Properties

Label 6223.2.a.k.1.16
Level $6223$
Weight $2$
Character 6223.1
Self dual yes
Analytic conductor $49.691$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6223,2,Mod(1,6223)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6223.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6223 = 7^{2} \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6223.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-2,4,12,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.6909051778\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} - 20 x^{14} + 38 x^{13} + 155 x^{12} - 275 x^{11} - 593 x^{10} + 957 x^{9} + 1177 x^{8} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 889)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(-2.57541\) of defining polynomial
Character \(\chi\) \(=\) 6223.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.57541 q^{2} +1.31654 q^{3} +4.63271 q^{4} +3.61540 q^{5} +3.39062 q^{6} +6.78030 q^{8} -1.26673 q^{9} +9.31112 q^{10} -4.80505 q^{11} +6.09914 q^{12} +3.02226 q^{13} +4.75981 q^{15} +8.19660 q^{16} +5.99473 q^{17} -3.26234 q^{18} -5.27314 q^{19} +16.7491 q^{20} -12.3750 q^{22} +5.63109 q^{23} +8.92653 q^{24} +8.07110 q^{25} +7.78354 q^{26} -5.61731 q^{27} -5.62713 q^{29} +12.2584 q^{30} -4.07939 q^{31} +7.54897 q^{32} -6.32603 q^{33} +15.4389 q^{34} -5.86839 q^{36} +3.58935 q^{37} -13.5805 q^{38} +3.97892 q^{39} +24.5135 q^{40} +9.98794 q^{41} +4.00758 q^{43} -22.2604 q^{44} -4.57973 q^{45} +14.5023 q^{46} +9.98363 q^{47} +10.7911 q^{48} +20.7864 q^{50} +7.89230 q^{51} +14.0013 q^{52} +1.00415 q^{53} -14.4668 q^{54} -17.3722 q^{55} -6.94229 q^{57} -14.4922 q^{58} -2.21412 q^{59} +22.0508 q^{60} -6.57832 q^{61} -10.5061 q^{62} +3.04845 q^{64} +10.9267 q^{65} -16.2921 q^{66} -5.13122 q^{67} +27.7719 q^{68} +7.41354 q^{69} -13.8883 q^{71} -8.58880 q^{72} +10.0400 q^{73} +9.24403 q^{74} +10.6259 q^{75} -24.4290 q^{76} +10.2473 q^{78} -17.1340 q^{79} +29.6340 q^{80} -3.59522 q^{81} +25.7230 q^{82} +5.98037 q^{83} +21.6733 q^{85} +10.3211 q^{86} -7.40834 q^{87} -32.5797 q^{88} -15.9290 q^{89} -11.7947 q^{90} +26.0872 q^{92} -5.37067 q^{93} +25.7119 q^{94} -19.0645 q^{95} +9.93851 q^{96} +16.1200 q^{97} +6.08669 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} + 4 q^{3} + 12 q^{4} + 9 q^{5} + 12 q^{6} - 6 q^{8} + 14 q^{9} + 2 q^{10} - 22 q^{11} + 10 q^{12} + 4 q^{13} - 14 q^{15} + 12 q^{16} + 18 q^{17} - 5 q^{18} + 15 q^{19} + 40 q^{20} - 11 q^{22}+ \cdots - 73 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57541 1.82109 0.910543 0.413414i \(-0.135664\pi\)
0.910543 + 0.413414i \(0.135664\pi\)
\(3\) 1.31654 0.760104 0.380052 0.924965i \(-0.375906\pi\)
0.380052 + 0.924965i \(0.375906\pi\)
\(4\) 4.63271 2.31636
\(5\) 3.61540 1.61686 0.808428 0.588596i \(-0.200319\pi\)
0.808428 + 0.588596i \(0.200319\pi\)
\(6\) 3.39062 1.38421
\(7\) 0 0
\(8\) 6.78030 2.39720
\(9\) −1.26673 −0.422243
\(10\) 9.31112 2.94443
\(11\) −4.80505 −1.44878 −0.724389 0.689392i \(-0.757878\pi\)
−0.724389 + 0.689392i \(0.757878\pi\)
\(12\) 6.09914 1.76067
\(13\) 3.02226 0.838224 0.419112 0.907935i \(-0.362341\pi\)
0.419112 + 0.907935i \(0.362341\pi\)
\(14\) 0 0
\(15\) 4.75981 1.22898
\(16\) 8.19660 2.04915
\(17\) 5.99473 1.45394 0.726968 0.686671i \(-0.240929\pi\)
0.726968 + 0.686671i \(0.240929\pi\)
\(18\) −3.26234 −0.768940
\(19\) −5.27314 −1.20974 −0.604871 0.796324i \(-0.706775\pi\)
−0.604871 + 0.796324i \(0.706775\pi\)
\(20\) 16.7491 3.74521
\(21\) 0 0
\(22\) −12.3750 −2.63835
\(23\) 5.63109 1.17416 0.587082 0.809528i \(-0.300277\pi\)
0.587082 + 0.809528i \(0.300277\pi\)
\(24\) 8.92653 1.82212
\(25\) 8.07110 1.61422
\(26\) 7.78354 1.52648
\(27\) −5.61731 −1.08105
\(28\) 0 0
\(29\) −5.62713 −1.04493 −0.522466 0.852660i \(-0.674988\pi\)
−0.522466 + 0.852660i \(0.674988\pi\)
\(30\) 12.2584 2.23807
\(31\) −4.07939 −0.732680 −0.366340 0.930481i \(-0.619389\pi\)
−0.366340 + 0.930481i \(0.619389\pi\)
\(32\) 7.54897 1.33448
\(33\) −6.32603 −1.10122
\(34\) 15.4389 2.64774
\(35\) 0 0
\(36\) −5.86839 −0.978065
\(37\) 3.58935 0.590085 0.295043 0.955484i \(-0.404666\pi\)
0.295043 + 0.955484i \(0.404666\pi\)
\(38\) −13.5805 −2.20304
\(39\) 3.97892 0.637137
\(40\) 24.5135 3.87592
\(41\) 9.98794 1.55985 0.779927 0.625870i \(-0.215256\pi\)
0.779927 + 0.625870i \(0.215256\pi\)
\(42\) 0 0
\(43\) 4.00758 0.611150 0.305575 0.952168i \(-0.401151\pi\)
0.305575 + 0.952168i \(0.401151\pi\)
\(44\) −22.2604 −3.35588
\(45\) −4.57973 −0.682705
\(46\) 14.5023 2.13825
\(47\) 9.98363 1.45626 0.728131 0.685438i \(-0.240389\pi\)
0.728131 + 0.685438i \(0.240389\pi\)
\(48\) 10.7911 1.55757
\(49\) 0 0
\(50\) 20.7864 2.93964
\(51\) 7.89230 1.10514
\(52\) 14.0013 1.94163
\(53\) 1.00415 0.137931 0.0689655 0.997619i \(-0.478030\pi\)
0.0689655 + 0.997619i \(0.478030\pi\)
\(54\) −14.4668 −1.96869
\(55\) −17.3722 −2.34246
\(56\) 0 0
\(57\) −6.94229 −0.919529
\(58\) −14.4922 −1.90291
\(59\) −2.21412 −0.288254 −0.144127 0.989559i \(-0.546037\pi\)
−0.144127 + 0.989559i \(0.546037\pi\)
\(60\) 22.0508 2.84675
\(61\) −6.57832 −0.842267 −0.421133 0.906999i \(-0.638368\pi\)
−0.421133 + 0.906999i \(0.638368\pi\)
\(62\) −10.5061 −1.33427
\(63\) 0 0
\(64\) 3.04845 0.381056
\(65\) 10.9267 1.35529
\(66\) −16.2921 −2.00542
\(67\) −5.13122 −0.626879 −0.313439 0.949608i \(-0.601481\pi\)
−0.313439 + 0.949608i \(0.601481\pi\)
\(68\) 27.7719 3.36784
\(69\) 7.41354 0.892485
\(70\) 0 0
\(71\) −13.8883 −1.64824 −0.824121 0.566414i \(-0.808330\pi\)
−0.824121 + 0.566414i \(0.808330\pi\)
\(72\) −8.58880 −1.01220
\(73\) 10.0400 1.17509 0.587544 0.809192i \(-0.300095\pi\)
0.587544 + 0.809192i \(0.300095\pi\)
\(74\) 9.24403 1.07460
\(75\) 10.6259 1.22697
\(76\) −24.4290 −2.80219
\(77\) 0 0
\(78\) 10.2473 1.16028
\(79\) −17.1340 −1.92772 −0.963861 0.266405i \(-0.914164\pi\)
−0.963861 + 0.266405i \(0.914164\pi\)
\(80\) 29.6340 3.31318
\(81\) −3.59522 −0.399468
\(82\) 25.7230 2.84063
\(83\) 5.98037 0.656431 0.328216 0.944603i \(-0.393553\pi\)
0.328216 + 0.944603i \(0.393553\pi\)
\(84\) 0 0
\(85\) 21.6733 2.35080
\(86\) 10.3211 1.11296
\(87\) −7.40834 −0.794257
\(88\) −32.5797 −3.47301
\(89\) −15.9290 −1.68847 −0.844237 0.535970i \(-0.819946\pi\)
−0.844237 + 0.535970i \(0.819946\pi\)
\(90\) −11.7947 −1.24327
\(91\) 0 0
\(92\) 26.0872 2.71978
\(93\) −5.37067 −0.556913
\(94\) 25.7119 2.65198
\(95\) −19.0645 −1.95598
\(96\) 9.93851 1.01434
\(97\) 16.1200 1.63673 0.818367 0.574695i \(-0.194879\pi\)
0.818367 + 0.574695i \(0.194879\pi\)
\(98\) 0 0
\(99\) 6.08669 0.611736
\(100\) 37.3911 3.73911
\(101\) −15.0825 −1.50077 −0.750385 0.661001i \(-0.770132\pi\)
−0.750385 + 0.661001i \(0.770132\pi\)
\(102\) 20.3259 2.01256
\(103\) −13.8383 −1.36353 −0.681764 0.731572i \(-0.738787\pi\)
−0.681764 + 0.731572i \(0.738787\pi\)
\(104\) 20.4918 2.00939
\(105\) 0 0
\(106\) 2.58610 0.251184
\(107\) 14.4768 1.39952 0.699761 0.714377i \(-0.253290\pi\)
0.699761 + 0.714377i \(0.253290\pi\)
\(108\) −26.0234 −2.50410
\(109\) 5.17787 0.495950 0.247975 0.968766i \(-0.420235\pi\)
0.247975 + 0.968766i \(0.420235\pi\)
\(110\) −44.7404 −4.26583
\(111\) 4.72551 0.448526
\(112\) 0 0
\(113\) −2.17656 −0.204753 −0.102377 0.994746i \(-0.532645\pi\)
−0.102377 + 0.994746i \(0.532645\pi\)
\(114\) −17.8792 −1.67454
\(115\) 20.3586 1.89845
\(116\) −26.0689 −2.42044
\(117\) −3.82838 −0.353934
\(118\) −5.70227 −0.524936
\(119\) 0 0
\(120\) 32.2729 2.94610
\(121\) 12.0885 1.09896
\(122\) −16.9418 −1.53384
\(123\) 13.1495 1.18565
\(124\) −18.8986 −1.69715
\(125\) 11.1033 0.993105
\(126\) 0 0
\(127\) −1.00000 −0.0887357
\(128\) −7.24694 −0.640545
\(129\) 5.27613 0.464537
\(130\) 28.1406 2.46809
\(131\) −1.35652 −0.118520 −0.0592598 0.998243i \(-0.518874\pi\)
−0.0592598 + 0.998243i \(0.518874\pi\)
\(132\) −29.3067 −2.55082
\(133\) 0 0
\(134\) −13.2150 −1.14160
\(135\) −20.3088 −1.74790
\(136\) 40.6461 3.48538
\(137\) 7.96241 0.680274 0.340137 0.940376i \(-0.389526\pi\)
0.340137 + 0.940376i \(0.389526\pi\)
\(138\) 19.0929 1.62529
\(139\) −3.78746 −0.321248 −0.160624 0.987016i \(-0.551351\pi\)
−0.160624 + 0.987016i \(0.551351\pi\)
\(140\) 0 0
\(141\) 13.1438 1.10691
\(142\) −35.7681 −3.00159
\(143\) −14.5221 −1.21440
\(144\) −10.3829 −0.865239
\(145\) −20.3443 −1.68950
\(146\) 25.8570 2.13994
\(147\) 0 0
\(148\) 16.6284 1.36685
\(149\) −10.5322 −0.862835 −0.431417 0.902152i \(-0.641986\pi\)
−0.431417 + 0.902152i \(0.641986\pi\)
\(150\) 27.3660 2.23443
\(151\) −8.21168 −0.668257 −0.334128 0.942528i \(-0.608442\pi\)
−0.334128 + 0.942528i \(0.608442\pi\)
\(152\) −35.7535 −2.89999
\(153\) −7.59370 −0.613914
\(154\) 0 0
\(155\) −14.7486 −1.18464
\(156\) 18.4332 1.47584
\(157\) −4.22460 −0.337160 −0.168580 0.985688i \(-0.553918\pi\)
−0.168580 + 0.985688i \(0.553918\pi\)
\(158\) −44.1269 −3.51055
\(159\) 1.32200 0.104842
\(160\) 27.2925 2.15766
\(161\) 0 0
\(162\) −9.25914 −0.727467
\(163\) 0.350024 0.0274160 0.0137080 0.999906i \(-0.495636\pi\)
0.0137080 + 0.999906i \(0.495636\pi\)
\(164\) 46.2713 3.61318
\(165\) −22.8711 −1.78051
\(166\) 15.4019 1.19542
\(167\) −0.955076 −0.0739060 −0.0369530 0.999317i \(-0.511765\pi\)
−0.0369530 + 0.999317i \(0.511765\pi\)
\(168\) 0 0
\(169\) −3.86595 −0.297381
\(170\) 55.8177 4.28102
\(171\) 6.67964 0.510805
\(172\) 18.5660 1.41564
\(173\) 6.62247 0.503497 0.251749 0.967793i \(-0.418994\pi\)
0.251749 + 0.967793i \(0.418994\pi\)
\(174\) −19.0795 −1.44641
\(175\) 0 0
\(176\) −39.3851 −2.96876
\(177\) −2.91498 −0.219103
\(178\) −41.0237 −3.07486
\(179\) −12.6159 −0.942958 −0.471479 0.881877i \(-0.656280\pi\)
−0.471479 + 0.881877i \(0.656280\pi\)
\(180\) −21.2166 −1.58139
\(181\) 11.9530 0.888460 0.444230 0.895913i \(-0.353477\pi\)
0.444230 + 0.895913i \(0.353477\pi\)
\(182\) 0 0
\(183\) −8.66060 −0.640210
\(184\) 38.1805 2.81470
\(185\) 12.9769 0.954082
\(186\) −13.8317 −1.01419
\(187\) −28.8050 −2.10643
\(188\) 46.2513 3.37322
\(189\) 0 0
\(190\) −49.0988 −3.56200
\(191\) −21.1585 −1.53098 −0.765489 0.643449i \(-0.777503\pi\)
−0.765489 + 0.643449i \(0.777503\pi\)
\(192\) 4.01340 0.289642
\(193\) −20.2465 −1.45737 −0.728686 0.684848i \(-0.759869\pi\)
−0.728686 + 0.684848i \(0.759869\pi\)
\(194\) 41.5155 2.98064
\(195\) 14.3854 1.03016
\(196\) 0 0
\(197\) 7.09872 0.505763 0.252881 0.967497i \(-0.418622\pi\)
0.252881 + 0.967497i \(0.418622\pi\)
\(198\) 15.6757 1.11402
\(199\) 16.6871 1.18292 0.591458 0.806336i \(-0.298553\pi\)
0.591458 + 0.806336i \(0.298553\pi\)
\(200\) 54.7245 3.86961
\(201\) −6.75545 −0.476493
\(202\) −38.8437 −2.73303
\(203\) 0 0
\(204\) 36.5627 2.55990
\(205\) 36.1104 2.52206
\(206\) −35.6392 −2.48310
\(207\) −7.13306 −0.495782
\(208\) 24.7723 1.71765
\(209\) 25.3377 1.75265
\(210\) 0 0
\(211\) 17.6748 1.21678 0.608391 0.793637i \(-0.291815\pi\)
0.608391 + 0.793637i \(0.291815\pi\)
\(212\) 4.65195 0.319497
\(213\) −18.2845 −1.25283
\(214\) 37.2835 2.54865
\(215\) 14.4890 0.988141
\(216\) −38.0871 −2.59150
\(217\) 0 0
\(218\) 13.3351 0.903167
\(219\) 13.2180 0.893189
\(220\) −80.4803 −5.42598
\(221\) 18.1176 1.21872
\(222\) 12.1701 0.816804
\(223\) −2.34873 −0.157283 −0.0786414 0.996903i \(-0.525058\pi\)
−0.0786414 + 0.996903i \(0.525058\pi\)
\(224\) 0 0
\(225\) −10.2239 −0.681593
\(226\) −5.60551 −0.372873
\(227\) −8.80210 −0.584216 −0.292108 0.956385i \(-0.594357\pi\)
−0.292108 + 0.956385i \(0.594357\pi\)
\(228\) −32.1616 −2.12996
\(229\) 0.995190 0.0657640 0.0328820 0.999459i \(-0.489531\pi\)
0.0328820 + 0.999459i \(0.489531\pi\)
\(230\) 52.4317 3.45724
\(231\) 0 0
\(232\) −38.1537 −2.50491
\(233\) −16.8582 −1.10442 −0.552209 0.833706i \(-0.686215\pi\)
−0.552209 + 0.833706i \(0.686215\pi\)
\(234\) −9.85963 −0.644544
\(235\) 36.0948 2.35456
\(236\) −10.2574 −0.667700
\(237\) −22.5575 −1.46527
\(238\) 0 0
\(239\) −5.12666 −0.331616 −0.165808 0.986158i \(-0.553023\pi\)
−0.165808 + 0.986158i \(0.553023\pi\)
\(240\) 39.0143 2.51836
\(241\) −8.86855 −0.571273 −0.285637 0.958338i \(-0.592205\pi\)
−0.285637 + 0.958338i \(0.592205\pi\)
\(242\) 31.1328 2.00129
\(243\) 12.1187 0.777414
\(244\) −30.4754 −1.95099
\(245\) 0 0
\(246\) 33.8653 2.15917
\(247\) −15.9368 −1.01403
\(248\) −27.6595 −1.75638
\(249\) 7.87339 0.498956
\(250\) 28.5954 1.80853
\(251\) 8.12236 0.512679 0.256339 0.966587i \(-0.417484\pi\)
0.256339 + 0.966587i \(0.417484\pi\)
\(252\) 0 0
\(253\) −27.0577 −1.70110
\(254\) −2.57541 −0.161595
\(255\) 28.5338 1.78686
\(256\) −24.7607 −1.54754
\(257\) −23.4193 −1.46086 −0.730429 0.682989i \(-0.760680\pi\)
−0.730429 + 0.682989i \(0.760680\pi\)
\(258\) 13.5882 0.845962
\(259\) 0 0
\(260\) 50.6201 3.13933
\(261\) 7.12805 0.441215
\(262\) −3.49358 −0.215834
\(263\) −8.96856 −0.553025 −0.276513 0.961010i \(-0.589179\pi\)
−0.276513 + 0.961010i \(0.589179\pi\)
\(264\) −42.8924 −2.63985
\(265\) 3.63041 0.223014
\(266\) 0 0
\(267\) −20.9712 −1.28341
\(268\) −23.7715 −1.45207
\(269\) −12.9224 −0.787892 −0.393946 0.919134i \(-0.628890\pi\)
−0.393946 + 0.919134i \(0.628890\pi\)
\(270\) −52.3034 −3.18308
\(271\) 7.70820 0.468240 0.234120 0.972208i \(-0.424779\pi\)
0.234120 + 0.972208i \(0.424779\pi\)
\(272\) 49.1365 2.97934
\(273\) 0 0
\(274\) 20.5064 1.23884
\(275\) −38.7821 −2.33865
\(276\) 34.3448 2.06731
\(277\) −8.26154 −0.496388 −0.248194 0.968710i \(-0.579837\pi\)
−0.248194 + 0.968710i \(0.579837\pi\)
\(278\) −9.75425 −0.585021
\(279\) 5.16748 0.309369
\(280\) 0 0
\(281\) −11.9817 −0.714766 −0.357383 0.933958i \(-0.616331\pi\)
−0.357383 + 0.933958i \(0.616331\pi\)
\(282\) 33.8507 2.01578
\(283\) 5.98073 0.355517 0.177759 0.984074i \(-0.443115\pi\)
0.177759 + 0.984074i \(0.443115\pi\)
\(284\) −64.3407 −3.81792
\(285\) −25.0991 −1.48675
\(286\) −37.4003 −2.21153
\(287\) 0 0
\(288\) −9.56249 −0.563475
\(289\) 18.9368 1.11393
\(290\) −52.3949 −3.07673
\(291\) 21.2226 1.24409
\(292\) 46.5123 2.72192
\(293\) −9.49311 −0.554593 −0.277297 0.960784i \(-0.589439\pi\)
−0.277297 + 0.960784i \(0.589439\pi\)
\(294\) 0 0
\(295\) −8.00494 −0.466066
\(296\) 24.3369 1.41455
\(297\) 26.9915 1.56620
\(298\) −27.1248 −1.57130
\(299\) 17.0186 0.984212
\(300\) 49.2268 2.84211
\(301\) 0 0
\(302\) −21.1484 −1.21695
\(303\) −19.8567 −1.14074
\(304\) −43.2219 −2.47894
\(305\) −23.7832 −1.36182
\(306\) −19.5569 −1.11799
\(307\) 20.3886 1.16364 0.581820 0.813318i \(-0.302341\pi\)
0.581820 + 0.813318i \(0.302341\pi\)
\(308\) 0 0
\(309\) −18.2186 −1.03642
\(310\) −37.9837 −2.15733
\(311\) −13.4256 −0.761298 −0.380649 0.924720i \(-0.624299\pi\)
−0.380649 + 0.924720i \(0.624299\pi\)
\(312\) 26.9783 1.52734
\(313\) 8.23860 0.465673 0.232837 0.972516i \(-0.425199\pi\)
0.232837 + 0.972516i \(0.425199\pi\)
\(314\) −10.8801 −0.613997
\(315\) 0 0
\(316\) −79.3768 −4.46529
\(317\) 18.9347 1.06348 0.531739 0.846908i \(-0.321539\pi\)
0.531739 + 0.846908i \(0.321539\pi\)
\(318\) 3.40470 0.190926
\(319\) 27.0387 1.51387
\(320\) 11.0214 0.616113
\(321\) 19.0592 1.06378
\(322\) 0 0
\(323\) −31.6111 −1.75889
\(324\) −16.6556 −0.925311
\(325\) 24.3930 1.35308
\(326\) 0.901455 0.0499270
\(327\) 6.81686 0.376973
\(328\) 67.7213 3.73928
\(329\) 0 0
\(330\) −58.9024 −3.24247
\(331\) 10.9260 0.600547 0.300274 0.953853i \(-0.402922\pi\)
0.300274 + 0.953853i \(0.402922\pi\)
\(332\) 27.7054 1.52053
\(333\) −4.54673 −0.249159
\(334\) −2.45971 −0.134589
\(335\) −18.5514 −1.01357
\(336\) 0 0
\(337\) 19.2079 1.04632 0.523162 0.852233i \(-0.324752\pi\)
0.523162 + 0.852233i \(0.324752\pi\)
\(338\) −9.95638 −0.541556
\(339\) −2.86552 −0.155634
\(340\) 100.406 5.44530
\(341\) 19.6017 1.06149
\(342\) 17.2028 0.930219
\(343\) 0 0
\(344\) 27.1726 1.46505
\(345\) 26.8029 1.44302
\(346\) 17.0555 0.916912
\(347\) 2.30435 0.123704 0.0618519 0.998085i \(-0.480299\pi\)
0.0618519 + 0.998085i \(0.480299\pi\)
\(348\) −34.3207 −1.83978
\(349\) 10.0945 0.540347 0.270173 0.962812i \(-0.412919\pi\)
0.270173 + 0.962812i \(0.412919\pi\)
\(350\) 0 0
\(351\) −16.9770 −0.906163
\(352\) −36.2732 −1.93337
\(353\) 20.0098 1.06501 0.532506 0.846426i \(-0.321250\pi\)
0.532506 + 0.846426i \(0.321250\pi\)
\(354\) −7.50725 −0.399006
\(355\) −50.2118 −2.66497
\(356\) −73.7946 −3.91111
\(357\) 0 0
\(358\) −32.4911 −1.71721
\(359\) 24.9914 1.31899 0.659497 0.751707i \(-0.270769\pi\)
0.659497 + 0.751707i \(0.270769\pi\)
\(360\) −31.0519 −1.63658
\(361\) 8.80603 0.463475
\(362\) 30.7838 1.61796
\(363\) 15.9150 0.835320
\(364\) 0 0
\(365\) 36.2985 1.89995
\(366\) −22.3046 −1.16588
\(367\) −37.5916 −1.96226 −0.981132 0.193340i \(-0.938068\pi\)
−0.981132 + 0.193340i \(0.938068\pi\)
\(368\) 46.1558 2.40604
\(369\) −12.6520 −0.658637
\(370\) 33.4208 1.73747
\(371\) 0 0
\(372\) −24.8808 −1.29001
\(373\) 21.3793 1.10698 0.553489 0.832856i \(-0.313296\pi\)
0.553489 + 0.832856i \(0.313296\pi\)
\(374\) −74.1846 −3.83599
\(375\) 14.6179 0.754863
\(376\) 67.6920 3.49095
\(377\) −17.0067 −0.875887
\(378\) 0 0
\(379\) −24.9688 −1.28256 −0.641279 0.767308i \(-0.721596\pi\)
−0.641279 + 0.767308i \(0.721596\pi\)
\(380\) −88.3204 −4.53074
\(381\) −1.31654 −0.0674483
\(382\) −54.4918 −2.78804
\(383\) −21.9425 −1.12121 −0.560605 0.828084i \(-0.689431\pi\)
−0.560605 + 0.828084i \(0.689431\pi\)
\(384\) −9.54087 −0.486881
\(385\) 0 0
\(386\) −52.1428 −2.65400
\(387\) −5.07651 −0.258054
\(388\) 74.6792 3.79126
\(389\) −8.14442 −0.412938 −0.206469 0.978453i \(-0.566197\pi\)
−0.206469 + 0.978453i \(0.566197\pi\)
\(390\) 37.0482 1.87601
\(391\) 33.7569 1.70716
\(392\) 0 0
\(393\) −1.78591 −0.0900871
\(394\) 18.2821 0.921038
\(395\) −61.9461 −3.11685
\(396\) 28.1979 1.41700
\(397\) 24.5214 1.23069 0.615347 0.788257i \(-0.289016\pi\)
0.615347 + 0.788257i \(0.289016\pi\)
\(398\) 42.9760 2.15419
\(399\) 0 0
\(400\) 66.1556 3.30778
\(401\) 17.6974 0.883763 0.441882 0.897073i \(-0.354311\pi\)
0.441882 + 0.897073i \(0.354311\pi\)
\(402\) −17.3980 −0.867734
\(403\) −12.3290 −0.614150
\(404\) −69.8731 −3.47632
\(405\) −12.9981 −0.645883
\(406\) 0 0
\(407\) −17.2470 −0.854902
\(408\) 53.5122 2.64925
\(409\) 3.61653 0.178826 0.0894130 0.995995i \(-0.471501\pi\)
0.0894130 + 0.995995i \(0.471501\pi\)
\(410\) 92.9989 4.59289
\(411\) 10.4828 0.517079
\(412\) −64.1088 −3.15842
\(413\) 0 0
\(414\) −18.3705 −0.902861
\(415\) 21.6214 1.06135
\(416\) 22.8149 1.11859
\(417\) −4.98634 −0.244182
\(418\) 65.2549 3.19172
\(419\) 7.39479 0.361259 0.180630 0.983551i \(-0.442186\pi\)
0.180630 + 0.983551i \(0.442186\pi\)
\(420\) 0 0
\(421\) −14.6420 −0.713608 −0.356804 0.934179i \(-0.616134\pi\)
−0.356804 + 0.934179i \(0.616134\pi\)
\(422\) 45.5197 2.21587
\(423\) −12.6465 −0.614896
\(424\) 6.80846 0.330648
\(425\) 48.3841 2.34697
\(426\) −47.0900 −2.28152
\(427\) 0 0
\(428\) 67.0667 3.24179
\(429\) −19.1189 −0.923070
\(430\) 37.3150 1.79949
\(431\) −20.5154 −0.988194 −0.494097 0.869407i \(-0.664501\pi\)
−0.494097 + 0.869407i \(0.664501\pi\)
\(432\) −46.0429 −2.21524
\(433\) −15.2805 −0.734333 −0.367167 0.930155i \(-0.619672\pi\)
−0.367167 + 0.930155i \(0.619672\pi\)
\(434\) 0 0
\(435\) −26.7841 −1.28420
\(436\) 23.9876 1.14880
\(437\) −29.6935 −1.42043
\(438\) 34.0417 1.62657
\(439\) 12.3526 0.589556 0.294778 0.955566i \(-0.404754\pi\)
0.294778 + 0.955566i \(0.404754\pi\)
\(440\) −117.789 −5.61535
\(441\) 0 0
\(442\) 46.6603 2.21940
\(443\) 23.3013 1.10708 0.553540 0.832823i \(-0.313277\pi\)
0.553540 + 0.832823i \(0.313277\pi\)
\(444\) 21.8919 1.03895
\(445\) −57.5898 −2.73002
\(446\) −6.04894 −0.286426
\(447\) −13.8661 −0.655844
\(448\) 0 0
\(449\) 41.9961 1.98192 0.990959 0.134165i \(-0.0428351\pi\)
0.990959 + 0.134165i \(0.0428351\pi\)
\(450\) −26.3307 −1.24124
\(451\) −47.9926 −2.25988
\(452\) −10.0834 −0.474281
\(453\) −10.8110 −0.507944
\(454\) −22.6690 −1.06391
\(455\) 0 0
\(456\) −47.0708 −2.20429
\(457\) 16.9573 0.793231 0.396615 0.917985i \(-0.370185\pi\)
0.396615 + 0.917985i \(0.370185\pi\)
\(458\) 2.56302 0.119762
\(459\) −33.6743 −1.57178
\(460\) 94.3157 4.39749
\(461\) 22.4259 1.04448 0.522239 0.852799i \(-0.325097\pi\)
0.522239 + 0.852799i \(0.325097\pi\)
\(462\) 0 0
\(463\) 4.90815 0.228101 0.114051 0.993475i \(-0.463617\pi\)
0.114051 + 0.993475i \(0.463617\pi\)
\(464\) −46.1234 −2.14122
\(465\) −19.4171 −0.900447
\(466\) −43.4167 −2.01124
\(467\) −10.0412 −0.464654 −0.232327 0.972638i \(-0.574634\pi\)
−0.232327 + 0.972638i \(0.574634\pi\)
\(468\) −17.7358 −0.819837
\(469\) 0 0
\(470\) 92.9587 4.28787
\(471\) −5.56185 −0.256276
\(472\) −15.0124 −0.691003
\(473\) −19.2566 −0.885420
\(474\) −58.0948 −2.66838
\(475\) −42.5601 −1.95279
\(476\) 0 0
\(477\) −1.27199 −0.0582403
\(478\) −13.2032 −0.603901
\(479\) 25.4444 1.16258 0.581291 0.813695i \(-0.302548\pi\)
0.581291 + 0.813695i \(0.302548\pi\)
\(480\) 35.9317 1.64005
\(481\) 10.8479 0.494624
\(482\) −22.8401 −1.04034
\(483\) 0 0
\(484\) 56.0026 2.54557
\(485\) 58.2801 2.64636
\(486\) 31.2105 1.41574
\(487\) 16.0841 0.728839 0.364419 0.931235i \(-0.381267\pi\)
0.364419 + 0.931235i \(0.381267\pi\)
\(488\) −44.6030 −2.01908
\(489\) 0.460820 0.0208390
\(490\) 0 0
\(491\) −28.4648 −1.28460 −0.642300 0.766453i \(-0.722020\pi\)
−0.642300 + 0.766453i \(0.722020\pi\)
\(492\) 60.9179 2.74639
\(493\) −33.7332 −1.51927
\(494\) −41.0437 −1.84664
\(495\) 22.0058 0.989088
\(496\) −33.4372 −1.50137
\(497\) 0 0
\(498\) 20.2772 0.908642
\(499\) 13.5099 0.604786 0.302393 0.953183i \(-0.402214\pi\)
0.302393 + 0.953183i \(0.402214\pi\)
\(500\) 51.4382 2.30039
\(501\) −1.25739 −0.0561762
\(502\) 20.9184 0.933633
\(503\) 20.6323 0.919949 0.459975 0.887932i \(-0.347859\pi\)
0.459975 + 0.887932i \(0.347859\pi\)
\(504\) 0 0
\(505\) −54.5294 −2.42653
\(506\) −69.6845 −3.09785
\(507\) −5.08967 −0.226040
\(508\) −4.63271 −0.205543
\(509\) 1.46524 0.0649456 0.0324728 0.999473i \(-0.489662\pi\)
0.0324728 + 0.999473i \(0.489662\pi\)
\(510\) 73.4861 3.25402
\(511\) 0 0
\(512\) −49.2750 −2.17767
\(513\) 29.6209 1.30779
\(514\) −60.3143 −2.66035
\(515\) −50.0309 −2.20463
\(516\) 24.4428 1.07603
\(517\) −47.9718 −2.10980
\(518\) 0 0
\(519\) 8.71874 0.382710
\(520\) 74.0861 3.24889
\(521\) 15.1230 0.662549 0.331275 0.943534i \(-0.392521\pi\)
0.331275 + 0.943534i \(0.392521\pi\)
\(522\) 18.3576 0.803491
\(523\) 29.7942 1.30281 0.651404 0.758731i \(-0.274180\pi\)
0.651404 + 0.758731i \(0.274180\pi\)
\(524\) −6.28436 −0.274533
\(525\) 0 0
\(526\) −23.0977 −1.00711
\(527\) −24.4549 −1.06527
\(528\) −51.8520 −2.25657
\(529\) 8.70915 0.378659
\(530\) 9.34978 0.406128
\(531\) 2.80469 0.121713
\(532\) 0 0
\(533\) 30.1862 1.30751
\(534\) −54.0093 −2.33721
\(535\) 52.3392 2.26282
\(536\) −34.7912 −1.50275
\(537\) −16.6093 −0.716745
\(538\) −33.2804 −1.43482
\(539\) 0 0
\(540\) −94.0849 −4.04877
\(541\) −9.71401 −0.417638 −0.208819 0.977954i \(-0.566962\pi\)
−0.208819 + 0.977954i \(0.566962\pi\)
\(542\) 19.8517 0.852705
\(543\) 15.7366 0.675321
\(544\) 45.2541 1.94025
\(545\) 18.7200 0.801879
\(546\) 0 0
\(547\) 10.6353 0.454732 0.227366 0.973809i \(-0.426989\pi\)
0.227366 + 0.973809i \(0.426989\pi\)
\(548\) 36.8876 1.57576
\(549\) 8.33294 0.355641
\(550\) −99.8795 −4.25888
\(551\) 29.6727 1.26410
\(552\) 50.2661 2.13947
\(553\) 0 0
\(554\) −21.2768 −0.903966
\(555\) 17.0846 0.725201
\(556\) −17.5462 −0.744125
\(557\) 8.26750 0.350305 0.175153 0.984541i \(-0.443958\pi\)
0.175153 + 0.984541i \(0.443958\pi\)
\(558\) 13.3084 0.563388
\(559\) 12.1119 0.512280
\(560\) 0 0
\(561\) −37.9229 −1.60111
\(562\) −30.8576 −1.30165
\(563\) 19.6229 0.827008 0.413504 0.910502i \(-0.364305\pi\)
0.413504 + 0.910502i \(0.364305\pi\)
\(564\) 60.8916 2.56400
\(565\) −7.86912 −0.331056
\(566\) 15.4028 0.647428
\(567\) 0 0
\(568\) −94.1671 −3.95116
\(569\) 36.0303 1.51047 0.755235 0.655454i \(-0.227523\pi\)
0.755235 + 0.655454i \(0.227523\pi\)
\(570\) −64.6405 −2.70749
\(571\) 21.8466 0.914250 0.457125 0.889402i \(-0.348879\pi\)
0.457125 + 0.889402i \(0.348879\pi\)
\(572\) −67.2768 −2.81298
\(573\) −27.8560 −1.16370
\(574\) 0 0
\(575\) 45.4491 1.89536
\(576\) −3.86156 −0.160898
\(577\) 19.8478 0.826274 0.413137 0.910669i \(-0.364433\pi\)
0.413137 + 0.910669i \(0.364433\pi\)
\(578\) 48.7700 2.02857
\(579\) −26.6552 −1.10775
\(580\) −94.2494 −3.91349
\(581\) 0 0
\(582\) 54.6567 2.26559
\(583\) −4.82500 −0.199831
\(584\) 68.0740 2.81692
\(585\) −13.8411 −0.572260
\(586\) −24.4486 −1.00996
\(587\) −2.95082 −0.121793 −0.0608966 0.998144i \(-0.519396\pi\)
−0.0608966 + 0.998144i \(0.519396\pi\)
\(588\) 0 0
\(589\) 21.5112 0.886354
\(590\) −20.6160 −0.848746
\(591\) 9.34573 0.384432
\(592\) 29.4205 1.20917
\(593\) 16.6183 0.682432 0.341216 0.939985i \(-0.389161\pi\)
0.341216 + 0.939985i \(0.389161\pi\)
\(594\) 69.5139 2.85219
\(595\) 0 0
\(596\) −48.7929 −1.99863
\(597\) 21.9692 0.899139
\(598\) 43.8298 1.79233
\(599\) −38.1190 −1.55750 −0.778749 0.627335i \(-0.784146\pi\)
−0.778749 + 0.627335i \(0.784146\pi\)
\(600\) 72.0469 2.94130
\(601\) −23.5289 −0.959763 −0.479881 0.877333i \(-0.659320\pi\)
−0.479881 + 0.877333i \(0.659320\pi\)
\(602\) 0 0
\(603\) 6.49986 0.264695
\(604\) −38.0423 −1.54792
\(605\) 43.7048 1.77685
\(606\) −51.1392 −2.07739
\(607\) 24.9940 1.01448 0.507239 0.861806i \(-0.330666\pi\)
0.507239 + 0.861806i \(0.330666\pi\)
\(608\) −39.8068 −1.61438
\(609\) 0 0
\(610\) −61.2514 −2.48000
\(611\) 30.1731 1.22067
\(612\) −35.1794 −1.42204
\(613\) −24.4873 −0.989033 −0.494516 0.869168i \(-0.664655\pi\)
−0.494516 + 0.869168i \(0.664655\pi\)
\(614\) 52.5089 2.11909
\(615\) 47.5407 1.91703
\(616\) 0 0
\(617\) 25.5183 1.02733 0.513664 0.857992i \(-0.328288\pi\)
0.513664 + 0.857992i \(0.328288\pi\)
\(618\) −46.9204 −1.88741
\(619\) 8.02886 0.322707 0.161354 0.986897i \(-0.448414\pi\)
0.161354 + 0.986897i \(0.448414\pi\)
\(620\) −68.3261 −2.74404
\(621\) −31.6316 −1.26933
\(622\) −34.5764 −1.38639
\(623\) 0 0
\(624\) 32.6136 1.30559
\(625\) −0.212826 −0.00851305
\(626\) 21.2177 0.848031
\(627\) 33.3581 1.33219
\(628\) −19.5714 −0.780983
\(629\) 21.5172 0.857947
\(630\) 0 0
\(631\) 14.9596 0.595534 0.297767 0.954639i \(-0.403758\pi\)
0.297767 + 0.954639i \(0.403758\pi\)
\(632\) −116.174 −4.62113
\(633\) 23.2695 0.924881
\(634\) 48.7645 1.93669
\(635\) −3.61540 −0.143473
\(636\) 6.12447 0.242851
\(637\) 0 0
\(638\) 69.6355 2.75690
\(639\) 17.5927 0.695958
\(640\) −26.2006 −1.03567
\(641\) 40.7640 1.61008 0.805040 0.593220i \(-0.202144\pi\)
0.805040 + 0.593220i \(0.202144\pi\)
\(642\) 49.0852 1.93724
\(643\) −36.2589 −1.42991 −0.714956 0.699170i \(-0.753553\pi\)
−0.714956 + 0.699170i \(0.753553\pi\)
\(644\) 0 0
\(645\) 19.0753 0.751089
\(646\) −81.4114 −3.20309
\(647\) −2.06513 −0.0811887 −0.0405943 0.999176i \(-0.512925\pi\)
−0.0405943 + 0.999176i \(0.512925\pi\)
\(648\) −24.3767 −0.957606
\(649\) 10.6390 0.417617
\(650\) 62.8218 2.46407
\(651\) 0 0
\(652\) 1.62156 0.0635053
\(653\) 23.6696 0.926263 0.463131 0.886290i \(-0.346726\pi\)
0.463131 + 0.886290i \(0.346726\pi\)
\(654\) 17.5562 0.686501
\(655\) −4.90435 −0.191629
\(656\) 81.8672 3.19638
\(657\) −12.7179 −0.496173
\(658\) 0 0
\(659\) 50.5108 1.96762 0.983812 0.179206i \(-0.0573528\pi\)
0.983812 + 0.179206i \(0.0573528\pi\)
\(660\) −105.955 −4.12431
\(661\) 9.85995 0.383508 0.191754 0.981443i \(-0.438582\pi\)
0.191754 + 0.981443i \(0.438582\pi\)
\(662\) 28.1389 1.09365
\(663\) 23.8526 0.926357
\(664\) 40.5488 1.57360
\(665\) 0 0
\(666\) −11.7097 −0.453740
\(667\) −31.6869 −1.22692
\(668\) −4.42460 −0.171193
\(669\) −3.09220 −0.119551
\(670\) −47.7774 −1.84580
\(671\) 31.6091 1.22026
\(672\) 0 0
\(673\) 33.6849 1.29846 0.649229 0.760593i \(-0.275092\pi\)
0.649229 + 0.760593i \(0.275092\pi\)
\(674\) 49.4683 1.90545
\(675\) −45.3379 −1.74506
\(676\) −17.9098 −0.688840
\(677\) 13.9184 0.534927 0.267464 0.963568i \(-0.413814\pi\)
0.267464 + 0.963568i \(0.413814\pi\)
\(678\) −7.37987 −0.283422
\(679\) 0 0
\(680\) 146.952 5.63535
\(681\) −11.5883 −0.444065
\(682\) 50.4823 1.93307
\(683\) 0.478159 0.0182963 0.00914813 0.999958i \(-0.497088\pi\)
0.00914813 + 0.999958i \(0.497088\pi\)
\(684\) 30.9448 1.18321
\(685\) 28.7873 1.09991
\(686\) 0 0
\(687\) 1.31021 0.0499875
\(688\) 32.8485 1.25234
\(689\) 3.03481 0.115617
\(690\) 69.0283 2.62786
\(691\) 23.8010 0.905435 0.452717 0.891654i \(-0.350455\pi\)
0.452717 + 0.891654i \(0.350455\pi\)
\(692\) 30.6800 1.16628
\(693\) 0 0
\(694\) 5.93463 0.225275
\(695\) −13.6932 −0.519412
\(696\) −50.2308 −1.90399
\(697\) 59.8751 2.26793
\(698\) 25.9974 0.984018
\(699\) −22.1945 −0.839471
\(700\) 0 0
\(701\) 12.3729 0.467320 0.233660 0.972318i \(-0.424930\pi\)
0.233660 + 0.972318i \(0.424930\pi\)
\(702\) −43.7226 −1.65020
\(703\) −18.9271 −0.713851
\(704\) −14.6480 −0.552066
\(705\) 47.5202 1.78971
\(706\) 51.5333 1.93948
\(707\) 0 0
\(708\) −13.5043 −0.507521
\(709\) −6.03901 −0.226800 −0.113400 0.993549i \(-0.536174\pi\)
−0.113400 + 0.993549i \(0.536174\pi\)
\(710\) −129.316 −4.85314
\(711\) 21.7041 0.813967
\(712\) −108.004 −4.04761
\(713\) −22.9714 −0.860286
\(714\) 0 0
\(715\) −52.5032 −1.96351
\(716\) −58.4459 −2.18423
\(717\) −6.74944 −0.252062
\(718\) 64.3629 2.40200
\(719\) −38.8243 −1.44790 −0.723951 0.689852i \(-0.757676\pi\)
−0.723951 + 0.689852i \(0.757676\pi\)
\(720\) −37.5382 −1.39897
\(721\) 0 0
\(722\) 22.6791 0.844029
\(723\) −11.6758 −0.434227
\(724\) 55.3748 2.05799
\(725\) −45.4172 −1.68675
\(726\) 40.9875 1.52119
\(727\) 45.7266 1.69591 0.847953 0.530071i \(-0.177835\pi\)
0.847953 + 0.530071i \(0.177835\pi\)
\(728\) 0 0
\(729\) 26.7404 0.990384
\(730\) 93.4832 3.45997
\(731\) 24.0244 0.888573
\(732\) −40.1221 −1.48295
\(733\) −26.3784 −0.974309 −0.487155 0.873316i \(-0.661965\pi\)
−0.487155 + 0.873316i \(0.661965\pi\)
\(734\) −96.8135 −3.57345
\(735\) 0 0
\(736\) 42.5089 1.56690
\(737\) 24.6558 0.908208
\(738\) −32.5840 −1.19944
\(739\) −44.0186 −1.61925 −0.809625 0.586948i \(-0.800329\pi\)
−0.809625 + 0.586948i \(0.800329\pi\)
\(740\) 60.1184 2.20999
\(741\) −20.9814 −0.770771
\(742\) 0 0
\(743\) −39.6817 −1.45578 −0.727891 0.685693i \(-0.759499\pi\)
−0.727891 + 0.685693i \(0.759499\pi\)
\(744\) −36.4148 −1.33503
\(745\) −38.0782 −1.39508
\(746\) 55.0604 2.01590
\(747\) −7.57551 −0.277173
\(748\) −133.445 −4.87924
\(749\) 0 0
\(750\) 37.6469 1.37467
\(751\) −40.3374 −1.47193 −0.735965 0.677019i \(-0.763271\pi\)
−0.735965 + 0.677019i \(0.763271\pi\)
\(752\) 81.8318 2.98410
\(753\) 10.6934 0.389689
\(754\) −43.7990 −1.59507
\(755\) −29.6885 −1.08047
\(756\) 0 0
\(757\) 31.1435 1.13193 0.565965 0.824429i \(-0.308504\pi\)
0.565965 + 0.824429i \(0.308504\pi\)
\(758\) −64.3047 −2.33565
\(759\) −35.6224 −1.29301
\(760\) −129.263 −4.68887
\(761\) −1.19795 −0.0434255 −0.0217128 0.999764i \(-0.506912\pi\)
−0.0217128 + 0.999764i \(0.506912\pi\)
\(762\) −3.39062 −0.122829
\(763\) 0 0
\(764\) −98.0214 −3.54629
\(765\) −27.4542 −0.992610
\(766\) −56.5108 −2.04182
\(767\) −6.69166 −0.241622
\(768\) −32.5984 −1.17629
\(769\) −9.53802 −0.343950 −0.171975 0.985101i \(-0.555015\pi\)
−0.171975 + 0.985101i \(0.555015\pi\)
\(770\) 0 0
\(771\) −30.8324 −1.11040
\(772\) −93.7960 −3.37579
\(773\) 27.3573 0.983974 0.491987 0.870603i \(-0.336271\pi\)
0.491987 + 0.870603i \(0.336271\pi\)
\(774\) −13.0741 −0.469938
\(775\) −32.9252 −1.18271
\(776\) 109.298 3.92358
\(777\) 0 0
\(778\) −20.9752 −0.751996
\(779\) −52.6678 −1.88702
\(780\) 66.6433 2.38621
\(781\) 66.7341 2.38794
\(782\) 86.9376 3.10888
\(783\) 31.6094 1.12963
\(784\) 0 0
\(785\) −15.2736 −0.545139
\(786\) −4.59944 −0.164056
\(787\) −19.7641 −0.704514 −0.352257 0.935903i \(-0.614586\pi\)
−0.352257 + 0.935903i \(0.614586\pi\)
\(788\) 32.8863 1.17153
\(789\) −11.8074 −0.420356
\(790\) −159.536 −5.67605
\(791\) 0 0
\(792\) 41.2696 1.46645
\(793\) −19.8814 −0.706008
\(794\) 63.1525 2.24120
\(795\) 4.77957 0.169514
\(796\) 77.3065 2.74005
\(797\) 48.1120 1.70422 0.852108 0.523366i \(-0.175324\pi\)
0.852108 + 0.523366i \(0.175324\pi\)
\(798\) 0 0
\(799\) 59.8492 2.11731
\(800\) 60.9285 2.15415
\(801\) 20.1777 0.712946
\(802\) 45.5779 1.60941
\(803\) −48.2425 −1.70244
\(804\) −31.2961 −1.10373
\(805\) 0 0
\(806\) −31.7521 −1.11842
\(807\) −17.0128 −0.598880
\(808\) −102.264 −3.59764
\(809\) −45.1368 −1.58693 −0.793463 0.608618i \(-0.791724\pi\)
−0.793463 + 0.608618i \(0.791724\pi\)
\(810\) −33.4755 −1.17621
\(811\) 44.9022 1.57673 0.788366 0.615207i \(-0.210928\pi\)
0.788366 + 0.615207i \(0.210928\pi\)
\(812\) 0 0
\(813\) 10.1481 0.355911
\(814\) −44.4180 −1.55685
\(815\) 1.26548 0.0443277
\(816\) 64.6900 2.26460
\(817\) −21.1325 −0.739333
\(818\) 9.31403 0.325658
\(819\) 0 0
\(820\) 167.289 5.84199
\(821\) −47.1163 −1.64437 −0.822185 0.569221i \(-0.807245\pi\)
−0.822185 + 0.569221i \(0.807245\pi\)
\(822\) 26.9975 0.941646
\(823\) −3.85102 −0.134238 −0.0671191 0.997745i \(-0.521381\pi\)
−0.0671191 + 0.997745i \(0.521381\pi\)
\(824\) −93.8278 −3.26865
\(825\) −51.0580 −1.77761
\(826\) 0 0
\(827\) −3.78077 −0.131470 −0.0657351 0.997837i \(-0.520939\pi\)
−0.0657351 + 0.997837i \(0.520939\pi\)
\(828\) −33.0454 −1.14841
\(829\) 23.5958 0.819518 0.409759 0.912194i \(-0.365613\pi\)
0.409759 + 0.912194i \(0.365613\pi\)
\(830\) 55.6840 1.93282
\(831\) −10.8766 −0.377306
\(832\) 9.21321 0.319411
\(833\) 0 0
\(834\) −12.8418 −0.444676
\(835\) −3.45298 −0.119495
\(836\) 117.382 4.05975
\(837\) 22.9152 0.792065
\(838\) 19.0446 0.657884
\(839\) 25.2441 0.871522 0.435761 0.900062i \(-0.356479\pi\)
0.435761 + 0.900062i \(0.356479\pi\)
\(840\) 0 0
\(841\) 2.66464 0.0918840
\(842\) −37.7091 −1.29954
\(843\) −15.7743 −0.543296
\(844\) 81.8822 2.81850
\(845\) −13.9769 −0.480821
\(846\) −32.5700 −1.11978
\(847\) 0 0
\(848\) 8.23064 0.282641
\(849\) 7.87386 0.270230
\(850\) 124.609 4.27404
\(851\) 20.2119 0.692856
\(852\) −84.7069 −2.90201
\(853\) 1.23491 0.0422826 0.0211413 0.999776i \(-0.493270\pi\)
0.0211413 + 0.999776i \(0.493270\pi\)
\(854\) 0 0
\(855\) 24.1495 0.825897
\(856\) 98.1568 3.35493
\(857\) −21.9609 −0.750169 −0.375085 0.926991i \(-0.622386\pi\)
−0.375085 + 0.926991i \(0.622386\pi\)
\(858\) −49.2389 −1.68099
\(859\) −17.3623 −0.592395 −0.296197 0.955127i \(-0.595719\pi\)
−0.296197 + 0.955127i \(0.595719\pi\)
\(860\) 67.1233 2.28889
\(861\) 0 0
\(862\) −52.8356 −1.79959
\(863\) 47.6552 1.62220 0.811102 0.584905i \(-0.198868\pi\)
0.811102 + 0.584905i \(0.198868\pi\)
\(864\) −42.4049 −1.44264
\(865\) 23.9429 0.814082
\(866\) −39.3535 −1.33728
\(867\) 24.9311 0.846703
\(868\) 0 0
\(869\) 82.3296 2.79284
\(870\) −68.9799 −2.33864
\(871\) −15.5079 −0.525465
\(872\) 35.1075 1.18889
\(873\) −20.4196 −0.691099
\(874\) −76.4729 −2.58673
\(875\) 0 0
\(876\) 61.2352 2.06894
\(877\) 38.2044 1.29007 0.645035 0.764153i \(-0.276843\pi\)
0.645035 + 0.764153i \(0.276843\pi\)
\(878\) 31.8129 1.07363
\(879\) −12.4980 −0.421548
\(880\) −142.393 −4.80006
\(881\) −19.8672 −0.669342 −0.334671 0.942335i \(-0.608625\pi\)
−0.334671 + 0.942335i \(0.608625\pi\)
\(882\) 0 0
\(883\) 9.70573 0.326624 0.163312 0.986574i \(-0.447782\pi\)
0.163312 + 0.986574i \(0.447782\pi\)
\(884\) 83.9338 2.82300
\(885\) −10.5388 −0.354258
\(886\) 60.0104 2.01609
\(887\) 44.4765 1.49338 0.746688 0.665175i \(-0.231643\pi\)
0.746688 + 0.665175i \(0.231643\pi\)
\(888\) 32.0404 1.07521
\(889\) 0 0
\(890\) −148.317 −4.97160
\(891\) 17.2752 0.578741
\(892\) −10.8810 −0.364323
\(893\) −52.6451 −1.76170
\(894\) −35.7108 −1.19435
\(895\) −45.6115 −1.52463
\(896\) 0 0
\(897\) 22.4056 0.748103
\(898\) 108.157 3.60924
\(899\) 22.9553 0.765602
\(900\) −47.3643 −1.57881
\(901\) 6.01963 0.200543
\(902\) −123.600 −4.11544
\(903\) 0 0
\(904\) −14.7577 −0.490834
\(905\) 43.2149 1.43651
\(906\) −27.8427 −0.925011
\(907\) −24.0803 −0.799572 −0.399786 0.916608i \(-0.630916\pi\)
−0.399786 + 0.916608i \(0.630916\pi\)
\(908\) −40.7776 −1.35325
\(909\) 19.1055 0.633689
\(910\) 0 0
\(911\) 1.68964 0.0559802 0.0279901 0.999608i \(-0.491089\pi\)
0.0279901 + 0.999608i \(0.491089\pi\)
\(912\) −56.9032 −1.88425
\(913\) −28.7360 −0.951023
\(914\) 43.6720 1.44454
\(915\) −31.3115 −1.03513
\(916\) 4.61043 0.152333
\(917\) 0 0
\(918\) −86.7249 −2.86235
\(919\) 40.5462 1.33750 0.668748 0.743489i \(-0.266831\pi\)
0.668748 + 0.743489i \(0.266831\pi\)
\(920\) 138.038 4.55097
\(921\) 26.8424 0.884486
\(922\) 57.7558 1.90208
\(923\) −41.9741 −1.38160
\(924\) 0 0
\(925\) 28.9700 0.952528
\(926\) 12.6405 0.415392
\(927\) 17.5294 0.575739
\(928\) −42.4791 −1.39444
\(929\) 33.1179 1.08656 0.543281 0.839551i \(-0.317182\pi\)
0.543281 + 0.839551i \(0.317182\pi\)
\(930\) −50.0070 −1.63979
\(931\) 0 0
\(932\) −78.0992 −2.55822
\(933\) −17.6754 −0.578665
\(934\) −25.8603 −0.846174
\(935\) −104.142 −3.40579
\(936\) −25.9576 −0.848450
\(937\) −29.0490 −0.948991 −0.474495 0.880258i \(-0.657369\pi\)
−0.474495 + 0.880258i \(0.657369\pi\)
\(938\) 0 0
\(939\) 10.8464 0.353960
\(940\) 167.217 5.45401
\(941\) −9.45338 −0.308171 −0.154086 0.988057i \(-0.549243\pi\)
−0.154086 + 0.988057i \(0.549243\pi\)
\(942\) −14.3240 −0.466702
\(943\) 56.2430 1.83152
\(944\) −18.1483 −0.590677
\(945\) 0 0
\(946\) −49.5936 −1.61243
\(947\) 22.3098 0.724970 0.362485 0.931990i \(-0.381928\pi\)
0.362485 + 0.931990i \(0.381928\pi\)
\(948\) −104.503 −3.39408
\(949\) 30.3434 0.984987
\(950\) −109.609 −3.55620
\(951\) 24.9282 0.808354
\(952\) 0 0
\(953\) −49.6079 −1.60696 −0.803478 0.595334i \(-0.797020\pi\)
−0.803478 + 0.595334i \(0.797020\pi\)
\(954\) −3.27588 −0.106061
\(955\) −76.4965 −2.47537
\(956\) −23.7503 −0.768141
\(957\) 35.5974 1.15070
\(958\) 65.5296 2.11716
\(959\) 0 0
\(960\) 14.5100 0.468310
\(961\) −14.3586 −0.463180
\(962\) 27.9378 0.900752
\(963\) −18.3381 −0.590938
\(964\) −41.0854 −1.32327
\(965\) −73.1990 −2.35636
\(966\) 0 0
\(967\) 44.5415 1.43236 0.716179 0.697916i \(-0.245889\pi\)
0.716179 + 0.697916i \(0.245889\pi\)
\(968\) 81.9638 2.63442
\(969\) −41.6172 −1.33694
\(970\) 150.095 4.81926
\(971\) −10.9162 −0.350318 −0.175159 0.984540i \(-0.556044\pi\)
−0.175159 + 0.984540i \(0.556044\pi\)
\(972\) 56.1424 1.80077
\(973\) 0 0
\(974\) 41.4230 1.32728
\(975\) 32.1143 1.02848
\(976\) −53.9198 −1.72593
\(977\) 47.4189 1.51706 0.758532 0.651636i \(-0.225917\pi\)
0.758532 + 0.651636i \(0.225917\pi\)
\(978\) 1.18680 0.0379497
\(979\) 76.5398 2.44622
\(980\) 0 0
\(981\) −6.55895 −0.209411
\(982\) −73.3085 −2.33937
\(983\) 27.6546 0.882046 0.441023 0.897496i \(-0.354616\pi\)
0.441023 + 0.897496i \(0.354616\pi\)
\(984\) 89.1576 2.84224
\(985\) 25.6647 0.817745
\(986\) −86.8766 −2.76671
\(987\) 0 0
\(988\) −73.8306 −2.34887
\(989\) 22.5670 0.717589
\(990\) 56.6739 1.80121
\(991\) −9.83870 −0.312537 −0.156268 0.987715i \(-0.549946\pi\)
−0.156268 + 0.987715i \(0.549946\pi\)
\(992\) −30.7952 −0.977749
\(993\) 14.3845 0.456478
\(994\) 0 0
\(995\) 60.3304 1.91260
\(996\) 36.4752 1.15576
\(997\) −52.0999 −1.65002 −0.825010 0.565119i \(-0.808830\pi\)
−0.825010 + 0.565119i \(0.808830\pi\)
\(998\) 34.7935 1.10137
\(999\) −20.1625 −0.637913
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6223.2.a.k.1.16 16
7.6 odd 2 889.2.a.c.1.16 16
21.20 even 2 8001.2.a.t.1.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
889.2.a.c.1.16 16 7.6 odd 2
6223.2.a.k.1.16 16 1.1 even 1 trivial
8001.2.a.t.1.1 16 21.20 even 2