)
\(4\) 0.911827 0.455913
\(5\) 1.53579 0.686826 0.343413 0.939184i \(-0.388417\pi\)
0.343413 + 0.939184i \(0.388417\pi\)
\(6\) −5.47948 −2.23699
\(7\) 0 0
\(8\) −1.85687 −0.656502
\(9\) 7.31128 2.43709
\(10\) 2.62068 0.828733
\(11\) 5.61106 1.69180 0.845899 0.533344i \(-0.179065\pi\)
0.845899 + 0.533344i \(0.179065\pi\)
\(12\) −2.92798 −0.845236
\(13\) −5.24831 −1.45562 −0.727809 0.685780i \(-0.759461\pi\)
−0.727809 + 0.685780i \(0.759461\pi\)
\(14\) 0 0
\(15\) −4.93160 −1.27333
\(16\) −4.99223 −1.24806
\(17\) 4.61362 1.11897 0.559484 0.828841i \(-0.310999\pi\)
0.559484 + 0.828841i \(0.310999\pi\)
\(18\) 12.4760 2.94063
\(19\) 3.11627 0.714921 0.357460 0.933928i \(-0.383643\pi\)
0.357460 + 0.933928i \(0.383643\pi\)
\(20\) 1.40037 0.313133
\(21\) 0 0
\(22\) 9.57475 2.04134
\(23\) 6.41879 1.33841 0.669205 0.743078i \(-0.266635\pi\)
0.669205 + 0.743078i \(0.266635\pi\)
\(24\) 5.96262 1.21711
\(25\) −2.64135 −0.528270
\(26\) −8.95575 −1.75637
\(27\) −13.8440 −2.66429
\(28\) 0 0
\(29\) 2.89372 0.537349 0.268675 0.963231i \(-0.413414\pi\)
0.268675 + 0.963231i \(0.413414\pi\)
\(30\) −8.41533 −1.53642
\(31\) −4.61069 −0.828104 −0.414052 0.910253i \(-0.635887\pi\)
−0.414052 + 0.910253i \(0.635887\pi\)
\(32\) −4.80504 −0.849418
\(33\) −18.0178 −3.13649
\(34\) 7.87272 1.35016
\(35\) 0 0
\(36\) 6.66662 1.11110
\(37\) 0.0252223 0.00414652 0.00207326 0.999998i \(-0.499340\pi\)
0.00207326 + 0.999998i \(0.499340\pi\)
\(38\) 5.31762 0.862632
\(39\) 16.8529 2.69863
\(40\) −2.85176 −0.450903
\(41\) 1.87857 0.293383 0.146692 0.989182i \(-0.453137\pi\)
0.146692 + 0.989182i \(0.453137\pi\)
\(42\) 0 0
\(43\) 2.40675 0.367026 0.183513 0.983017i \(-0.441253\pi\)
0.183513 + 0.983017i \(0.441253\pi\)
\(44\) 5.11631 0.771313
\(45\) 11.2286 1.67386
\(46\) 10.9531 1.61494
\(47\) 6.54578 0.954800 0.477400 0.878686i \(-0.341579\pi\)
0.477400 + 0.878686i \(0.341579\pi\)
\(48\) 16.0306 2.31382
\(49\) 0 0
\(50\) −4.50722 −0.637417
\(51\) −14.8149 −2.07450
\(52\) −4.78555 −0.663636
\(53\) 3.89106 0.534478 0.267239 0.963630i \(-0.413889\pi\)
0.267239 + 0.963630i \(0.413889\pi\)
\(54\) −23.6236 −3.21476
\(55\) 8.61740 1.16197
\(56\) 0 0
\(57\) −10.0067 −1.32542
\(58\) 4.93786 0.648372
\(59\) −7.83767 −1.02038 −0.510189 0.860063i \(-0.670424\pi\)
−0.510189 + 0.860063i \(0.670424\pi\)
\(60\) −4.49677 −0.580530
\(61\) −10.9905 −1.40718 −0.703592 0.710604i \(-0.748422\pi\)
−0.703592 + 0.710604i \(0.748422\pi\)
\(62\) −7.86772 −0.999201
\(63\) 0 0
\(64\) 1.78510 0.223138
\(65\) −8.06030 −0.999757
\(66\) −30.7457 −3.78453
\(67\) −13.5525 −1.65570 −0.827849 0.560951i \(-0.810436\pi\)
−0.827849 + 0.560951i \(0.810436\pi\)
\(68\) 4.20682 0.510152
\(69\) −20.6115 −2.48133
\(70\) 0 0
\(71\) −13.6677 −1.62206 −0.811028 0.585007i \(-0.801092\pi\)
−0.811028 + 0.585007i \(0.801092\pi\)
\(72\) −13.5761 −1.59996
\(73\) 10.7232 1.25505 0.627526 0.778595i \(-0.284068\pi\)
0.627526 + 0.778595i \(0.284068\pi\)
\(74\) 0.0430395 0.00500324
\(75\) 8.48168 0.979381
\(76\) 2.84150 0.325942
\(77\) 0 0
\(78\) 28.7580 3.25620
\(79\) 14.0466 1.58036 0.790182 0.612872i \(-0.209986\pi\)
0.790182 + 0.612872i \(0.209986\pi\)
\(80\) −7.66701 −0.857198
\(81\) 22.5210 2.50233
\(82\) 3.20561 0.354000
\(83\) 7.16815 0.786807 0.393404 0.919366i \(-0.371298\pi\)
0.393404 + 0.919366i \(0.371298\pi\)
\(84\) 0 0
\(85\) 7.08556 0.768536
\(86\) 4.10690 0.442858
\(87\) −9.29206 −0.996214
\(88\) −10.4190 −1.11067
\(89\) −11.8620 −1.25737 −0.628687 0.777659i \(-0.716407\pi\)
−0.628687 + 0.777659i \(0.716407\pi\)
\(90\) 19.1606 2.01970
\(91\) 0 0
\(92\) 5.85282 0.610199
\(93\) 14.8055 1.53526
\(94\) 11.1698 1.15207
\(95\) 4.78593 0.491026
\(96\) 15.4295 1.57477
\(97\) 10.5446 1.07065 0.535323 0.844647i \(-0.320190\pi\)
0.535323 + 0.844647i \(0.320190\pi\)
\(98\) 0 0
\(99\) 41.0240 4.12307
\(100\) −2.40845 −0.240845
\(101\) 11.3347 1.12784 0.563922 0.825828i \(-0.309292\pi\)
0.563922 + 0.825828i \(0.309292\pi\)
\(102\) −25.2802 −2.50312
\(103\) −8.34729 −0.822483 −0.411241 0.911526i \(-0.634905\pi\)
−0.411241 + 0.911526i \(0.634905\pi\)
\(104\) 9.74541 0.955616
\(105\) 0 0
\(106\) 6.63973 0.644908
\(107\) 8.69302 0.840386 0.420193 0.907435i \(-0.361962\pi\)
0.420193 + 0.907435i \(0.361962\pi\)
\(108\) −12.6234 −1.21468
\(109\) −6.58318 −0.630555 −0.315277 0.949000i \(-0.602098\pi\)
−0.315277 + 0.949000i \(0.602098\pi\)
\(110\) 14.7048 1.40205
\(111\) −0.0809917 −0.00768740
\(112\) 0 0
\(113\) 18.2357 1.71547 0.857737 0.514089i \(-0.171870\pi\)
0.857737 + 0.514089i \(0.171870\pi\)
\(114\) −17.0755 −1.59927
\(115\) 9.85791 0.919255
\(116\) 2.63857 0.244985
\(117\) −38.3719 −3.54748
\(118\) −13.3743 −1.23120
\(119\) 0 0
\(120\) 9.15733 0.835946
\(121\) 20.4840 1.86218
\(122\) −18.7542 −1.69793
\(123\) −6.03231 −0.543915
\(124\) −4.20415 −0.377544
\(125\) −11.7355 −1.04966
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) 12.6562 1.11866
\(129\) −7.72836 −0.680444
\(130\) −13.7542 −1.20632
\(131\) 1.03939 0.0908122 0.0454061 0.998969i \(-0.485542\pi\)
0.0454061 + 0.998969i \(0.485542\pi\)
\(132\) −16.4291 −1.42997
\(133\) 0 0
\(134\) −23.1260 −1.99779
\(135\) −21.2615 −1.82990
\(136\) −8.56689 −0.734604
\(137\) 11.6097 0.991881 0.495940 0.868357i \(-0.334823\pi\)
0.495940 + 0.868357i \(0.334823\pi\)
\(138\) −35.1716 −2.99401
\(139\) −7.71479 −0.654360 −0.327180 0.944962i \(-0.606098\pi\)
−0.327180 + 0.944962i \(0.606098\pi\)
\(140\) 0 0
\(141\) −21.0193 −1.77014
\(142\) −23.3227 −1.95719
\(143\) −29.4486 −2.46261
\(144\) −36.4996 −3.04163
\(145\) 4.44414 0.369066
\(146\) 18.2981 1.51436
\(147\) 0 0
\(148\) 0.0229983 0.00189045
\(149\) −10.4504 −0.856128 −0.428064 0.903748i \(-0.640804\pi\)
−0.428064 + 0.903748i \(0.640804\pi\)
\(150\) 14.4732 1.18173
\(151\) 8.92385 0.726212 0.363106 0.931748i \(-0.381716\pi\)
0.363106 + 0.931748i \(0.381716\pi\)
\(152\) −5.78650 −0.469347
\(153\) 33.7315 2.72703
\(154\) 0 0
\(155\) −7.08105 −0.568764
\(156\) 15.3670 1.23034
\(157\) 10.2878 0.821056 0.410528 0.911848i \(-0.365344\pi\)
0.410528 + 0.911848i \(0.365344\pi\)
\(158\) 23.9692 1.90689
\(159\) −12.4947 −0.990890
\(160\) −7.37953 −0.583403
\(161\) 0 0
\(162\) 38.4300 3.01935
\(163\) 16.0332 1.25581 0.627907 0.778288i \(-0.283912\pi\)
0.627907 + 0.778288i \(0.283912\pi\)
\(164\) 1.71293 0.133757
\(165\) −27.6715 −2.15422
\(166\) 12.2318 0.949371
\(167\) 3.60583 0.279028 0.139514 0.990220i \(-0.455446\pi\)
0.139514 + 0.990220i \(0.455446\pi\)
\(168\) 0 0
\(169\) 14.5447 1.11883
\(170\) 12.0908 0.927326
\(171\) 22.7839 1.74233
\(172\) 2.19454 0.167332
\(173\) 8.55738 0.650605 0.325303 0.945610i \(-0.394534\pi\)
0.325303 + 0.945610i \(0.394534\pi\)
\(174\) −15.8560 −1.20204
\(175\) 0 0
\(176\) −28.0117 −2.11146
\(177\) 25.1677 1.89172
\(178\) −20.2415 −1.51716
\(179\) −11.2089 −0.837796 −0.418898 0.908033i \(-0.637584\pi\)
−0.418898 + 0.908033i \(0.637584\pi\)
\(180\) 10.2385 0.763135
\(181\) 16.2092 1.20482 0.602410 0.798187i \(-0.294207\pi\)
0.602410 + 0.798187i \(0.294207\pi\)
\(182\) 0 0
\(183\) 35.2917 2.60883
\(184\) −11.9188 −0.878669
\(185\) 0.0387361 0.00284794
\(186\) 25.2642 1.85246
\(187\) 25.8873 1.89307
\(188\) 5.96862 0.435306
\(189\) 0 0
\(190\) 8.16675 0.592479
\(191\) −19.9706 −1.44502 −0.722510 0.691360i \(-0.757012\pi\)
−0.722510 + 0.691360i \(0.757012\pi\)
\(192\) −5.73217 −0.413684
\(193\) −3.06104 −0.220339 −0.110169 0.993913i \(-0.535139\pi\)
−0.110169 + 0.993913i \(0.535139\pi\)
\(194\) 17.9934 1.29185
\(195\) 25.8826 1.85349
\(196\) 0 0
\(197\) −15.1641 −1.08040 −0.540198 0.841538i \(-0.681651\pi\)
−0.540198 + 0.841538i \(0.681651\pi\)
\(198\) 70.0037 4.97495
\(199\) −3.42644 −0.242894 −0.121447 0.992598i \(-0.538753\pi\)
−0.121447 + 0.992598i \(0.538753\pi\)
\(200\) 4.90463 0.346810
\(201\) 43.5186 3.06957
\(202\) 19.3416 1.36087
\(203\) 0 0
\(204\) −13.5086 −0.945792
\(205\) 2.88509 0.201503
\(206\) −14.2439 −0.992418
\(207\) 46.9296 3.26183
\(208\) 26.2007 1.81669
\(209\) 17.4856 1.20950
\(210\) 0 0
\(211\) −0.101067 −0.00695772 −0.00347886 0.999994i \(-0.501107\pi\)
−0.00347886 + 0.999994i \(0.501107\pi\)
\(212\) 3.54797 0.243676
\(213\) 43.8886 3.00720
\(214\) 14.8338 1.01402
\(215\) 3.69626 0.252083
\(216\) 25.7065 1.74911
\(217\) 0 0
\(218\) −11.2336 −0.760835
\(219\) −34.4334 −2.32679
\(220\) 7.85758 0.529758
\(221\) −24.2137 −1.62879
\(222\) −0.138205 −0.00927571
\(223\) 3.32773 0.222841 0.111421 0.993773i \(-0.464460\pi\)
0.111421 + 0.993773i \(0.464460\pi\)
\(224\) 0 0
\(225\) −19.3116 −1.28744
\(226\) 31.1176 2.06991
\(227\) 20.5038 1.36089 0.680444 0.732800i \(-0.261787\pi\)
0.680444 + 0.732800i \(0.261787\pi\)
\(228\) −9.12438 −0.604277
\(229\) 2.28861 0.151236 0.0756179 0.997137i \(-0.475907\pi\)
0.0756179 + 0.997137i \(0.475907\pi\)
\(230\) 16.8216 1.10918
\(231\) 0 0
\(232\) −5.37325 −0.352771
\(233\) 14.7266 0.964770 0.482385 0.875959i \(-0.339771\pi\)
0.482385 + 0.875959i \(0.339771\pi\)
\(234\) −65.4780 −4.28043
\(235\) 10.0529 0.655782
\(236\) −7.14659 −0.465204
\(237\) −45.1053 −2.92990
\(238\) 0 0
\(239\) −2.76845 −0.179076 −0.0895382 0.995983i \(-0.528539\pi\)
−0.0895382 + 0.995983i \(0.528539\pi\)
\(240\) 24.6197 1.58919
\(241\) 28.3577 1.82668 0.913341 0.407196i \(-0.133493\pi\)
0.913341 + 0.407196i \(0.133493\pi\)
\(242\) 34.9540 2.24693
\(243\) −30.7855 −1.97489
\(244\) −10.0214 −0.641554
\(245\) 0 0
\(246\) −10.2936 −0.656295
\(247\) −16.3551 −1.04065
\(248\) 8.56144 0.543652
\(249\) −23.0178 −1.45869
\(250\) −20.0256 −1.26653
\(251\) −4.44874 −0.280802 −0.140401 0.990095i \(-0.544839\pi\)
−0.140401 + 0.990095i \(0.544839\pi\)
\(252\) 0 0
\(253\) 36.0162 2.26432
\(254\) −1.70641 −0.107070
\(255\) −22.7526 −1.42482
\(256\) 18.0264 1.12665
\(257\) −11.6922 −0.729336 −0.364668 0.931138i \(-0.618818\pi\)
−0.364668 + 0.931138i \(0.618818\pi\)
\(258\) −13.1877 −0.821032
\(259\) 0 0
\(260\) −7.34959 −0.455803
\(261\) 21.1568 1.30957
\(262\) 1.77363 0.109575
\(263\) 1.35931 0.0838184 0.0419092 0.999121i \(-0.486656\pi\)
0.0419092 + 0.999121i \(0.486656\pi\)
\(264\) 33.4566 2.05911
\(265\) 5.97585 0.367094
\(266\) 0 0
\(267\) 38.0904 2.33110
\(268\) −12.3575 −0.754855
\(269\) 2.80946 0.171296 0.0856480 0.996325i \(-0.472704\pi\)
0.0856480 + 0.996325i \(0.472704\pi\)
\(270\) −36.2809 −2.20798
\(271\) 15.0390 0.913555 0.456778 0.889581i \(-0.349004\pi\)
0.456778 + 0.889581i \(0.349004\pi\)
\(272\) −23.0322 −1.39653
\(273\) 0 0
\(274\) 19.8108 1.19682
\(275\) −14.8208 −0.893725
\(276\) −18.7941 −1.13127
\(277\) 25.8698 1.55437 0.777184 0.629274i \(-0.216648\pi\)
0.777184 + 0.629274i \(0.216648\pi\)
\(278\) −13.1646 −0.789558
\(279\) −33.7101 −2.01817
\(280\) 0 0
\(281\) 17.4161 1.03896 0.519478 0.854484i \(-0.326126\pi\)
0.519478 + 0.854484i \(0.326126\pi\)
\(282\) −35.8675 −2.13588
\(283\) 25.3533 1.50710 0.753548 0.657393i \(-0.228341\pi\)
0.753548 + 0.657393i \(0.228341\pi\)
\(284\) −12.4626 −0.739517
\(285\) −15.3682 −0.910334
\(286\) −50.2512 −2.97142
\(287\) 0 0
\(288\) −35.1310 −2.07011
\(289\) 4.28551 0.252089
\(290\) 7.58351 0.445319
\(291\) −33.8601 −1.98491
\(292\) 9.77767 0.572195
\(293\) 32.1952 1.88086 0.940432 0.339982i \(-0.110421\pi\)
0.940432 + 0.339982i \(0.110421\pi\)
\(294\) 0 0
\(295\) −12.0370 −0.700822
\(296\) −0.0468344 −0.00272220
\(297\) −77.6797 −4.50743
\(298\) −17.8326 −1.03301
\(299\) −33.6878 −1.94822
\(300\) 7.73382 0.446513
\(301\) 0 0
\(302\) 15.2277 0.876257
\(303\) −36.3970 −2.09095
\(304\) −15.5571 −0.892262
\(305\) −16.8790 −0.966491
\(306\) 57.5597 3.29047
\(307\) −10.5275 −0.600838 −0.300419 0.953807i \(-0.597126\pi\)
−0.300419 + 0.953807i \(0.597126\pi\)
\(308\) 0 0
\(309\) 26.8041 1.52483
\(310\) −12.0832 −0.686277
\(311\) 22.9148 1.29938 0.649689 0.760200i \(-0.274899\pi\)
0.649689 + 0.760200i \(0.274899\pi\)
\(312\) −31.2937 −1.77166
\(313\) 28.7454 1.62479 0.812393 0.583111i \(-0.198165\pi\)
0.812393 + 0.583111i \(0.198165\pi\)
\(314\) 17.5552 0.990696
\(315\) 0 0
\(316\) 12.8080 0.720509
\(317\) −24.5948 −1.38138 −0.690690 0.723151i \(-0.742693\pi\)
−0.690690 + 0.723151i \(0.742693\pi\)
\(318\) −21.3210 −1.19562
\(319\) 16.2368 0.909086
\(320\) 2.74154 0.153257
\(321\) −27.9143 −1.55803
\(322\) 0 0
\(323\) 14.3773 0.799974
\(324\) 20.5353 1.14085
\(325\) 13.8626 0.768959
\(326\) 27.3591 1.51528
\(327\) 21.1394 1.16901
\(328\) −3.48826 −0.192607
\(329\) 0 0
\(330\) −47.2189 −2.59931
\(331\) 0.720308 0.0395917 0.0197959 0.999804i \(-0.493698\pi\)
0.0197959 + 0.999804i \(0.493698\pi\)
\(332\) 6.53611 0.358716
\(333\) 0.184407 0.0101055
\(334\) 6.15302 0.336678
\(335\) −20.8138 −1.13718
\(336\) 0 0
\(337\) 20.6866 1.12687 0.563437 0.826159i \(-0.309479\pi\)
0.563437 + 0.826159i \(0.309479\pi\)
\(338\) 24.8192 1.34999
\(339\) −58.5571 −3.18039
\(340\) 6.46080 0.350386
\(341\) −25.8708 −1.40098
\(342\) 38.8786 2.10232
\(343\) 0 0
\(344\) −4.46902 −0.240953
\(345\) −31.6549 −1.70424
\(346\) 14.6024 0.785028
\(347\) 6.39249 0.343167 0.171583 0.985170i \(-0.445112\pi\)
0.171583 + 0.985170i \(0.445112\pi\)
\(348\) −8.47275 −0.454187
\(349\) 15.4965 0.829510 0.414755 0.909933i \(-0.363867\pi\)
0.414755 + 0.909933i \(0.363867\pi\)
\(350\) 0 0
\(351\) 72.6578 3.87819
\(352\) −26.9613 −1.43704
\(353\) 33.1686 1.76539 0.882694 0.469948i \(-0.155727\pi\)
0.882694 + 0.469948i \(0.155727\pi\)
\(354\) 42.9463 2.28257
\(355\) −20.9907 −1.11407
\(356\) −10.8161 −0.573253
\(357\) 0 0
\(358\) −19.1270 −1.01089
\(359\) −25.8554 −1.36460 −0.682298 0.731074i \(-0.739020\pi\)
−0.682298 + 0.731074i \(0.739020\pi\)
\(360\) −20.8500 −1.09889
\(361\) −9.28887 −0.488888
\(362\) 27.6595 1.45375
\(363\) −65.7764 −3.45237
\(364\) 0 0
\(365\) 16.4685 0.862003
\(366\) 60.2219 3.14785
\(367\) −16.6625 −0.869776 −0.434888 0.900485i \(-0.643212\pi\)
−0.434888 + 0.900485i \(0.643212\pi\)
\(368\) −32.0440 −1.67041
\(369\) 13.7348 0.715003
\(370\) 0.0660996 0.00343636
\(371\) 0 0
\(372\) 13.5000 0.699944
\(373\) −24.6440 −1.27602 −0.638010 0.770028i \(-0.720242\pi\)
−0.638010 + 0.770028i \(0.720242\pi\)
\(374\) 44.1743 2.28420
\(375\) 37.6841 1.94600
\(376\) −12.1546 −0.626828
\(377\) −15.1871 −0.782176
\(378\) 0 0
\(379\) 28.8190 1.48033 0.740165 0.672425i \(-0.234747\pi\)
0.740165 + 0.672425i \(0.234747\pi\)
\(380\) 4.36394 0.223865
\(381\) 3.21112 0.164511
\(382\) −34.0779 −1.74358
\(383\) 11.0284 0.563527 0.281764 0.959484i \(-0.409081\pi\)
0.281764 + 0.959484i \(0.409081\pi\)
\(384\) −40.6405 −2.07393
\(385\) 0 0
\(386\) −5.22339 −0.265863
\(387\) 17.5964 0.894477
\(388\) 9.61488 0.488122
\(389\) 5.51478 0.279610 0.139805 0.990179i \(-0.455352\pi\)
0.139805 + 0.990179i \(0.455352\pi\)
\(390\) 44.1662 2.23644
\(391\) 29.6139 1.49764
\(392\) 0 0
\(393\) −3.33761 −0.168360
\(394\) −25.8761 −1.30362
\(395\) 21.5726 1.08544
\(396\) 37.4068 1.87976
\(397\) 17.7881 0.892757 0.446378 0.894844i \(-0.352714\pi\)
0.446378 + 0.894844i \(0.352714\pi\)
\(398\) −5.84690 −0.293079
\(399\) 0 0
\(400\) 13.1862 0.659310
\(401\) 22.6550 1.13134 0.565668 0.824633i \(-0.308618\pi\)
0.565668 + 0.824633i \(0.308618\pi\)
\(402\) 74.2605 3.70378
\(403\) 24.1983 1.20540
\(404\) 10.3353 0.514199
\(405\) 34.5875 1.71867
\(406\) 0 0
\(407\) 0.141524 0.00701507
\(408\) 27.5093 1.36191
\(409\) 14.6979 0.726764 0.363382 0.931640i \(-0.381622\pi\)
0.363382 + 0.931640i \(0.381622\pi\)
\(410\) 4.92314 0.243136
\(411\) −37.2800 −1.83889
\(412\) −7.61128 −0.374981
\(413\) 0 0
\(414\) 80.0810 3.93577
\(415\) 11.0088 0.540400
\(416\) 25.2183 1.23643
\(417\) 24.7731 1.21314
\(418\) 29.8375 1.45940
\(419\) −2.39319 −0.116915 −0.0584575 0.998290i \(-0.518618\pi\)
−0.0584575 + 0.998290i \(0.518618\pi\)
\(420\) 0 0
\(421\) 5.58715 0.272301 0.136151 0.990688i \(-0.456527\pi\)
0.136151 + 0.990688i \(0.456527\pi\)
\(422\) −0.172461 −0.00839527
\(423\) 47.8581 2.32694
\(424\) −7.22518 −0.350886
\(425\) −12.1862 −0.591117
\(426\) 74.8918 3.62852
\(427\) 0 0
\(428\) 7.92653 0.383143
\(429\) 94.5628 4.56553
\(430\) 6.30733 0.304167
\(431\) 15.0018 0.722611 0.361306 0.932447i \(-0.382331\pi\)
0.361306 + 0.932447i \(0.382331\pi\)
\(432\) 69.1126 3.32518
\(433\) −21.5115 −1.03378 −0.516888 0.856053i \(-0.672910\pi\)
−0.516888 + 0.856053i \(0.672910\pi\)
\(434\) 0 0
\(435\) −14.2707 −0.684226
\(436\) −6.00272 −0.287478
\(437\) 20.0027 0.956858
\(438\) −58.7574 −2.80754
\(439\) −21.7928 −1.04011 −0.520057 0.854131i \(-0.674089\pi\)
−0.520057 + 0.854131i \(0.674089\pi\)
\(440\) −16.0014 −0.762836
\(441\) 0 0
\(442\) −41.3185 −1.96532
\(443\) −1.14984 −0.0546307 −0.0273153 0.999627i \(-0.508696\pi\)
−0.0273153 + 0.999627i \(0.508696\pi\)
\(444\) −0.0738504 −0.00350479
\(445\) −18.2176 −0.863597
\(446\) 5.67846 0.268883
\(447\) 33.5574 1.58721
\(448\) 0 0
\(449\) −18.3374 −0.865395 −0.432697 0.901539i \(-0.642438\pi\)
−0.432697 + 0.901539i \(0.642438\pi\)
\(450\) −32.9535 −1.55344
\(451\) 10.5408 0.496345
\(452\) 16.6278 0.782107
\(453\) −28.6555 −1.34635
\(454\) 34.9879 1.64206
\(455\) 0 0
\(456\) 18.5811 0.870141
\(457\) −18.3394 −0.857883 −0.428941 0.903332i \(-0.641113\pi\)
−0.428941 + 0.903332i \(0.641113\pi\)
\(458\) 3.90531 0.182483
\(459\) −63.8712 −2.98125
\(460\) 8.98871 0.419101
\(461\) −36.0527 −1.67914 −0.839570 0.543251i \(-0.817193\pi\)
−0.839570 + 0.543251i \(0.817193\pi\)
\(462\) 0 0
\(463\) −37.6647 −1.75043 −0.875215 0.483735i \(-0.839280\pi\)
−0.875215 + 0.483735i \(0.839280\pi\)
\(464\) −14.4461 −0.670642
\(465\) 22.7381 1.05445
\(466\) 25.1295 1.16410
\(467\) −34.0050 −1.57356 −0.786782 0.617231i \(-0.788255\pi\)
−0.786782 + 0.617231i \(0.788255\pi\)
\(468\) −34.9885 −1.61734
\(469\) 0 0
\(470\) 17.1544 0.791274
\(471\) −33.0354 −1.52219
\(472\) 14.5535 0.669879
\(473\) 13.5044 0.620934
\(474\) −76.9679 −3.53525
\(475\) −8.23115 −0.377671
\(476\) 0 0
\(477\) 28.4486 1.30257
\(478\) −4.72411 −0.216076
\(479\) 26.7696 1.22314 0.611568 0.791192i \(-0.290539\pi\)
0.611568 + 0.791192i \(0.290539\pi\)
\(480\) 23.6965 1.08159
\(481\) −0.132374 −0.00603575
\(482\) 48.3898 2.20410
\(483\) 0 0
\(484\) 18.6778 0.848992
\(485\) 16.1944 0.735348
\(486\) −52.5326 −2.38293
\(487\) −21.9852 −0.996247 −0.498123 0.867106i \(-0.665977\pi\)
−0.498123 + 0.867106i \(0.665977\pi\)
\(488\) 20.4078 0.923819
\(489\) −51.4844 −2.32821
\(490\) 0 0
\(491\) −28.8601 −1.30244 −0.651218 0.758890i \(-0.725742\pi\)
−0.651218 + 0.758890i \(0.725742\pi\)
\(492\) −5.50042 −0.247978
\(493\) 13.3505 0.601277
\(494\) −27.9085 −1.25566
\(495\) 63.0043 2.83183
\(496\) 23.0176 1.03352
\(497\) 0 0
\(498\) −39.2777 −1.76008
\(499\) 19.4190 0.869315 0.434657 0.900596i \(-0.356870\pi\)
0.434657 + 0.900596i \(0.356870\pi\)
\(500\) −10.7007 −0.478552
\(501\) −11.5788 −0.517300
\(502\) −7.59136 −0.338819
\(503\) −10.4500 −0.465943 −0.232972 0.972484i \(-0.574845\pi\)
−0.232972 + 0.972484i \(0.574845\pi\)
\(504\) 0 0
\(505\) 17.4077 0.774632
\(506\) 61.4583 2.73215
\(507\) −46.7049 −2.07424
\(508\) −0.911827 −0.0404558
\(509\) 3.45926 0.153329 0.0766644 0.997057i \(-0.475573\pi\)
0.0766644 + 0.997057i \(0.475573\pi\)
\(510\) −38.8251 −1.71921
\(511\) 0 0
\(512\) 5.44802 0.240771
\(513\) −43.1417 −1.90475
\(514\) −19.9516 −0.880026
\(515\) −12.8197 −0.564903
\(516\) −7.04693 −0.310224
\(517\) 36.7287 1.61533
\(518\) 0 0
\(519\) −27.4787 −1.20618
\(520\) 14.9669 0.656342
\(521\) 7.98506 0.349832 0.174916 0.984583i \(-0.444035\pi\)
0.174916 + 0.984583i \(0.444035\pi\)
\(522\) 36.1021 1.58014
\(523\) 8.23346 0.360024 0.180012 0.983664i \(-0.442386\pi\)
0.180012 + 0.983664i \(0.442386\pi\)
\(524\) 0.947746 0.0414025
\(525\) 0 0
\(526\) 2.31953 0.101136
\(527\) −21.2720 −0.926622
\(528\) 89.9488 3.91452
\(529\) 18.2009 0.791342
\(530\) 10.1972 0.442940
\(531\) −57.3034 −2.48676
\(532\) 0 0
\(533\) −9.85932 −0.427054
\(534\) 64.9978 2.81273
\(535\) 13.3507 0.577199
\(536\) 25.1652 1.08697
\(537\) 35.9933 1.55322
\(538\) 4.79409 0.206688
\(539\) 0 0
\(540\) −19.3868 −0.834277
\(541\) −34.7984 −1.49610 −0.748050 0.663642i \(-0.769010\pi\)
−0.748050 + 0.663642i \(0.769010\pi\)
\(542\) 25.6627 1.10231
\(543\) −52.0497 −2.23366
\(544\) −22.1686 −0.950472
\(545\) −10.1104 −0.433081
\(546\) 0 0
\(547\) −1.59444 −0.0681732 −0.0340866 0.999419i \(-0.510852\pi\)
−0.0340866 + 0.999419i \(0.510852\pi\)
\(548\) 10.5860 0.452212
\(549\) −80.3543 −3.42944
\(550\) −25.2903 −1.07838
\(551\) 9.01759 0.384162
\(552\) 38.2728 1.62900
\(553\) 0 0
\(554\) 44.1445 1.87552
\(555\) −0.124386 −0.00527991
\(556\) −7.03455 −0.298331
\(557\) 30.3687 1.28676 0.643382 0.765545i \(-0.277531\pi\)
0.643382 + 0.765545i \(0.277531\pi\)
\(558\) −57.5231 −2.43515
\(559\) −12.6314 −0.534250
\(560\) 0 0
\(561\) −83.1272 −3.50963
\(562\) 29.7189 1.25362
\(563\) −34.4555 −1.45212 −0.726062 0.687629i \(-0.758652\pi\)
−0.726062 + 0.687629i \(0.758652\pi\)
\(564\) −19.1659 −0.807031
\(565\) 28.0063 1.17823
\(566\) 43.2630 1.81848
\(567\) 0 0
\(568\) 25.3791 1.06488
\(569\) 14.0779 0.590177 0.295089 0.955470i \(-0.404651\pi\)
0.295089 + 0.955470i \(0.404651\pi\)
\(570\) −26.2244 −1.09842
\(571\) −34.6936 −1.45188 −0.725942 0.687756i \(-0.758596\pi\)
−0.725942 + 0.687756i \(0.758596\pi\)
\(572\) −26.8520 −1.12274
\(573\) 64.1279 2.67898
\(574\) 0 0
\(575\) −16.9543 −0.707042
\(576\) 13.0514 0.543807
\(577\) −45.2875 −1.88534 −0.942671 0.333722i \(-0.891695\pi\)
−0.942671 + 0.333722i \(0.891695\pi\)
\(578\) 7.31283 0.304174
\(579\) 9.82937 0.408495
\(580\) 4.05228 0.168262
\(581\) 0 0
\(582\) −57.7791 −2.39502
\(583\) 21.8330 0.904228
\(584\) −19.9115 −0.823944
\(585\) −58.9311 −2.43650
\(586\) 54.9381 2.26947
\(587\) −15.8746 −0.655215 −0.327608 0.944814i \(-0.606242\pi\)
−0.327608 + 0.944814i \(0.606242\pi\)
\(588\) 0 0
\(589\) −14.3681 −0.592029
\(590\) −20.5400 −0.845620
\(591\) 48.6937 2.00299
\(592\) −0.125915 −0.00517509
\(593\) 0.506556 0.0208018 0.0104009 0.999946i \(-0.496689\pi\)
0.0104009 + 0.999946i \(0.496689\pi\)
\(594\) −132.553 −5.43872
\(595\) 0 0
\(596\) −9.52893 −0.390320
\(597\) 11.0027 0.450311
\(598\) −57.4851 −2.35074
\(599\) −39.6058 −1.61825 −0.809125 0.587636i \(-0.800059\pi\)
−0.809125 + 0.587636i \(0.800059\pi\)
\(600\) −15.7494 −0.642965
\(601\) 2.20248 0.0898409 0.0449205 0.998991i \(-0.485697\pi\)
0.0449205 + 0.998991i \(0.485697\pi\)
\(602\) 0 0
\(603\) −99.0860 −4.03509
\(604\) 8.13700 0.331090
\(605\) 31.4591 1.27899
\(606\) −62.1081 −2.52297
\(607\) 34.0903 1.38368 0.691840 0.722051i \(-0.256800\pi\)
0.691840 + 0.722051i \(0.256800\pi\)
\(608\) −14.9738 −0.607267
\(609\) 0 0
\(610\) −28.8025 −1.16618
\(611\) −34.3543 −1.38983
\(612\) 30.7573 1.24329
\(613\) −9.33234 −0.376930 −0.188465 0.982080i \(-0.560351\pi\)
−0.188465 + 0.982080i \(0.560351\pi\)
\(614\) −17.9642 −0.724978
\(615\) −9.26437 −0.373575
\(616\) 0 0
\(617\) 16.2640 0.654764 0.327382 0.944892i \(-0.393834\pi\)
0.327382 + 0.944892i \(0.393834\pi\)
\(618\) 45.7388 1.83988
\(619\) 42.4015 1.70426 0.852130 0.523331i \(-0.175311\pi\)
0.852130 + 0.523331i \(0.175311\pi\)
\(620\) −6.45669 −0.259307
\(621\) −88.8620 −3.56591
\(622\) 39.1020 1.56785
\(623\) 0 0
\(624\) −84.1337 −3.36804
\(625\) −4.81653 −0.192661
\(626\) 49.0513 1.96049
\(627\) −56.1482 −2.24234
\(628\) 9.38069 0.374330
\(629\) 0.116366 0.00463982
\(630\) 0 0
\(631\) −25.4016 −1.01122 −0.505610 0.862762i \(-0.668733\pi\)
−0.505610 + 0.862762i \(0.668733\pi\)
\(632\) −26.0826 −1.03751
\(633\) 0.324537 0.0128992
\(634\) −41.9687 −1.66679
\(635\) −1.53579 −0.0609460
\(636\) −11.3930 −0.451760
\(637\) 0 0
\(638\) 27.7066 1.09691
\(639\) −99.9284 −3.95311
\(640\) 19.4372 0.768324
\(641\) −18.3028 −0.722916 −0.361458 0.932388i \(-0.617721\pi\)
−0.361458 + 0.932388i \(0.617721\pi\)
\(642\) −47.6332 −1.87993
\(643\) −36.4025 −1.43557 −0.717786 0.696263i \(-0.754845\pi\)
−0.717786 + 0.696263i \(0.754845\pi\)
\(644\) 0 0
\(645\) −11.8691 −0.467347
\(646\) 24.5335 0.965258
\(647\) 24.7611 0.973461 0.486730 0.873552i \(-0.338189\pi\)
0.486730 + 0.873552i \(0.338189\pi\)
\(648\) −41.8185 −1.64279
\(649\) −43.9776 −1.72627
\(650\) 23.6553 0.927836
\(651\) 0 0
\(652\) 14.6195 0.572543
\(653\) 29.2537 1.14479 0.572393 0.819979i \(-0.306015\pi\)
0.572393 + 0.819979i \(0.306015\pi\)
\(654\) 36.0724 1.41054
\(655\) 1.59629 0.0623722
\(656\) −9.37825 −0.366159
\(657\) 78.4001 3.05868
\(658\) 0 0
\(659\) −5.04629 −0.196576 −0.0982879 0.995158i \(-0.531337\pi\)
−0.0982879 + 0.995158i \(0.531337\pi\)
\(660\) −25.2316 −0.982139
\(661\) 27.6781 1.07655 0.538276 0.842768i \(-0.319076\pi\)
0.538276 + 0.842768i \(0.319076\pi\)
\(662\) 1.22914 0.0477718
\(663\) 77.7531 3.01968
\(664\) −13.3103 −0.516540
\(665\) 0 0
\(666\) 0.314674 0.0121934
\(667\) 18.5742 0.719194
\(668\) 3.28789 0.127212
\(669\) −10.6857 −0.413134
\(670\) −35.5168 −1.37213
\(671\) −61.6681 −2.38067
\(672\) 0 0
\(673\) 42.8493 1.65172 0.825859 0.563877i \(-0.190691\pi\)
0.825859 + 0.563877i \(0.190691\pi\)
\(674\) 35.2998 1.35970
\(675\) 36.5669 1.40746
\(676\) 13.2623 0.510087
\(677\) −23.1176 −0.888481 −0.444240 0.895908i \(-0.646526\pi\)
−0.444240 + 0.895908i \(0.646526\pi\)
\(678\) −99.9223 −3.83749
\(679\) 0 0
\(680\) −13.1569 −0.504546
\(681\) −65.8403 −2.52300
\(682\) −44.1462 −1.69045
\(683\) 44.6201 1.70734 0.853670 0.520815i \(-0.174372\pi\)
0.853670 + 0.520815i \(0.174372\pi\)
\(684\) 20.7750 0.794351
\(685\) 17.8300 0.681250
\(686\) 0 0
\(687\) −7.34901 −0.280382
\(688\) −12.0150 −0.458069
\(689\) −20.4215 −0.777996
\(690\) −54.0162 −2.05636
\(691\) −47.9475 −1.82401 −0.912005 0.410178i \(-0.865466\pi\)
−0.912005 + 0.410178i \(0.865466\pi\)
\(692\) 7.80284 0.296620
\(693\) 0 0
\(694\) 10.9082 0.414069
\(695\) −11.8483 −0.449431
\(696\) 17.2541 0.654016
\(697\) 8.66701 0.328287
\(698\) 26.4434 1.00090
\(699\) −47.2888 −1.78863
\(700\) 0 0
\(701\) −23.3536 −0.882055 −0.441027 0.897494i \(-0.645386\pi\)
−0.441027 + 0.897494i \(0.645386\pi\)
\(702\) 123.984 4.67947
\(703\) 0.0785994 0.00296443
\(704\) 10.0163 0.377504
\(705\) −32.2812 −1.21578
\(706\) 56.5992 2.13014
\(707\) 0 0
\(708\) 22.9486 0.862460
\(709\) 21.2672 0.798706 0.399353 0.916797i \(-0.369235\pi\)
0.399353 + 0.916797i \(0.369235\pi\)
\(710\) −35.8187 −1.34425
\(711\) 102.699 3.85150
\(712\) 22.0262 0.825468
\(713\) −29.5951 −1.10834
\(714\) 0 0
\(715\) −45.2268 −1.69139
\(716\) −10.2206 −0.381962
\(717\) 8.88983 0.331997
\(718\) −44.1199 −1.64654
\(719\) −21.5128 −0.802293 −0.401146 0.916014i \(-0.631388\pi\)
−0.401146 + 0.916014i \(0.631388\pi\)
\(720\) −56.0557 −2.08907
\(721\) 0 0
\(722\) −15.8506 −0.589898
\(723\) −91.0600 −3.38656
\(724\) 14.7800 0.549294
\(725\) −7.64331 −0.283865
\(726\) −112.241 −4.16567
\(727\) 1.53402 0.0568938 0.0284469 0.999595i \(-0.490944\pi\)
0.0284469 + 0.999595i \(0.490944\pi\)
\(728\) 0 0
\(729\) 31.2929 1.15900
\(730\) 28.1020 1.04010
\(731\) 11.1038 0.410690
\(732\) 32.1799 1.18940
\(733\) 43.5113 1.60713 0.803563 0.595220i \(-0.202935\pi\)
0.803563 + 0.595220i \(0.202935\pi\)
\(734\) −28.4330 −1.04948
\(735\) 0 0
\(736\) −30.8425 −1.13687
\(737\) −76.0437 −2.80111
\(738\) 23.4371 0.862731
\(739\) −0.633734 −0.0233123 −0.0116561 0.999932i \(-0.503710\pi\)
−0.0116561 + 0.999932i \(0.503710\pi\)
\(740\) 0.0353206 0.00129841
\(741\) 52.5183 1.92931
\(742\) 0 0
\(743\) 18.3207 0.672120 0.336060 0.941840i \(-0.390905\pi\)
0.336060 + 0.941840i \(0.390905\pi\)
\(744\) −27.4918 −1.00790
\(745\) −16.0496 −0.588011
\(746\) −42.0528 −1.53966
\(747\) 52.4084 1.91752
\(748\) 23.6047 0.863074
\(749\) 0 0
\(750\) 64.3044 2.34807
\(751\) 28.9956 1.05806 0.529032 0.848602i \(-0.322555\pi\)
0.529032 + 0.848602i \(0.322555\pi\)
\(752\) −32.6780 −1.19164
\(753\) 14.2854 0.520590
\(754\) −25.9154 −0.943783
\(755\) 13.7052 0.498782
\(756\) 0 0
\(757\) 0.371463 0.0135010 0.00675052 0.999977i \(-0.497851\pi\)
0.00675052 + 0.999977i \(0.497851\pi\)
\(758\) 49.1769 1.78619
\(759\) −115.652 −4.19791
\(760\) −8.88684 −0.322360
\(761\) −14.8411 −0.537989 −0.268994 0.963142i \(-0.586691\pi\)
−0.268994 + 0.963142i \(0.586691\pi\)
\(762\) 5.47948 0.198501
\(763\) 0 0
\(764\) −18.2097 −0.658804
\(765\) 51.8045 1.87300
\(766\) 18.8190 0.679959
\(767\) 41.1345 1.48528
\(768\) −57.8849 −2.08874
\(769\) 5.17283 0.186537 0.0932685 0.995641i \(-0.470269\pi\)
0.0932685 + 0.995641i \(0.470269\pi\)
\(770\) 0 0
\(771\) 37.5449 1.35215
\(772\) −2.79114 −0.100455
\(773\) 45.8739 1.64997 0.824984 0.565156i \(-0.191184\pi\)
0.824984 + 0.565156i \(0.191184\pi\)
\(774\) 30.0267 1.07929
\(775\) 12.1784 0.437463
\(776\) −19.5800 −0.702881
\(777\) 0 0
\(778\) 9.41046 0.337381
\(779\) 5.85413 0.209746
\(780\) 23.6004 0.845031
\(781\) −76.6902 −2.74419
\(782\) 50.5333 1.80707
\(783\) −40.0607 −1.43165
\(784\) 0 0
\(785\) 15.7999 0.563923
\(786\) −5.69533 −0.203146
\(787\) −3.57941 −0.127592 −0.0637962 0.997963i \(-0.520321\pi\)
−0.0637962 + 0.997963i \(0.520321\pi\)
\(788\) −13.8270 −0.492567
\(789\) −4.36489 −0.155394
\(790\) 36.8117 1.30970
\(791\) 0 0
\(792\) −76.1762 −2.70680
\(793\) 57.6813 2.04832
\(794\) 30.3537 1.07721
\(795\) −19.1892 −0.680569
\(796\) −3.12432 −0.110738
\(797\) −40.4937 −1.43436 −0.717181 0.696887i \(-0.754568\pi\)
−0.717181 + 0.696887i \(0.754568\pi\)
\(798\) 0 0
\(799\) 30.1998 1.06839
\(800\) 12.6918 0.448722
\(801\) −86.7267 −3.06434
\(802\) 38.6586 1.36508
\(803\) 60.1683 2.12329
\(804\) 39.6814 1.39946
\(805\) 0 0
\(806\) 41.2922 1.45446
\(807\) −9.02152 −0.317572
\(808\) −21.0470 −0.740431
\(809\) −6.06378 −0.213191 −0.106596 0.994302i \(-0.533995\pi\)
−0.106596 + 0.994302i \(0.533995\pi\)
\(810\) 59.0204 2.07377
\(811\) −21.2030 −0.744537 −0.372269 0.928125i \(-0.621420\pi\)
−0.372269 + 0.928125i \(0.621420\pi\)
\(812\) 0 0
\(813\) −48.2921 −1.69368
\(814\) 0.241497 0.00846447
\(815\) 24.6236 0.862527
\(816\) 73.9593 2.58909
\(817\) 7.50008 0.262395
\(818\) 25.0806 0.876923
\(819\) 0 0
\(820\) 2.63070 0.0918681
\(821\) −17.9853 −0.627692 −0.313846 0.949474i \(-0.601618\pi\)
−0.313846 + 0.949474i \(0.601618\pi\)
\(822\) −63.6149 −2.21882
\(823\) −54.6425 −1.90472 −0.952359 0.304978i \(-0.901351\pi\)
−0.952359 + 0.304978i \(0.901351\pi\)
\(824\) 15.4998 0.539961
\(825\) 47.5912 1.65691
\(826\) 0 0
\(827\) 11.1715 0.388471 0.194236 0.980955i \(-0.437777\pi\)
0.194236 + 0.980955i \(0.437777\pi\)
\(828\) 42.7916 1.48711
\(829\) 0.257725 0.00895117 0.00447559 0.999990i \(-0.498575\pi\)
0.00447559 + 0.999990i \(0.498575\pi\)
\(830\) 18.7855 0.652053
\(831\) −83.0711 −2.88170
\(832\) −9.36876 −0.324803
\(833\) 0 0
\(834\) 42.2730 1.46379
\(835\) 5.53780 0.191643
\(836\) 15.9438 0.551428
\(837\) 63.8306 2.20631
\(838\) −4.08376 −0.141071
\(839\) −23.8829 −0.824529 −0.412264 0.911064i \(-0.635262\pi\)
−0.412264 + 0.911064i \(0.635262\pi\)
\(840\) 0 0
\(841\) −20.6264 −0.711256
\(842\) 9.53396 0.328562
\(843\) −55.9251 −1.92616
\(844\) −0.0921553 −0.00317212
\(845\) 22.3377 0.768439
\(846\) 81.6653 2.80771
\(847\) 0 0
\(848\) −19.4250 −0.667059
\(849\) −81.4124 −2.79407
\(850\) −20.7946 −0.713249
\(851\) 0.161897 0.00554974
\(852\) 40.0188 1.37102
\(853\) −26.4238 −0.904734 −0.452367 0.891832i \(-0.649420\pi\)
−0.452367 + 0.891832i \(0.649420\pi\)
\(854\) 0 0
\(855\) 34.9913 1.19668
\(856\) −16.1418 −0.551715
\(857\) −40.2311 −1.37427 −0.687134 0.726531i \(-0.741131\pi\)
−0.687134 + 0.726531i \(0.741131\pi\)
\(858\) 161.363 5.50883
\(859\) −5.87585 −0.200481 −0.100241 0.994963i \(-0.531961\pi\)
−0.100241 + 0.994963i \(0.531961\pi\)
\(860\) 3.37035 0.114928
\(861\) 0 0
\(862\) 25.5992 0.871912
\(863\) 36.5866 1.24542 0.622710 0.782452i \(-0.286031\pi\)
0.622710 + 0.782452i \(0.286031\pi\)
\(864\) 66.5211 2.26309
\(865\) 13.1423 0.446853
\(866\) −36.7074 −1.24737
\(867\) −13.7613 −0.467358
\(868\) 0 0
\(869\) 78.8162 2.67366
\(870\) −24.3516 −0.825595
\(871\) 71.1276 2.41007
\(872\) 12.2241 0.413960
\(873\) 77.0948 2.60926
\(874\) 34.1327 1.15456
\(875\) 0 0
\(876\) −31.3973 −1.06082
\(877\) 54.4962 1.84021 0.920103 0.391678i \(-0.128105\pi\)
0.920103 + 0.391678i \(0.128105\pi\)
\(878\) −37.1874 −1.25501
\(879\) −103.383 −3.48701
\(880\) −43.0200 −1.45020
\(881\) 28.8859 0.973192 0.486596 0.873627i \(-0.338238\pi\)
0.486596 + 0.873627i \(0.338238\pi\)
\(882\) 0 0
\(883\) 40.5720 1.36536 0.682678 0.730720i \(-0.260815\pi\)
0.682678 + 0.730720i \(0.260815\pi\)
\(884\) −22.0787 −0.742587
\(885\) 38.6523 1.29928
\(886\) −1.96210 −0.0659181
\(887\) −1.57560 −0.0529035 −0.0264517 0.999650i \(-0.508421\pi\)
−0.0264517 + 0.999650i \(0.508421\pi\)
\(888\) 0.150391 0.00504679
\(889\) 0 0
\(890\) −31.0867 −1.04203
\(891\) 126.367 4.23344
\(892\) 3.03431 0.101596
\(893\) 20.3984 0.682607
\(894\) 57.2626 1.91515
\(895\) −17.2146 −0.575420
\(896\) 0 0
\(897\) 108.175 3.61187
\(898\) −31.2910 −1.04420
\(899\) −13.3420 −0.444981
\(900\) −17.6089 −0.586962
\(901\) 17.9519 0.598064
\(902\) 17.9868 0.598896
\(903\) 0 0
\(904\) −33.8613 −1.12621
\(905\) 24.8939 0.827502
\(906\) −48.8980 −1.62453
\(907\) −39.5125 −1.31199 −0.655995 0.754765i \(-0.727751\pi\)
−0.655995 + 0.754765i \(0.727751\pi\)
\(908\) 18.6959 0.620447
\(909\) 82.8711 2.74866
\(910\) 0 0
\(911\) −3.02234 −0.100135 −0.0500673 0.998746i \(-0.515944\pi\)
−0.0500673 + 0.998746i \(0.515944\pi\)
\(912\) 49.9557 1.65420
\(913\) 40.2209 1.33112
\(914\) −31.2946 −1.03513
\(915\) 54.2006 1.79182
\(916\) 2.08682 0.0689504
\(917\) 0 0
\(918\) −108.990 −3.59721
\(919\) 15.9560 0.526339 0.263170 0.964750i \(-0.415232\pi\)
0.263170 + 0.964750i \(0.415232\pi\)
\(920\) −18.3048 −0.603493
\(921\) 33.8051 1.11392
\(922\) −61.5206 −2.02607
\(923\) 71.7323 2.36110
\(924\) 0 0
\(925\) −0.0666209 −0.00219048
\(926\) −64.2714 −2.11209
\(927\) −61.0294 −2.00447
\(928\) −13.9044 −0.456434
\(929\) 39.2648 1.28824 0.644119 0.764926i \(-0.277224\pi\)
0.644119 + 0.764926i \(0.277224\pi\)
\(930\) 38.8005 1.27232
\(931\) 0 0
\(932\) 13.4281 0.439852
\(933\) −73.5821 −2.40897
\(934\) −58.0264 −1.89868
\(935\) 39.7575 1.30021
\(936\) 71.2515 2.32893
\(937\) 9.53287 0.311425 0.155713 0.987802i \(-0.450233\pi\)
0.155713 + 0.987802i \(0.450233\pi\)
\(938\) 0 0
\(939\) −92.3049 −3.01226
\(940\) 9.16654 0.298980
\(941\) −52.6695 −1.71698 −0.858488 0.512834i \(-0.828596\pi\)
−0.858488 + 0.512834i \(0.828596\pi\)
\(942\) −56.3718 −1.83669
\(943\) 12.0581 0.392667
\(944\) 39.1274 1.27349
\(945\) 0 0
\(946\) 23.0440 0.749226
\(947\) −11.4971 −0.373606 −0.186803 0.982397i \(-0.559813\pi\)
−0.186803 + 0.982397i \(0.559813\pi\)
\(948\) −41.1282 −1.33578
\(949\) −56.2785 −1.82688
\(950\) −14.0457 −0.455703
\(951\) 78.9768 2.56100
\(952\) 0 0
\(953\) −12.0855 −0.391487 −0.195743 0.980655i \(-0.562712\pi\)
−0.195743 + 0.980655i \(0.562712\pi\)
\(954\) 48.5450 1.57170
\(955\) −30.6706 −0.992478
\(956\) −2.52435 −0.0816433
\(957\) −52.1383 −1.68539
\(958\) 45.6799 1.47585
\(959\) 0 0
\(960\) −8.80341 −0.284129
\(961\) −9.74153 −0.314243
\(962\) −0.225885 −0.00728281
\(963\) 63.5571 2.04810
\(964\) 25.8573 0.832809
\(965\) −4.70112 −0.151334
\(966\) 0 0
\(967\) −37.6146 −1.20960 −0.604802 0.796376i \(-0.706748\pi\)
−0.604802 + 0.796376i \(0.706748\pi\)
\(968\) −38.0360 −1.22252
\(969\) −46.1672 −1.48310
\(970\) 27.6342 0.887279
\(971\) −9.92063 −0.318368 −0.159184 0.987249i \(-0.550886\pi\)
−0.159184 + 0.987249i \(0.550886\pi\)
\(972\) −28.0710 −0.900379
\(973\) 0 0
\(974\) −37.5158 −1.20208
\(975\) −44.5145 −1.42560
\(976\) 54.8668 1.75624
\(977\) −46.0243 −1.47245 −0.736223 0.676739i \(-0.763393\pi\)
−0.736223 + 0.676739i \(0.763393\pi\)
\(978\) −87.8534 −2.80924
\(979\) −66.5586 −2.12722
\(980\) 0 0
\(981\) −48.1315 −1.53672
\(982\) −49.2470 −1.57154
\(983\) −40.8250 −1.30212 −0.651058 0.759028i \(-0.725675\pi\)
−0.651058 + 0.759028i \(0.725675\pi\)
\(984\) 11.2012 0.357081
\(985\) −23.2889 −0.742045
\(986\) 22.7814 0.725508
\(987\) 0 0
\(988\) −14.9130 −0.474447
\(989\) 15.4484 0.491231
\(990\) 107.511 3.41692
\(991\) 36.0398 1.14484 0.572421 0.819960i \(-0.306004\pi\)
0.572421 + 0.819960i \(0.306004\pi\)
\(992\) 22.1545 0.703407
\(993\) −2.31299 −0.0734006
\(994\) 0 0
\(995\) −5.26229 −0.166826
\(996\) −20.9882 −0.665038
\(997\) 2.70237 0.0855851 0.0427925 0.999084i \(-0.486375\pi\)
0.0427925 + 0.999084i \(0.486375\pi\)
\(998\) 33.1368 1.04893
\(999\) −0.349178 −0.0110475
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.n.1.25 34
7.6 odd 2 inner 6223.2.a.n.1.26 yes 34
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6223.2.a.n.1.25 34 1.1 even 1 trivial
6223.2.a.n.1.26 yes 34 7.6 odd 2 inner