gp: [N,k,chi] = [620,2,Mod(63,620)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("620.63");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(620, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [88,2,2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{88} - 2 T_{3}^{87} + 2 T_{3}^{86} + 616 T_{3}^{84} - 1232 T_{3}^{83} + 1232 T_{3}^{82} + \cdots + 4294967296 \)
T3^88 - 2*T3^87 + 2*T3^86 + 616*T3^84 - 1232*T3^83 + 1232*T3^82 - 56*T3^81 + 167340*T3^80 - 335960*T3^79 + 337240*T3^78 - 14248*T3^77 + 26497072*T3^76 - 53505416*T3^75 + 54018256*T3^74 - 425064*T3^73 + 2722373494*T3^72 - 5531192076*T3^71 + 5618288364*T3^70 + 242845640*T3^69 + 191197301264*T3^68 - 390451810936*T3^67 + 398625225520*T3^66 + 39737290904*T3^65 + 9425763856916*T3^64 - 19302211196856*T3^63 + 19764598656232*T3^62 + 3024338407240*T3^61 + 330166228164440*T3^60 - 675648008450424*T3^59 + 691699561249184*T3^58 + 136385187734760*T3^57 + 8244217214763369*T3^56 - 16783885038311570*T3^55 + 17109597151579218*T3^54 + 3904958418106296*T3^53 + 146375693157086104*T3^52 - 294893352867912216*T3^51 + 297866490342718368*T3^50 + 72691756547827712*T3^49 + 1835765265994580152*T3^48 - 3638051590371872352*T3^47 + 3619951352213681648*T3^46 + 881253717655779008*T3^45 + 16105736000149138792*T3^44 - 31195559327233381504*T3^43 + 30371239895817902000*T3^42 + 6845660139442983904*T3^41 + 97625212886941281144*T3^40 - 183667088591049267728*T3^39 + 173678294744759390256*T3^38 + 32801524683041032928*T3^37 + 402197648174819449440*T3^36 - 731633490104790131168*T3^35 + 667612352244980209152*T3^34 + 89569166126846845056*T3^33 + 1098716577425102946928*T3^32 - 1930417534671845160672*T3^31 + 1694384282664946491744*T3^30 + 110719988680260768000*T3^29 + 1914585807378311942048*T3^28 - 3258983078503096069376*T3^27 + 2758290628716754803904*T3^26 - 26612509570635682432*T3^25 + 1997612233320046364816*T3^24 - 3318037892869938699808*T3^23 + 2736534089806968699680*T3^22 - 217171723330535483904*T3^21 + 1115220984109797972352*T3^20 - 1827224550201222080256*T3^19 + 1501062229117349477120*T3^18 - 196375327943371905024*T3^17 + 261136995907023063296*T3^16 - 428031545432754579968*T3^15 + 367051825728037306880*T3^14 - 56774063065306710016*T3^13 + 6961607895819001856*T3^12 - 12734617808721895424*T3^11 + 17705206805366145024*T3^10 - 1380218803319078912*T3^9 - 26655504743202816*T3^8 + 53630245113430016*T3^7 + 86229577407922176*T3^6 + 2187307820515328*T3^5 + 29997411598336*T3^4 + 7584180338688*T3^3 + 10270527193088*T3^2 + 297023832064*T3 + 4294967296
acting on \(S_{2}^{\mathrm{new}}(620, [\chi])\).