gp: [N,k,chi] = [62,8,Mod(7,62)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(62, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([28]))
N = Newforms(chi, 8, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("62.7");
S:= CuspForms(chi, 8);
N := Newforms(S);
Newform invariants
sage: traces = [72,144]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{72} - 53 T_{3}^{71} - 10487 T_{3}^{70} + 594124 T_{3}^{69} + 14614744 T_{3}^{68} + \cdots + 51\!\cdots\!25 \)
T3^72 - 53*T3^71 - 10487*T3^70 + 594124*T3^69 + 14614744*T3^68 - 490024021*T3^67 + 541503066392*T3^66 - 24312110838181*T3^65 - 6802181613456122*T3^64 + 247511551813767613*T3^63 + 48212665639713016526*T3^62 - 2331522507799653756096*T3^61 - 27532221168184824270239*T3^60 + 4945332564896533650321271*T3^59 - 2343399029906521973050555649*T3^58 + 116767527401871102154542574721*T3^57 + 21070384904212020612529338633267*T3^56 - 1350239557110496880464433898220528*T3^55 - 80867008514427241788310682001286236*T3^54 + 5824761021195283240709518026977470807*T3^53 + 116951431309538079610975412298562535348*T3^52 - 5121014786659691411716796442304512771264*T3^51 + 263299010604651651160139601248646261698849*T3^50 - 71357853320517162097456722535553630373482555*T3^49 - 1512483472502699997871687852208354813979245523*T3^48 + 381222077891158697733687377409386678428788776780*T3^47 + 5809259739274659991475098395784571467989352635903*T3^46 - 802355031832311515065225236707738810199213313543909*T3^45 - 24241973250288688978929923321222838656783415967539071*T3^44 - 558039086771301236241206468469772014380538311284453424*T3^43 + 47928174193789669543871554233566882689359907210631937156*T3^42 + 8962575590527896535829173727558821201232373259702927517846*T3^41 + 138106776297812254488113039936304069530317324636994371397050*T3^40 - 25361730345517347188568056266109630189292383069187227766922728*T3^39 - 1014351421918580344694273252239709886311615173501876324787372655*T3^38 + 16583455328872708126722384806498133553062569323718600999563613790*T3^37 + 2175138298596979787769162833327599883873602589425681103604039648687*T3^36 + 85856082345717339744972708717180469229501995371742659439405987382469*T3^35 - 575058628378116847390412491924677033283399687324358862180430410367944*T3^34 - 251455193621013122330804186227328979995374926557403124629659033862696303*T3^33 - 5634235163966877251500754539155165678019182796482324087806082728270633550*T3^32 + 271260449959353748122148252772080925699786211935141963636254460251206595134*T3^31 + 11423663470070482851810742748913841745135691019659820129343004931913381876667*T3^30 - 90601203529997349426558460984331533567140619038988082422727996906913809234808*T3^29 - 12364351904289358778530053538699136434124190206375908124091890862993481563697551*T3^28 - 241077414345885594154709557200046541673848186687477281017348965246042799285945372*T3^27 + 7254631370431291181365408112462649793491276585041474299470187472166764348456246112*T3^26 + 863670404099055603115148803991168178396052223387216914610217921167196772867417071087*T3^25 + 20267020605383931781847104524626257202696494787646447467900365222279503738614353185480*T3^24 - 703093712196221718727438713971113585688537541301255382687458013304824818072153908865233*T3^23 - 41875976619592748746809903823412729274429743173761432527908692259840265562029831661405567*T3^22 - 593622792204420390403590084575694500854503224636725834194307100620082087770216734573040863*T3^21 + 11922883531395477252173577453237160999801708614540963146825566951520140528216152452009279829*T3^20 + 968212257387487065867975995304931238457230680722678856228390436946233432603119074852476579739*T3^19 + 25398013726860921921298045269125265064010423713336108348252559109305718858909401004564015314733*T3^18 - 131224095047974702950818039413311041197360203507648381267311903294205539180566684052583656524722*T3^17 - 19702683663608941932157850149407619174392954878721589833801676190268923630269527362169829188619449*T3^16 - 57613340353973669256052792338489859349429734373081052244770871529010746784409929449131762240386267*T3^15 + 10182324061777958794944623671718655331817679993300808418020136923567146410606789206508289522703735845*T3^14 + 21517118933027156031478025353558826863027087978870877272931984246448341965516115408034925392993637059*T3^13 - 3423954232107093522675151256518237831736672480491351429346337731082186857315679310476431977399465485396*T3^12 + 12549507689324508832051129562049948528485186549632487922807434208779197642311634336991813912551630014909*T3^11 + 752821014531958591359368951329605826164097536933591485624341911457517522914563965831448495635119617156900*T3^10 - 7105787168968284239528779793706697060582991630150522688627932938069790224228177240293507681397581387666642*T3^9 - 60647432718581362395216965350711331786349677290703114331849188281385174533079287847932832438282589821930409*T3^8 + 1444090515806115241323820009239775438285774832584669805725304846036978760019679281668661017626882828118720825*T3^7 - 6917482938359517183160444260626405301038256911523395326642544292783518576107247646034368106979422636197746310*T3^6 - 65284127503470400133473737581206688766855282000821603422655837049916306167598308409987906525326014814734688030*T3^5 + 1693252364158862508977192155228930146917475408974334336826208029524242465504347576219211741386943351953212146730*T3^4 - 14917847514925468429817784007786228051553125667051043520032169512328016682417051656068388357165950703841669051750*T3^3 + 82389319504805154461419639406300979616382525739817616956879130030285741496945655782997205879946539123418798248100*T3^2 - 151057451070954012990203895514383825541434008145458455056580721788286182399457895312244299859602343861913762971500*T3 + 517440143336530219253880156836611172847350347630964086577187122691196855584545831504481343411962994869072722963025
acting on \(S_{8}^{\mathrm{new}}(62, [\chi])\).