Properties

Label 6223.2.a.l.1.3
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,8,0,24,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 8 x^{19} + 152 x^{17} - 274 x^{16} - 1061 x^{15} + 3125 x^{14} + 2977 x^{13} - 15474 x^{12} + \cdots + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.86718\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.86718 q^{2} +1.14215 q^{3} +1.48637 q^{4} -2.52504 q^{5} -2.13259 q^{6} +0.959047 q^{8} -1.69550 q^{9} +4.71472 q^{10} +2.14677 q^{11} +1.69765 q^{12} -3.10489 q^{13} -2.88397 q^{15} -4.76345 q^{16} -5.91789 q^{17} +3.16581 q^{18} -5.60200 q^{19} -3.75314 q^{20} -4.00841 q^{22} -7.11857 q^{23} +1.09537 q^{24} +1.37585 q^{25} +5.79739 q^{26} -5.36295 q^{27} -7.43778 q^{29} +5.38489 q^{30} -5.17447 q^{31} +6.97613 q^{32} +2.45192 q^{33} +11.0498 q^{34} -2.52014 q^{36} -4.49744 q^{37} +10.4600 q^{38} -3.54624 q^{39} -2.42164 q^{40} +6.07522 q^{41} -5.88817 q^{43} +3.19089 q^{44} +4.28122 q^{45} +13.2917 q^{46} -3.24407 q^{47} -5.44055 q^{48} -2.56896 q^{50} -6.75909 q^{51} -4.61500 q^{52} +10.8652 q^{53} +10.0136 q^{54} -5.42069 q^{55} -6.39830 q^{57} +13.8877 q^{58} -11.7201 q^{59} -4.28663 q^{60} +4.57418 q^{61} +9.66167 q^{62} -3.49880 q^{64} +7.83998 q^{65} -4.57818 q^{66} +3.13289 q^{67} -8.79615 q^{68} -8.13044 q^{69} +15.6126 q^{71} -1.62607 q^{72} +13.6309 q^{73} +8.39753 q^{74} +1.57142 q^{75} -8.32663 q^{76} +6.62146 q^{78} +11.7382 q^{79} +12.0279 q^{80} -1.03876 q^{81} -11.3435 q^{82} -11.0096 q^{83} +14.9429 q^{85} +10.9943 q^{86} -8.49503 q^{87} +2.05885 q^{88} -5.48084 q^{89} -7.99382 q^{90} -10.5808 q^{92} -5.90999 q^{93} +6.05728 q^{94} +14.1453 q^{95} +7.96775 q^{96} +1.03456 q^{97} -3.63985 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 8 q^{2} + 24 q^{4} - 3 q^{5} - 6 q^{6} + 24 q^{8} + 30 q^{9} + 8 q^{10} + 26 q^{11} + 4 q^{12} + 4 q^{13} + 10 q^{15} + 24 q^{16} - 4 q^{17} + 5 q^{18} - q^{19} + 2 q^{20} + q^{22} + 31 q^{23}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.86718 −1.32030 −0.660148 0.751135i \(-0.729507\pi\)
−0.660148 + 0.751135i \(0.729507\pi\)
\(3\) 1.14215 0.659418 0.329709 0.944083i \(-0.393049\pi\)
0.329709 + 0.944083i \(0.393049\pi\)
\(4\) 1.48637 0.743183
\(5\) −2.52504 −1.12923 −0.564617 0.825353i \(-0.690976\pi\)
−0.564617 + 0.825353i \(0.690976\pi\)
\(6\) −2.13259 −0.870627
\(7\) 0 0
\(8\) 0.959047 0.339074
\(9\) −1.69550 −0.565168
\(10\) 4.71472 1.49092
\(11\) 2.14677 0.647275 0.323638 0.946181i \(-0.395094\pi\)
0.323638 + 0.946181i \(0.395094\pi\)
\(12\) 1.69765 0.490068
\(13\) −3.10489 −0.861141 −0.430571 0.902557i \(-0.641688\pi\)
−0.430571 + 0.902557i \(0.641688\pi\)
\(14\) 0 0
\(15\) −2.88397 −0.744637
\(16\) −4.76345 −1.19086
\(17\) −5.91789 −1.43530 −0.717649 0.696405i \(-0.754782\pi\)
−0.717649 + 0.696405i \(0.754782\pi\)
\(18\) 3.16581 0.746189
\(19\) −5.60200 −1.28519 −0.642594 0.766207i \(-0.722142\pi\)
−0.642594 + 0.766207i \(0.722142\pi\)
\(20\) −3.75314 −0.839228
\(21\) 0 0
\(22\) −4.00841 −0.854595
\(23\) −7.11857 −1.48432 −0.742162 0.670220i \(-0.766200\pi\)
−0.742162 + 0.670220i \(0.766200\pi\)
\(24\) 1.09537 0.223592
\(25\) 1.37585 0.275170
\(26\) 5.79739 1.13696
\(27\) −5.36295 −1.03210
\(28\) 0 0
\(29\) −7.43778 −1.38116 −0.690581 0.723255i \(-0.742645\pi\)
−0.690581 + 0.723255i \(0.742645\pi\)
\(30\) 5.38489 0.983142
\(31\) −5.17447 −0.929361 −0.464681 0.885478i \(-0.653831\pi\)
−0.464681 + 0.885478i \(0.653831\pi\)
\(32\) 6.97613 1.23322
\(33\) 2.45192 0.426825
\(34\) 11.0498 1.89502
\(35\) 0 0
\(36\) −2.52014 −0.420023
\(37\) −4.49744 −0.739374 −0.369687 0.929156i \(-0.620535\pi\)
−0.369687 + 0.929156i \(0.620535\pi\)
\(38\) 10.4600 1.69683
\(39\) −3.54624 −0.567852
\(40\) −2.42164 −0.382894
\(41\) 6.07522 0.948791 0.474395 0.880312i \(-0.342667\pi\)
0.474395 + 0.880312i \(0.342667\pi\)
\(42\) 0 0
\(43\) −5.88817 −0.897938 −0.448969 0.893547i \(-0.648209\pi\)
−0.448969 + 0.893547i \(0.648209\pi\)
\(44\) 3.19089 0.481044
\(45\) 4.28122 0.638207
\(46\) 13.2917 1.95975
\(47\) −3.24407 −0.473197 −0.236598 0.971608i \(-0.576033\pi\)
−0.236598 + 0.971608i \(0.576033\pi\)
\(48\) −5.44055 −0.785276
\(49\) 0 0
\(50\) −2.56896 −0.363306
\(51\) −6.75909 −0.946462
\(52\) −4.61500 −0.639986
\(53\) 10.8652 1.49245 0.746223 0.665697i \(-0.231865\pi\)
0.746223 + 0.665697i \(0.231865\pi\)
\(54\) 10.0136 1.36268
\(55\) −5.42069 −0.730925
\(56\) 0 0
\(57\) −6.39830 −0.847476
\(58\) 13.8877 1.82354
\(59\) −11.7201 −1.52583 −0.762915 0.646499i \(-0.776233\pi\)
−0.762915 + 0.646499i \(0.776233\pi\)
\(60\) −4.28663 −0.553402
\(61\) 4.57418 0.585663 0.292832 0.956164i \(-0.405402\pi\)
0.292832 + 0.956164i \(0.405402\pi\)
\(62\) 9.66167 1.22703
\(63\) 0 0
\(64\) −3.49880 −0.437350
\(65\) 7.83998 0.972430
\(66\) −4.57818 −0.563535
\(67\) 3.13289 0.382743 0.191372 0.981518i \(-0.438706\pi\)
0.191372 + 0.981518i \(0.438706\pi\)
\(68\) −8.79615 −1.06669
\(69\) −8.13044 −0.978791
\(70\) 0 0
\(71\) 15.6126 1.85287 0.926437 0.376449i \(-0.122855\pi\)
0.926437 + 0.376449i \(0.122855\pi\)
\(72\) −1.62607 −0.191634
\(73\) 13.6309 1.59538 0.797690 0.603068i \(-0.206055\pi\)
0.797690 + 0.603068i \(0.206055\pi\)
\(74\) 8.39753 0.976193
\(75\) 1.57142 0.181452
\(76\) −8.32663 −0.955130
\(77\) 0 0
\(78\) 6.62146 0.749733
\(79\) 11.7382 1.32065 0.660326 0.750979i \(-0.270418\pi\)
0.660326 + 0.750979i \(0.270418\pi\)
\(80\) 12.0279 1.34476
\(81\) −1.03876 −0.115417
\(82\) −11.3435 −1.25268
\(83\) −11.0096 −1.20846 −0.604229 0.796811i \(-0.706519\pi\)
−0.604229 + 0.796811i \(0.706519\pi\)
\(84\) 0 0
\(85\) 14.9429 1.62079
\(86\) 10.9943 1.18554
\(87\) −8.49503 −0.910762
\(88\) 2.05885 0.219474
\(89\) −5.48084 −0.580968 −0.290484 0.956880i \(-0.593816\pi\)
−0.290484 + 0.956880i \(0.593816\pi\)
\(90\) −7.99382 −0.842623
\(91\) 0 0
\(92\) −10.5808 −1.10313
\(93\) −5.90999 −0.612838
\(94\) 6.05728 0.624760
\(95\) 14.1453 1.45128
\(96\) 7.96775 0.813205
\(97\) 1.03456 0.105043 0.0525217 0.998620i \(-0.483274\pi\)
0.0525217 + 0.998620i \(0.483274\pi\)
\(98\) 0 0
\(99\) −3.63985 −0.365819
\(100\) 2.04502 0.204502
\(101\) −13.0504 −1.29856 −0.649280 0.760549i \(-0.724930\pi\)
−0.649280 + 0.760549i \(0.724930\pi\)
\(102\) 12.6204 1.24961
\(103\) 9.26938 0.913339 0.456669 0.889636i \(-0.349042\pi\)
0.456669 + 0.889636i \(0.349042\pi\)
\(104\) −2.97773 −0.291991
\(105\) 0 0
\(106\) −20.2872 −1.97047
\(107\) −8.65350 −0.836565 −0.418283 0.908317i \(-0.637368\pi\)
−0.418283 + 0.908317i \(0.637368\pi\)
\(108\) −7.97131 −0.767039
\(109\) −1.20206 −0.115136 −0.0575682 0.998342i \(-0.518335\pi\)
−0.0575682 + 0.998342i \(0.518335\pi\)
\(110\) 10.1214 0.965038
\(111\) −5.13673 −0.487556
\(112\) 0 0
\(113\) −1.24812 −0.117413 −0.0587067 0.998275i \(-0.518698\pi\)
−0.0587067 + 0.998275i \(0.518698\pi\)
\(114\) 11.9468 1.11892
\(115\) 17.9747 1.67615
\(116\) −11.0553 −1.02646
\(117\) 5.26435 0.486689
\(118\) 21.8836 2.01455
\(119\) 0 0
\(120\) −2.76586 −0.252487
\(121\) −6.39138 −0.581035
\(122\) −8.54082 −0.773249
\(123\) 6.93879 0.625650
\(124\) −7.69115 −0.690686
\(125\) 9.15114 0.818503
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −7.41936 −0.655785
\(129\) −6.72515 −0.592116
\(130\) −14.6387 −1.28390
\(131\) −10.6910 −0.934076 −0.467038 0.884237i \(-0.654679\pi\)
−0.467038 + 0.884237i \(0.654679\pi\)
\(132\) 3.64446 0.317209
\(133\) 0 0
\(134\) −5.84967 −0.505335
\(135\) 13.5417 1.16548
\(136\) −5.67553 −0.486673
\(137\) 8.97622 0.766891 0.383445 0.923564i \(-0.374737\pi\)
0.383445 + 0.923564i \(0.374737\pi\)
\(138\) 15.1810 1.29229
\(139\) −16.3441 −1.38629 −0.693144 0.720799i \(-0.743775\pi\)
−0.693144 + 0.720799i \(0.743775\pi\)
\(140\) 0 0
\(141\) −3.70520 −0.312035
\(142\) −29.1516 −2.44634
\(143\) −6.66548 −0.557395
\(144\) 8.07644 0.673037
\(145\) 18.7807 1.55965
\(146\) −25.4514 −2.10637
\(147\) 0 0
\(148\) −6.68484 −0.549490
\(149\) 21.0349 1.72325 0.861623 0.507549i \(-0.169448\pi\)
0.861623 + 0.507549i \(0.169448\pi\)
\(150\) −2.93413 −0.239571
\(151\) −19.6782 −1.60139 −0.800693 0.599075i \(-0.795535\pi\)
−0.800693 + 0.599075i \(0.795535\pi\)
\(152\) −5.37258 −0.435774
\(153\) 10.0338 0.811185
\(154\) 0 0
\(155\) 13.0658 1.04947
\(156\) −5.27101 −0.422018
\(157\) −8.58647 −0.685275 −0.342637 0.939468i \(-0.611320\pi\)
−0.342637 + 0.939468i \(0.611320\pi\)
\(158\) −21.9174 −1.74365
\(159\) 12.4096 0.984145
\(160\) −17.6150 −1.39259
\(161\) 0 0
\(162\) 1.93954 0.152385
\(163\) −7.72950 −0.605421 −0.302711 0.953082i \(-0.597892\pi\)
−0.302711 + 0.953082i \(0.597892\pi\)
\(164\) 9.03001 0.705125
\(165\) −6.19121 −0.481985
\(166\) 20.5569 1.59552
\(167\) 1.90242 0.147214 0.0736070 0.997287i \(-0.476549\pi\)
0.0736070 + 0.997287i \(0.476549\pi\)
\(168\) 0 0
\(169\) −3.35966 −0.258436
\(170\) −27.9012 −2.13992
\(171\) 9.49822 0.726347
\(172\) −8.75198 −0.667333
\(173\) 9.51257 0.723227 0.361614 0.932328i \(-0.382226\pi\)
0.361614 + 0.932328i \(0.382226\pi\)
\(174\) 15.8618 1.20248
\(175\) 0 0
\(176\) −10.2260 −0.770815
\(177\) −13.3861 −1.00616
\(178\) 10.2337 0.767050
\(179\) 9.54411 0.713360 0.356680 0.934227i \(-0.383909\pi\)
0.356680 + 0.934227i \(0.383909\pi\)
\(180\) 6.36347 0.474305
\(181\) −21.9419 −1.63093 −0.815465 0.578807i \(-0.803519\pi\)
−0.815465 + 0.578807i \(0.803519\pi\)
\(182\) 0 0
\(183\) 5.22438 0.386197
\(184\) −6.82704 −0.503296
\(185\) 11.3562 0.834926
\(186\) 11.0350 0.809127
\(187\) −12.7043 −0.929033
\(188\) −4.82188 −0.351672
\(189\) 0 0
\(190\) −26.4119 −1.91612
\(191\) −20.8863 −1.51128 −0.755640 0.654987i \(-0.772674\pi\)
−0.755640 + 0.654987i \(0.772674\pi\)
\(192\) −3.99614 −0.288396
\(193\) −14.8527 −1.06912 −0.534559 0.845131i \(-0.679522\pi\)
−0.534559 + 0.845131i \(0.679522\pi\)
\(194\) −1.93171 −0.138689
\(195\) 8.95440 0.641238
\(196\) 0 0
\(197\) 13.6942 0.975669 0.487834 0.872936i \(-0.337787\pi\)
0.487834 + 0.872936i \(0.337787\pi\)
\(198\) 6.79627 0.482990
\(199\) −17.7755 −1.26007 −0.630035 0.776567i \(-0.716959\pi\)
−0.630035 + 0.776567i \(0.716959\pi\)
\(200\) 1.31951 0.0933032
\(201\) 3.57822 0.252388
\(202\) 24.3674 1.71449
\(203\) 0 0
\(204\) −10.0465 −0.703395
\(205\) −15.3402 −1.07141
\(206\) −17.3076 −1.20588
\(207\) 12.0696 0.838893
\(208\) 14.7900 1.02550
\(209\) −12.0262 −0.831870
\(210\) 0 0
\(211\) −7.22564 −0.497434 −0.248717 0.968576i \(-0.580009\pi\)
−0.248717 + 0.968576i \(0.580009\pi\)
\(212\) 16.1496 1.10916
\(213\) 17.8319 1.22182
\(214\) 16.1577 1.10451
\(215\) 14.8679 1.01398
\(216\) −5.14332 −0.349959
\(217\) 0 0
\(218\) 2.24446 0.152014
\(219\) 15.5685 1.05202
\(220\) −8.05713 −0.543212
\(221\) 18.3744 1.23600
\(222\) 9.59120 0.643719
\(223\) 1.99060 0.133300 0.0666501 0.997776i \(-0.478769\pi\)
0.0666501 + 0.997776i \(0.478769\pi\)
\(224\) 0 0
\(225\) −2.33276 −0.155517
\(226\) 2.33047 0.155021
\(227\) −1.85235 −0.122945 −0.0614723 0.998109i \(-0.519580\pi\)
−0.0614723 + 0.998109i \(0.519580\pi\)
\(228\) −9.51022 −0.629830
\(229\) 4.03988 0.266963 0.133481 0.991051i \(-0.457384\pi\)
0.133481 + 0.991051i \(0.457384\pi\)
\(230\) −33.5621 −2.21302
\(231\) 0 0
\(232\) −7.13318 −0.468316
\(233\) 13.3853 0.876902 0.438451 0.898755i \(-0.355527\pi\)
0.438451 + 0.898755i \(0.355527\pi\)
\(234\) −9.82950 −0.642575
\(235\) 8.19143 0.534350
\(236\) −17.4204 −1.13397
\(237\) 13.4067 0.870862
\(238\) 0 0
\(239\) −5.43938 −0.351844 −0.175922 0.984404i \(-0.556291\pi\)
−0.175922 + 0.984404i \(0.556291\pi\)
\(240\) 13.7376 0.886760
\(241\) 26.4016 1.70067 0.850337 0.526238i \(-0.176398\pi\)
0.850337 + 0.526238i \(0.176398\pi\)
\(242\) 11.9339 0.767138
\(243\) 14.9024 0.955992
\(244\) 6.79890 0.435255
\(245\) 0 0
\(246\) −12.9560 −0.826043
\(247\) 17.3936 1.10673
\(248\) −4.96256 −0.315123
\(249\) −12.5745 −0.796878
\(250\) −17.0868 −1.08067
\(251\) 20.9117 1.31993 0.659967 0.751294i \(-0.270570\pi\)
0.659967 + 0.751294i \(0.270570\pi\)
\(252\) 0 0
\(253\) −15.2819 −0.960767
\(254\) 1.86718 0.117157
\(255\) 17.0670 1.06878
\(256\) 20.8509 1.30318
\(257\) 24.3901 1.52141 0.760705 0.649097i \(-0.224853\pi\)
0.760705 + 0.649097i \(0.224853\pi\)
\(258\) 12.5571 0.781769
\(259\) 0 0
\(260\) 11.6531 0.722694
\(261\) 12.6108 0.780588
\(262\) 19.9620 1.23326
\(263\) 8.75029 0.539566 0.269783 0.962921i \(-0.413048\pi\)
0.269783 + 0.962921i \(0.413048\pi\)
\(264\) 2.35151 0.144725
\(265\) −27.4350 −1.68532
\(266\) 0 0
\(267\) −6.25992 −0.383101
\(268\) 4.65662 0.284448
\(269\) −0.734176 −0.0447635 −0.0223818 0.999749i \(-0.507125\pi\)
−0.0223818 + 0.999749i \(0.507125\pi\)
\(270\) −25.2848 −1.53878
\(271\) −6.99503 −0.424918 −0.212459 0.977170i \(-0.568147\pi\)
−0.212459 + 0.977170i \(0.568147\pi\)
\(272\) 28.1895 1.70924
\(273\) 0 0
\(274\) −16.7602 −1.01252
\(275\) 2.95363 0.178111
\(276\) −12.0848 −0.727421
\(277\) 3.60962 0.216881 0.108441 0.994103i \(-0.465414\pi\)
0.108441 + 0.994103i \(0.465414\pi\)
\(278\) 30.5174 1.83031
\(279\) 8.77333 0.525245
\(280\) 0 0
\(281\) 24.7064 1.47386 0.736931 0.675968i \(-0.236274\pi\)
0.736931 + 0.675968i \(0.236274\pi\)
\(282\) 6.91829 0.411978
\(283\) −23.5104 −1.39755 −0.698773 0.715343i \(-0.746270\pi\)
−0.698773 + 0.715343i \(0.746270\pi\)
\(284\) 23.2060 1.37703
\(285\) 16.1560 0.956999
\(286\) 12.4457 0.735927
\(287\) 0 0
\(288\) −11.8281 −0.696975
\(289\) 18.0214 1.06008
\(290\) −35.0670 −2.05921
\(291\) 1.18162 0.0692676
\(292\) 20.2606 1.18566
\(293\) 14.2321 0.831445 0.415723 0.909491i \(-0.363529\pi\)
0.415723 + 0.909491i \(0.363529\pi\)
\(294\) 0 0
\(295\) 29.5938 1.72302
\(296\) −4.31325 −0.250703
\(297\) −11.5130 −0.668053
\(298\) −39.2760 −2.27520
\(299\) 22.1024 1.27821
\(300\) 2.33571 0.134852
\(301\) 0 0
\(302\) 36.7427 2.11430
\(303\) −14.9054 −0.856294
\(304\) 26.6848 1.53048
\(305\) −11.5500 −0.661351
\(306\) −18.7349 −1.07100
\(307\) 2.43954 0.139232 0.0696159 0.997574i \(-0.477823\pi\)
0.0696159 + 0.997574i \(0.477823\pi\)
\(308\) 0 0
\(309\) 10.5870 0.602272
\(310\) −24.3961 −1.38561
\(311\) 14.2486 0.807961 0.403981 0.914768i \(-0.367626\pi\)
0.403981 + 0.914768i \(0.367626\pi\)
\(312\) −3.40101 −0.192544
\(313\) −1.01920 −0.0576087 −0.0288043 0.999585i \(-0.509170\pi\)
−0.0288043 + 0.999585i \(0.509170\pi\)
\(314\) 16.0325 0.904766
\(315\) 0 0
\(316\) 17.4473 0.981486
\(317\) −26.7112 −1.50025 −0.750124 0.661297i \(-0.770006\pi\)
−0.750124 + 0.661297i \(0.770006\pi\)
\(318\) −23.1710 −1.29936
\(319\) −15.9672 −0.893991
\(320\) 8.83463 0.493871
\(321\) −9.88356 −0.551646
\(322\) 0 0
\(323\) 33.1520 1.84463
\(324\) −1.54397 −0.0857762
\(325\) −4.27187 −0.236960
\(326\) 14.4324 0.799336
\(327\) −1.37293 −0.0759231
\(328\) 5.82642 0.321710
\(329\) 0 0
\(330\) 11.5601 0.636364
\(331\) 3.21043 0.176461 0.0882305 0.996100i \(-0.471879\pi\)
0.0882305 + 0.996100i \(0.471879\pi\)
\(332\) −16.3643 −0.898105
\(333\) 7.62542 0.417870
\(334\) −3.55217 −0.194366
\(335\) −7.91069 −0.432207
\(336\) 0 0
\(337\) −15.9804 −0.870505 −0.435253 0.900308i \(-0.643341\pi\)
−0.435253 + 0.900308i \(0.643341\pi\)
\(338\) 6.27310 0.341212
\(339\) −1.42554 −0.0774245
\(340\) 22.2107 1.20454
\(341\) −11.1084 −0.601553
\(342\) −17.7349 −0.958993
\(343\) 0 0
\(344\) −5.64703 −0.304468
\(345\) 20.5297 1.10528
\(346\) −17.7617 −0.954874
\(347\) −4.64687 −0.249457 −0.124729 0.992191i \(-0.539806\pi\)
−0.124729 + 0.992191i \(0.539806\pi\)
\(348\) −12.6267 −0.676863
\(349\) 12.8959 0.690300 0.345150 0.938547i \(-0.387828\pi\)
0.345150 + 0.938547i \(0.387828\pi\)
\(350\) 0 0
\(351\) 16.6514 0.888784
\(352\) 14.9761 0.798231
\(353\) −6.04228 −0.321598 −0.160799 0.986987i \(-0.551407\pi\)
−0.160799 + 0.986987i \(0.551407\pi\)
\(354\) 24.9943 1.32843
\(355\) −39.4225 −2.09233
\(356\) −8.14654 −0.431766
\(357\) 0 0
\(358\) −17.8206 −0.941847
\(359\) 27.1794 1.43447 0.717237 0.696830i \(-0.245407\pi\)
0.717237 + 0.696830i \(0.245407\pi\)
\(360\) 4.10589 0.216400
\(361\) 12.3824 0.651707
\(362\) 40.9695 2.15331
\(363\) −7.29989 −0.383145
\(364\) 0 0
\(365\) −34.4187 −1.80156
\(366\) −9.75486 −0.509895
\(367\) −32.2253 −1.68215 −0.841073 0.540922i \(-0.818076\pi\)
−0.841073 + 0.540922i \(0.818076\pi\)
\(368\) 33.9089 1.76763
\(369\) −10.3006 −0.536226
\(370\) −21.2041 −1.10235
\(371\) 0 0
\(372\) −8.78441 −0.455451
\(373\) −29.7787 −1.54188 −0.770941 0.636907i \(-0.780214\pi\)
−0.770941 + 0.636907i \(0.780214\pi\)
\(374\) 23.7213 1.22660
\(375\) 10.4519 0.539735
\(376\) −3.11122 −0.160449
\(377\) 23.0935 1.18937
\(378\) 0 0
\(379\) 12.3300 0.633349 0.316675 0.948534i \(-0.397434\pi\)
0.316675 + 0.948534i \(0.397434\pi\)
\(380\) 21.0251 1.07857
\(381\) −1.14215 −0.0585139
\(382\) 38.9985 1.99534
\(383\) 36.4315 1.86156 0.930782 0.365574i \(-0.119127\pi\)
0.930782 + 0.365574i \(0.119127\pi\)
\(384\) −8.47399 −0.432436
\(385\) 0 0
\(386\) 27.7326 1.41155
\(387\) 9.98342 0.507486
\(388\) 1.53773 0.0780666
\(389\) −35.0881 −1.77904 −0.889519 0.456898i \(-0.848960\pi\)
−0.889519 + 0.456898i \(0.848960\pi\)
\(390\) −16.7195 −0.846625
\(391\) 42.1269 2.13045
\(392\) 0 0
\(393\) −12.2107 −0.615946
\(394\) −25.5695 −1.28817
\(395\) −29.6395 −1.49133
\(396\) −5.41016 −0.271871
\(397\) −21.7798 −1.09310 −0.546548 0.837428i \(-0.684058\pi\)
−0.546548 + 0.837428i \(0.684058\pi\)
\(398\) 33.1900 1.66367
\(399\) 0 0
\(400\) −6.55380 −0.327690
\(401\) 18.4781 0.922751 0.461375 0.887205i \(-0.347356\pi\)
0.461375 + 0.887205i \(0.347356\pi\)
\(402\) −6.68118 −0.333227
\(403\) 16.0661 0.800312
\(404\) −19.3976 −0.965068
\(405\) 2.62290 0.130333
\(406\) 0 0
\(407\) −9.65496 −0.478578
\(408\) −6.48228 −0.320921
\(409\) 26.3563 1.30324 0.651618 0.758547i \(-0.274091\pi\)
0.651618 + 0.758547i \(0.274091\pi\)
\(410\) 28.6430 1.41457
\(411\) 10.2522 0.505701
\(412\) 13.7777 0.678778
\(413\) 0 0
\(414\) −22.5361 −1.10759
\(415\) 27.7997 1.36463
\(416\) −21.6601 −1.06197
\(417\) −18.6673 −0.914144
\(418\) 22.4551 1.09832
\(419\) −7.75685 −0.378947 −0.189473 0.981886i \(-0.560678\pi\)
−0.189473 + 0.981886i \(0.560678\pi\)
\(420\) 0 0
\(421\) −32.9882 −1.60775 −0.803873 0.594801i \(-0.797231\pi\)
−0.803873 + 0.594801i \(0.797231\pi\)
\(422\) 13.4916 0.656760
\(423\) 5.50034 0.267436
\(424\) 10.4202 0.506050
\(425\) −8.14213 −0.394952
\(426\) −33.2953 −1.61316
\(427\) 0 0
\(428\) −12.8623 −0.621721
\(429\) −7.61295 −0.367557
\(430\) −27.7611 −1.33876
\(431\) −0.521602 −0.0251247 −0.0125623 0.999921i \(-0.503999\pi\)
−0.0125623 + 0.999921i \(0.503999\pi\)
\(432\) 25.5461 1.22909
\(433\) −14.6517 −0.704117 −0.352059 0.935978i \(-0.614518\pi\)
−0.352059 + 0.935978i \(0.614518\pi\)
\(434\) 0 0
\(435\) 21.4503 1.02846
\(436\) −1.78670 −0.0855675
\(437\) 39.8783 1.90764
\(438\) −29.0692 −1.38898
\(439\) −11.7950 −0.562946 −0.281473 0.959569i \(-0.590823\pi\)
−0.281473 + 0.959569i \(0.590823\pi\)
\(440\) −5.19869 −0.247838
\(441\) 0 0
\(442\) −34.3083 −1.63188
\(443\) 4.46547 0.212161 0.106080 0.994358i \(-0.466170\pi\)
0.106080 + 0.994358i \(0.466170\pi\)
\(444\) −7.63506 −0.362344
\(445\) 13.8394 0.656049
\(446\) −3.71680 −0.175996
\(447\) 24.0249 1.13634
\(448\) 0 0
\(449\) 2.18869 0.103291 0.0516454 0.998665i \(-0.483553\pi\)
0.0516454 + 0.998665i \(0.483553\pi\)
\(450\) 4.35569 0.205329
\(451\) 13.0421 0.614129
\(452\) −1.85517 −0.0872597
\(453\) −22.4753 −1.05598
\(454\) 3.45867 0.162323
\(455\) 0 0
\(456\) −6.13627 −0.287357
\(457\) −39.0672 −1.82749 −0.913743 0.406293i \(-0.866821\pi\)
−0.913743 + 0.406293i \(0.866821\pi\)
\(458\) −7.54318 −0.352470
\(459\) 31.7373 1.48137
\(460\) 26.7170 1.24569
\(461\) −23.5633 −1.09745 −0.548727 0.836002i \(-0.684887\pi\)
−0.548727 + 0.836002i \(0.684887\pi\)
\(462\) 0 0
\(463\) 11.8195 0.549298 0.274649 0.961544i \(-0.411438\pi\)
0.274649 + 0.961544i \(0.411438\pi\)
\(464\) 35.4295 1.64477
\(465\) 14.9230 0.692037
\(466\) −24.9928 −1.15777
\(467\) −16.5778 −0.767128 −0.383564 0.923514i \(-0.625303\pi\)
−0.383564 + 0.923514i \(0.625303\pi\)
\(468\) 7.82476 0.361699
\(469\) 0 0
\(470\) −15.2949 −0.705501
\(471\) −9.80700 −0.451882
\(472\) −11.2401 −0.517370
\(473\) −12.6405 −0.581213
\(474\) −25.0328 −1.14980
\(475\) −7.70752 −0.353645
\(476\) 0 0
\(477\) −18.4219 −0.843482
\(478\) 10.1563 0.464538
\(479\) −22.6906 −1.03676 −0.518380 0.855150i \(-0.673465\pi\)
−0.518380 + 0.855150i \(0.673465\pi\)
\(480\) −20.1189 −0.918299
\(481\) 13.9640 0.636705
\(482\) −49.2965 −2.24540
\(483\) 0 0
\(484\) −9.49994 −0.431815
\(485\) −2.61231 −0.118619
\(486\) −27.8256 −1.26219
\(487\) −21.8682 −0.990941 −0.495470 0.868625i \(-0.665004\pi\)
−0.495470 + 0.868625i \(0.665004\pi\)
\(488\) 4.38685 0.198583
\(489\) −8.82822 −0.399226
\(490\) 0 0
\(491\) 40.6492 1.83447 0.917235 0.398346i \(-0.130416\pi\)
0.917235 + 0.398346i \(0.130416\pi\)
\(492\) 10.3136 0.464972
\(493\) 44.0159 1.98238
\(494\) −32.4770 −1.46121
\(495\) 9.19080 0.413096
\(496\) 24.6483 1.10674
\(497\) 0 0
\(498\) 23.4789 1.05212
\(499\) 15.4222 0.690393 0.345197 0.938530i \(-0.387812\pi\)
0.345197 + 0.938530i \(0.387812\pi\)
\(500\) 13.6019 0.608297
\(501\) 2.17284 0.0970755
\(502\) −39.0459 −1.74270
\(503\) −14.5992 −0.650945 −0.325473 0.945551i \(-0.605523\pi\)
−0.325473 + 0.945551i \(0.605523\pi\)
\(504\) 0 0
\(505\) 32.9528 1.46638
\(506\) 28.5341 1.26850
\(507\) −3.83722 −0.170417
\(508\) −1.48637 −0.0659469
\(509\) −16.9749 −0.752397 −0.376199 0.926539i \(-0.622769\pi\)
−0.376199 + 0.926539i \(0.622769\pi\)
\(510\) −31.8672 −1.41110
\(511\) 0 0
\(512\) −24.0937 −1.06480
\(513\) 30.0432 1.32644
\(514\) −45.5407 −2.00871
\(515\) −23.4056 −1.03137
\(516\) −9.99604 −0.440051
\(517\) −6.96428 −0.306289
\(518\) 0 0
\(519\) 10.8647 0.476909
\(520\) 7.51891 0.329726
\(521\) −16.7832 −0.735283 −0.367642 0.929968i \(-0.619835\pi\)
−0.367642 + 0.929968i \(0.619835\pi\)
\(522\) −23.5466 −1.03061
\(523\) 20.9119 0.914414 0.457207 0.889360i \(-0.348850\pi\)
0.457207 + 0.889360i \(0.348850\pi\)
\(524\) −15.8907 −0.694189
\(525\) 0 0
\(526\) −16.3384 −0.712387
\(527\) 30.6219 1.33391
\(528\) −11.6796 −0.508289
\(529\) 27.6741 1.20322
\(530\) 51.2262 2.22512
\(531\) 19.8715 0.862350
\(532\) 0 0
\(533\) −18.8629 −0.817043
\(534\) 11.6884 0.505807
\(535\) 21.8505 0.944678
\(536\) 3.00459 0.129778
\(537\) 10.9008 0.470403
\(538\) 1.37084 0.0591011
\(539\) 0 0
\(540\) 20.1279 0.866167
\(541\) 4.34159 0.186660 0.0933298 0.995635i \(-0.470249\pi\)
0.0933298 + 0.995635i \(0.470249\pi\)
\(542\) 13.0610 0.561018
\(543\) −25.0609 −1.07546
\(544\) −41.2839 −1.77003
\(545\) 3.03526 0.130016
\(546\) 0 0
\(547\) −2.97082 −0.127023 −0.0635116 0.997981i \(-0.520230\pi\)
−0.0635116 + 0.997981i \(0.520230\pi\)
\(548\) 13.3420 0.569940
\(549\) −7.75554 −0.330998
\(550\) −5.51497 −0.235159
\(551\) 41.6665 1.77505
\(552\) −7.79748 −0.331883
\(553\) 0 0
\(554\) −6.73982 −0.286347
\(555\) 12.9705 0.550565
\(556\) −24.2933 −1.03027
\(557\) −37.9755 −1.60907 −0.804536 0.593904i \(-0.797586\pi\)
−0.804536 + 0.593904i \(0.797586\pi\)
\(558\) −16.3814 −0.693480
\(559\) 18.2821 0.773252
\(560\) 0 0
\(561\) −14.5102 −0.612621
\(562\) −46.1314 −1.94594
\(563\) 25.8374 1.08892 0.544459 0.838787i \(-0.316735\pi\)
0.544459 + 0.838787i \(0.316735\pi\)
\(564\) −5.50729 −0.231899
\(565\) 3.15156 0.132587
\(566\) 43.8981 1.84518
\(567\) 0 0
\(568\) 14.9732 0.628262
\(569\) 7.36191 0.308628 0.154314 0.988022i \(-0.450683\pi\)
0.154314 + 0.988022i \(0.450683\pi\)
\(570\) −30.1662 −1.26352
\(571\) −37.2421 −1.55854 −0.779268 0.626691i \(-0.784409\pi\)
−0.779268 + 0.626691i \(0.784409\pi\)
\(572\) −9.90735 −0.414247
\(573\) −23.8552 −0.996565
\(574\) 0 0
\(575\) −9.79410 −0.408442
\(576\) 5.93223 0.247176
\(577\) 8.48323 0.353161 0.176581 0.984286i \(-0.443496\pi\)
0.176581 + 0.984286i \(0.443496\pi\)
\(578\) −33.6492 −1.39962
\(579\) −16.9639 −0.704995
\(580\) 27.9150 1.15911
\(581\) 0 0
\(582\) −2.20629 −0.0914537
\(583\) 23.3250 0.966023
\(584\) 13.0727 0.540952
\(585\) −13.2927 −0.549587
\(586\) −26.5738 −1.09775
\(587\) 7.57932 0.312832 0.156416 0.987691i \(-0.450006\pi\)
0.156416 + 0.987691i \(0.450006\pi\)
\(588\) 0 0
\(589\) 28.9874 1.19440
\(590\) −55.2571 −2.27490
\(591\) 15.6407 0.643374
\(592\) 21.4233 0.880492
\(593\) 18.4304 0.756848 0.378424 0.925632i \(-0.376466\pi\)
0.378424 + 0.925632i \(0.376466\pi\)
\(594\) 21.4969 0.882028
\(595\) 0 0
\(596\) 31.2656 1.28069
\(597\) −20.3022 −0.830913
\(598\) −41.2692 −1.68762
\(599\) −6.29754 −0.257311 −0.128655 0.991689i \(-0.541066\pi\)
−0.128655 + 0.991689i \(0.541066\pi\)
\(600\) 1.50707 0.0615258
\(601\) 0.979702 0.0399629 0.0199814 0.999800i \(-0.493639\pi\)
0.0199814 + 0.999800i \(0.493639\pi\)
\(602\) 0 0
\(603\) −5.31183 −0.216314
\(604\) −29.2490 −1.19012
\(605\) 16.1385 0.656125
\(606\) 27.8311 1.13056
\(607\) −30.7475 −1.24800 −0.624001 0.781424i \(-0.714494\pi\)
−0.624001 + 0.781424i \(0.714494\pi\)
\(608\) −39.0803 −1.58491
\(609\) 0 0
\(610\) 21.5660 0.873180
\(611\) 10.0725 0.407489
\(612\) 14.9139 0.602859
\(613\) −5.30594 −0.214305 −0.107152 0.994243i \(-0.534173\pi\)
−0.107152 + 0.994243i \(0.534173\pi\)
\(614\) −4.55506 −0.183827
\(615\) −17.5208 −0.706505
\(616\) 0 0
\(617\) 31.1189 1.25280 0.626401 0.779501i \(-0.284527\pi\)
0.626401 + 0.779501i \(0.284527\pi\)
\(618\) −19.7678 −0.795178
\(619\) −2.21302 −0.0889489 −0.0444744 0.999011i \(-0.514161\pi\)
−0.0444744 + 0.999011i \(0.514161\pi\)
\(620\) 19.4205 0.779946
\(621\) 38.1765 1.53197
\(622\) −26.6046 −1.06675
\(623\) 0 0
\(624\) 16.8923 0.676233
\(625\) −29.9863 −1.19945
\(626\) 1.90303 0.0760605
\(627\) −13.7357 −0.548550
\(628\) −12.7626 −0.509285
\(629\) 26.6153 1.06122
\(630\) 0 0
\(631\) −30.3853 −1.20962 −0.604810 0.796370i \(-0.706751\pi\)
−0.604810 + 0.796370i \(0.706751\pi\)
\(632\) 11.2575 0.447799
\(633\) −8.25274 −0.328017
\(634\) 49.8746 1.98077
\(635\) 2.52504 0.100203
\(636\) 18.4452 0.731400
\(637\) 0 0
\(638\) 29.8137 1.18033
\(639\) −26.4712 −1.04719
\(640\) 18.7342 0.740535
\(641\) −29.0454 −1.14722 −0.573612 0.819127i \(-0.694458\pi\)
−0.573612 + 0.819127i \(0.694458\pi\)
\(642\) 18.4544 0.728337
\(643\) 46.5068 1.83405 0.917024 0.398833i \(-0.130585\pi\)
0.917024 + 0.398833i \(0.130585\pi\)
\(644\) 0 0
\(645\) 16.9813 0.668638
\(646\) −61.9008 −2.43546
\(647\) 40.6542 1.59828 0.799141 0.601144i \(-0.205288\pi\)
0.799141 + 0.601144i \(0.205288\pi\)
\(648\) −0.996215 −0.0391350
\(649\) −25.1604 −0.987632
\(650\) 7.97635 0.312858
\(651\) 0 0
\(652\) −11.4889 −0.449939
\(653\) −39.0488 −1.52810 −0.764049 0.645158i \(-0.776792\pi\)
−0.764049 + 0.645158i \(0.776792\pi\)
\(654\) 2.56350 0.100241
\(655\) 26.9952 1.05479
\(656\) −28.9390 −1.12988
\(657\) −23.1113 −0.901657
\(658\) 0 0
\(659\) −43.6453 −1.70018 −0.850089 0.526639i \(-0.823452\pi\)
−0.850089 + 0.526639i \(0.823452\pi\)
\(660\) −9.20241 −0.358203
\(661\) 8.95476 0.348300 0.174150 0.984719i \(-0.444282\pi\)
0.174150 + 0.984719i \(0.444282\pi\)
\(662\) −5.99445 −0.232981
\(663\) 20.9862 0.815037
\(664\) −10.5587 −0.409757
\(665\) 0 0
\(666\) −14.2380 −0.551713
\(667\) 52.9464 2.05009
\(668\) 2.82770 0.109407
\(669\) 2.27355 0.0879005
\(670\) 14.7707 0.570641
\(671\) 9.81970 0.379085
\(672\) 0 0
\(673\) 24.6108 0.948678 0.474339 0.880342i \(-0.342687\pi\)
0.474339 + 0.880342i \(0.342687\pi\)
\(674\) 29.8382 1.14933
\(675\) −7.37862 −0.284003
\(676\) −4.99369 −0.192065
\(677\) −28.2165 −1.08445 −0.542224 0.840234i \(-0.682418\pi\)
−0.542224 + 0.840234i \(0.682418\pi\)
\(678\) 2.66174 0.102223
\(679\) 0 0
\(680\) 14.3310 0.549568
\(681\) −2.11565 −0.0810718
\(682\) 20.7414 0.794228
\(683\) 3.13372 0.119909 0.0599543 0.998201i \(-0.480904\pi\)
0.0599543 + 0.998201i \(0.480904\pi\)
\(684\) 14.1178 0.539809
\(685\) −22.6654 −0.865999
\(686\) 0 0
\(687\) 4.61413 0.176040
\(688\) 28.0480 1.06932
\(689\) −33.7351 −1.28521
\(690\) −38.3327 −1.45930
\(691\) 15.3776 0.584992 0.292496 0.956267i \(-0.405514\pi\)
0.292496 + 0.956267i \(0.405514\pi\)
\(692\) 14.1392 0.537490
\(693\) 0 0
\(694\) 8.67656 0.329358
\(695\) 41.2696 1.56544
\(696\) −8.14713 −0.308816
\(697\) −35.9525 −1.36180
\(698\) −24.0789 −0.911401
\(699\) 15.2880 0.578245
\(700\) 0 0
\(701\) 0.753947 0.0284762 0.0142381 0.999899i \(-0.495468\pi\)
0.0142381 + 0.999899i \(0.495468\pi\)
\(702\) −31.0911 −1.17346
\(703\) 25.1946 0.950234
\(704\) −7.51112 −0.283086
\(705\) 9.35581 0.352360
\(706\) 11.2820 0.424605
\(707\) 0 0
\(708\) −19.8966 −0.747761
\(709\) −52.5784 −1.97462 −0.987312 0.158791i \(-0.949241\pi\)
−0.987312 + 0.158791i \(0.949241\pi\)
\(710\) 73.6090 2.76250
\(711\) −19.9022 −0.746390
\(712\) −5.25639 −0.196991
\(713\) 36.8348 1.37947
\(714\) 0 0
\(715\) 16.8306 0.629430
\(716\) 14.1860 0.530158
\(717\) −6.21256 −0.232012
\(718\) −50.7489 −1.89393
\(719\) −42.2691 −1.57637 −0.788185 0.615439i \(-0.788979\pi\)
−0.788185 + 0.615439i \(0.788979\pi\)
\(720\) −20.3934 −0.760016
\(721\) 0 0
\(722\) −23.1202 −0.860446
\(723\) 30.1544 1.12146
\(724\) −32.6137 −1.21208
\(725\) −10.2333 −0.380054
\(726\) 13.6302 0.505865
\(727\) −6.60122 −0.244826 −0.122413 0.992479i \(-0.539063\pi\)
−0.122413 + 0.992479i \(0.539063\pi\)
\(728\) 0 0
\(729\) 20.1370 0.745815
\(730\) 64.2660 2.37859
\(731\) 34.8456 1.28881
\(732\) 7.76534 0.287015
\(733\) −11.4503 −0.422927 −0.211464 0.977386i \(-0.567823\pi\)
−0.211464 + 0.977386i \(0.567823\pi\)
\(734\) 60.1704 2.22093
\(735\) 0 0
\(736\) −49.6601 −1.83049
\(737\) 6.72559 0.247740
\(738\) 19.2330 0.707977
\(739\) −36.9250 −1.35831 −0.679154 0.733996i \(-0.737653\pi\)
−0.679154 + 0.733996i \(0.737653\pi\)
\(740\) 16.8795 0.620503
\(741\) 19.8660 0.729796
\(742\) 0 0
\(743\) −19.9823 −0.733081 −0.366541 0.930402i \(-0.619458\pi\)
−0.366541 + 0.930402i \(0.619458\pi\)
\(744\) −5.66796 −0.207797
\(745\) −53.1141 −1.94595
\(746\) 55.6022 2.03574
\(747\) 18.6668 0.682981
\(748\) −18.8833 −0.690442
\(749\) 0 0
\(750\) −19.5157 −0.712611
\(751\) 8.90745 0.325037 0.162519 0.986705i \(-0.448038\pi\)
0.162519 + 0.986705i \(0.448038\pi\)
\(752\) 15.4530 0.563512
\(753\) 23.8842 0.870388
\(754\) −43.1197 −1.57033
\(755\) 49.6882 1.80834
\(756\) 0 0
\(757\) 13.8060 0.501787 0.250893 0.968015i \(-0.419276\pi\)
0.250893 + 0.968015i \(0.419276\pi\)
\(758\) −23.0223 −0.836209
\(759\) −17.4542 −0.633547
\(760\) 13.5660 0.492091
\(761\) −35.6626 −1.29277 −0.646383 0.763013i \(-0.723719\pi\)
−0.646383 + 0.763013i \(0.723719\pi\)
\(762\) 2.13259 0.0772557
\(763\) 0 0
\(764\) −31.0447 −1.12316
\(765\) −25.3358 −0.916018
\(766\) −68.0243 −2.45782
\(767\) 36.3897 1.31396
\(768\) 23.8147 0.859341
\(769\) 3.21210 0.115831 0.0579156 0.998321i \(-0.481555\pi\)
0.0579156 + 0.998321i \(0.481555\pi\)
\(770\) 0 0
\(771\) 27.8570 1.00325
\(772\) −22.0765 −0.794550
\(773\) 35.7577 1.28611 0.643057 0.765818i \(-0.277666\pi\)
0.643057 + 0.765818i \(0.277666\pi\)
\(774\) −18.6409 −0.670032
\(775\) −7.11930 −0.255733
\(776\) 0.992190 0.0356175
\(777\) 0 0
\(778\) 65.5159 2.34886
\(779\) −34.0334 −1.21937
\(780\) 13.3095 0.476557
\(781\) 33.5166 1.19932
\(782\) −78.6586 −2.81283
\(783\) 39.8884 1.42550
\(784\) 0 0
\(785\) 21.6812 0.773836
\(786\) 22.7995 0.813232
\(787\) 33.2160 1.18402 0.592012 0.805929i \(-0.298334\pi\)
0.592012 + 0.805929i \(0.298334\pi\)
\(788\) 20.3545 0.725101
\(789\) 9.99410 0.355799
\(790\) 55.3423 1.96899
\(791\) 0 0
\(792\) −3.49079 −0.124040
\(793\) −14.2023 −0.504339
\(794\) 40.6668 1.44321
\(795\) −31.3348 −1.11133
\(796\) −26.4209 −0.936463
\(797\) 8.21020 0.290820 0.145410 0.989371i \(-0.453550\pi\)
0.145410 + 0.989371i \(0.453550\pi\)
\(798\) 0 0
\(799\) 19.1981 0.679179
\(800\) 9.59811 0.339345
\(801\) 9.29279 0.328345
\(802\) −34.5019 −1.21830
\(803\) 29.2625 1.03265
\(804\) 5.31854 0.187570
\(805\) 0 0
\(806\) −29.9984 −1.05665
\(807\) −0.838536 −0.0295179
\(808\) −12.5159 −0.440308
\(809\) 49.0138 1.72323 0.861617 0.507559i \(-0.169452\pi\)
0.861617 + 0.507559i \(0.169452\pi\)
\(810\) −4.89744 −0.172078
\(811\) 3.98700 0.140002 0.0700012 0.997547i \(-0.477700\pi\)
0.0700012 + 0.997547i \(0.477700\pi\)
\(812\) 0 0
\(813\) −7.98934 −0.280199
\(814\) 18.0276 0.631865
\(815\) 19.5173 0.683663
\(816\) 32.1966 1.12711
\(817\) 32.9856 1.15402
\(818\) −49.2120 −1.72066
\(819\) 0 0
\(820\) −22.8012 −0.796252
\(821\) 24.3409 0.849502 0.424751 0.905310i \(-0.360362\pi\)
0.424751 + 0.905310i \(0.360362\pi\)
\(822\) −19.1426 −0.667676
\(823\) −3.33724 −0.116329 −0.0581645 0.998307i \(-0.518525\pi\)
−0.0581645 + 0.998307i \(0.518525\pi\)
\(824\) 8.88977 0.309690
\(825\) 3.37348 0.117450
\(826\) 0 0
\(827\) 8.40144 0.292147 0.146073 0.989274i \(-0.453336\pi\)
0.146073 + 0.989274i \(0.453336\pi\)
\(828\) 17.9398 0.623451
\(829\) 47.5492 1.65145 0.825726 0.564072i \(-0.190766\pi\)
0.825726 + 0.564072i \(0.190766\pi\)
\(830\) −51.9070 −1.80172
\(831\) 4.12271 0.143015
\(832\) 10.8634 0.376620
\(833\) 0 0
\(834\) 34.8553 1.20694
\(835\) −4.80371 −0.166239
\(836\) −17.8753 −0.618232
\(837\) 27.7504 0.959194
\(838\) 14.4834 0.500322
\(839\) −32.1450 −1.10977 −0.554884 0.831927i \(-0.687238\pi\)
−0.554884 + 0.831927i \(0.687238\pi\)
\(840\) 0 0
\(841\) 26.3206 0.907606
\(842\) 61.5949 2.12270
\(843\) 28.2183 0.971891
\(844\) −10.7400 −0.369684
\(845\) 8.48330 0.291834
\(846\) −10.2701 −0.353094
\(847\) 0 0
\(848\) −51.7556 −1.77730
\(849\) −26.8523 −0.921567
\(850\) 15.2028 0.521453
\(851\) 32.0153 1.09747
\(852\) 26.5047 0.908035
\(853\) 29.3210 1.00393 0.501966 0.864887i \(-0.332610\pi\)
0.501966 + 0.864887i \(0.332610\pi\)
\(854\) 0 0
\(855\) −23.9834 −0.820216
\(856\) −8.29911 −0.283658
\(857\) 4.67171 0.159583 0.0797913 0.996812i \(-0.474575\pi\)
0.0797913 + 0.996812i \(0.474575\pi\)
\(858\) 14.2148 0.485284
\(859\) −19.8657 −0.677810 −0.338905 0.940821i \(-0.610056\pi\)
−0.338905 + 0.940821i \(0.610056\pi\)
\(860\) 22.0992 0.753575
\(861\) 0 0
\(862\) 0.973925 0.0331720
\(863\) −51.5715 −1.75552 −0.877758 0.479105i \(-0.840961\pi\)
−0.877758 + 0.479105i \(0.840961\pi\)
\(864\) −37.4126 −1.27280
\(865\) −24.0197 −0.816693
\(866\) 27.3574 0.929644
\(867\) 20.5831 0.699037
\(868\) 0 0
\(869\) 25.1992 0.854825
\(870\) −40.0516 −1.35788
\(871\) −9.72727 −0.329596
\(872\) −1.15283 −0.0390398
\(873\) −1.75410 −0.0593672
\(874\) −74.4599 −2.51865
\(875\) 0 0
\(876\) 23.1405 0.781845
\(877\) −1.55320 −0.0524479 −0.0262240 0.999656i \(-0.508348\pi\)
−0.0262240 + 0.999656i \(0.508348\pi\)
\(878\) 22.0235 0.743256
\(879\) 16.2551 0.548270
\(880\) 25.8212 0.870431
\(881\) 20.5004 0.690676 0.345338 0.938478i \(-0.387764\pi\)
0.345338 + 0.938478i \(0.387764\pi\)
\(882\) 0 0
\(883\) 0.206988 0.00696572 0.00348286 0.999994i \(-0.498891\pi\)
0.00348286 + 0.999994i \(0.498891\pi\)
\(884\) 27.3111 0.918571
\(885\) 33.8005 1.13619
\(886\) −8.33784 −0.280115
\(887\) −7.01790 −0.235638 −0.117819 0.993035i \(-0.537590\pi\)
−0.117819 + 0.993035i \(0.537590\pi\)
\(888\) −4.92636 −0.165318
\(889\) 0 0
\(890\) −25.8406 −0.866180
\(891\) −2.22997 −0.0747067
\(892\) 2.95876 0.0990665
\(893\) 18.1733 0.608147
\(894\) −44.8589 −1.50031
\(895\) −24.0993 −0.805551
\(896\) 0 0
\(897\) 25.2441 0.842877
\(898\) −4.08668 −0.136374
\(899\) 38.4865 1.28360
\(900\) −3.46734 −0.115578
\(901\) −64.2988 −2.14210
\(902\) −24.3520 −0.810832
\(903\) 0 0
\(904\) −1.19701 −0.0398119
\(905\) 55.4043 1.84170
\(906\) 41.9655 1.39421
\(907\) 48.5183 1.61102 0.805512 0.592579i \(-0.201890\pi\)
0.805512 + 0.592579i \(0.201890\pi\)
\(908\) −2.75326 −0.0913703
\(909\) 22.1270 0.733905
\(910\) 0 0
\(911\) −37.7847 −1.25186 −0.625931 0.779878i \(-0.715281\pi\)
−0.625931 + 0.779878i \(0.715281\pi\)
\(912\) 30.4780 1.00923
\(913\) −23.6350 −0.782204
\(914\) 72.9455 2.41282
\(915\) −13.1918 −0.436107
\(916\) 6.00474 0.198402
\(917\) 0 0
\(918\) −59.2593 −1.95585
\(919\) −30.8794 −1.01862 −0.509309 0.860584i \(-0.670099\pi\)
−0.509309 + 0.860584i \(0.670099\pi\)
\(920\) 17.2386 0.568340
\(921\) 2.78631 0.0918120
\(922\) 43.9970 1.44896
\(923\) −48.4754 −1.59559
\(924\) 0 0
\(925\) −6.18780 −0.203454
\(926\) −22.0691 −0.725237
\(927\) −15.7163 −0.516190
\(928\) −51.8869 −1.70327
\(929\) 38.4148 1.26035 0.630174 0.776454i \(-0.282984\pi\)
0.630174 + 0.776454i \(0.282984\pi\)
\(930\) −27.8639 −0.913695
\(931\) 0 0
\(932\) 19.8955 0.651699
\(933\) 16.2739 0.532784
\(934\) 30.9537 1.01284
\(935\) 32.0790 1.04910
\(936\) 5.04876 0.165024
\(937\) −9.54026 −0.311667 −0.155833 0.987783i \(-0.549806\pi\)
−0.155833 + 0.987783i \(0.549806\pi\)
\(938\) 0 0
\(939\) −1.16408 −0.0379882
\(940\) 12.1755 0.397120
\(941\) 45.4254 1.48082 0.740412 0.672153i \(-0.234630\pi\)
0.740412 + 0.672153i \(0.234630\pi\)
\(942\) 18.3114 0.596619
\(943\) −43.2469 −1.40831
\(944\) 55.8282 1.81705
\(945\) 0 0
\(946\) 23.6022 0.767374
\(947\) −4.47693 −0.145481 −0.0727403 0.997351i \(-0.523174\pi\)
−0.0727403 + 0.997351i \(0.523174\pi\)
\(948\) 19.9273 0.647210
\(949\) −42.3225 −1.37385
\(950\) 14.3913 0.466917
\(951\) −30.5080 −0.989291
\(952\) 0 0
\(953\) −29.6135 −0.959274 −0.479637 0.877467i \(-0.659232\pi\)
−0.479637 + 0.877467i \(0.659232\pi\)
\(954\) 34.3971 1.11365
\(955\) 52.7388 1.70659
\(956\) −8.08491 −0.261485
\(957\) −18.2369 −0.589514
\(958\) 42.3675 1.36883
\(959\) 0 0
\(960\) 10.0904 0.325667
\(961\) −4.22491 −0.136287
\(962\) −26.0734 −0.840640
\(963\) 14.6720 0.472800
\(964\) 39.2424 1.26391
\(965\) 37.5036 1.20728
\(966\) 0 0
\(967\) 53.1670 1.70974 0.854868 0.518846i \(-0.173638\pi\)
0.854868 + 0.518846i \(0.173638\pi\)
\(968\) −6.12964 −0.197014
\(969\) 37.8644 1.21638
\(970\) 4.87765 0.156612
\(971\) −4.77380 −0.153199 −0.0765993 0.997062i \(-0.524406\pi\)
−0.0765993 + 0.997062i \(0.524406\pi\)
\(972\) 22.1505 0.710477
\(973\) 0 0
\(974\) 40.8318 1.30834
\(975\) −4.87909 −0.156256
\(976\) −21.7889 −0.697444
\(977\) 20.3191 0.650065 0.325033 0.945703i \(-0.394625\pi\)
0.325033 + 0.945703i \(0.394625\pi\)
\(978\) 16.4839 0.527096
\(979\) −11.7661 −0.376046
\(980\) 0 0
\(981\) 2.03810 0.0650714
\(982\) −75.8993 −2.42205
\(983\) 2.20607 0.0703627 0.0351813 0.999381i \(-0.488799\pi\)
0.0351813 + 0.999381i \(0.488799\pi\)
\(984\) 6.65462 0.212142
\(985\) −34.5784 −1.10176
\(986\) −82.1858 −2.61733
\(987\) 0 0
\(988\) 25.8533 0.822502
\(989\) 41.9154 1.33283
\(990\) −17.1609 −0.545409
\(991\) 10.5849 0.336242 0.168121 0.985766i \(-0.446230\pi\)
0.168121 + 0.985766i \(0.446230\pi\)
\(992\) −36.0977 −1.14610
\(993\) 3.66677 0.116362
\(994\) 0 0
\(995\) 44.8839 1.42291
\(996\) −18.6904 −0.592227
\(997\) −29.5991 −0.937413 −0.468706 0.883354i \(-0.655280\pi\)
−0.468706 + 0.883354i \(0.655280\pi\)
\(998\) −28.7961 −0.911524
\(999\) 24.1195 0.763108
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.l.1.3 20
7.6 odd 2 889.2.a.d.1.3 20
21.20 even 2 8001.2.a.w.1.18 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.d.1.3 20 7.6 odd 2
6223.2.a.l.1.3 20 1.1 even 1 trivial
8001.2.a.w.1.18 20 21.20 even 2