Newspace parameters
Level: | \( N \) | \(=\) | \( 62 = 2 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 62.h (of order \(30\), degree \(8\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(14.2633531844\) |
Analytic rank: | \(0\) |
Dimension: | \(128\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{30})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{30}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3.1 | −4.57649 | + | 3.32502i | −49.3410 | − | 5.18595i | 9.88854 | − | 30.4338i | −32.6988 | + | 56.6359i | 243.052 | − | 140.326i | 539.656 | − | 114.707i | 55.9381 | + | 172.160i | 1694.57 | + | 360.193i | −38.6697 | − | 367.918i |
3.2 | −4.57649 | + | 3.32502i | −34.4182 | − | 3.61750i | 9.88854 | − | 30.4338i | 57.5189 | − | 99.6257i | 169.543 | − | 97.8856i | −34.7996 | + | 7.39689i | 55.9381 | + | 172.160i | 458.458 | + | 97.4482i | 68.0221 | + | 647.187i |
3.3 | −4.57649 | + | 3.32502i | −29.1393 | − | 3.06266i | 9.88854 | − | 30.4338i | −73.7968 | + | 127.820i | 143.539 | − | 82.8723i | −456.043 | + | 96.9349i | 55.9381 | + | 172.160i | 126.647 | + | 26.9197i | −87.2724 | − | 830.341i |
3.4 | −4.57649 | + | 3.32502i | −10.2557 | − | 1.07792i | 9.88854 | − | 30.4338i | −14.8730 | + | 25.7608i | 50.5191 | − | 29.1672i | −100.802 | + | 21.4262i | 55.9381 | + | 172.160i | −609.053 | − | 129.458i | −17.5889 | − | 167.347i |
3.5 | −4.57649 | + | 3.32502i | 3.37776 | + | 0.355017i | 9.88854 | − | 30.4338i | 102.360 | − | 177.293i | −16.6387 | + | 9.60639i | 183.105 | − | 38.9202i | 55.9381 | + | 172.160i | −701.786 | − | 149.169i | 121.052 | + | 1151.73i |
3.6 | −4.57649 | + | 3.32502i | 15.5982 | + | 1.63944i | 9.88854 | − | 30.4338i | −119.326 | + | 206.678i | −76.8363 | + | 44.3615i | 318.522 | − | 67.7039i | 55.9381 | + | 172.160i | −472.453 | − | 100.423i | −141.115 | − | 1342.62i |
3.7 | −4.57649 | + | 3.32502i | 30.4379 | + | 3.19915i | 9.88854 | − | 30.4338i | 20.2023 | − | 34.9914i | −149.936 | + | 86.5656i | −476.650 | + | 101.315i | 55.9381 | + | 172.160i | 203.162 | + | 43.1834i | 23.8913 | + | 227.311i |
3.8 | −4.57649 | + | 3.32502i | 43.4732 | + | 4.56922i | 9.88854 | − | 30.4338i | 13.1919 | − | 22.8491i | −214.147 | + | 123.638i | 265.399 | − | 56.4124i | 55.9381 | + | 172.160i | 1155.97 | + | 245.709i | 15.6008 | + | 148.432i |
3.9 | 4.57649 | − | 3.32502i | −51.4736 | − | 5.41010i | 9.88854 | − | 30.4338i | −40.0035 | + | 69.2882i | −253.557 | + | 146.391i | −492.186 | + | 104.617i | −55.9381 | − | 172.160i | 1907.19 | + | 405.387i | 47.3084 | + | 450.109i |
3.10 | 4.57649 | − | 3.32502i | −35.0871 | − | 3.68781i | 9.88854 | − | 30.4338i | 95.1532 | − | 164.810i | −172.838 | + | 99.7880i | 259.315 | − | 55.1191i | −55.9381 | − | 172.160i | 504.437 | + | 107.221i | −112.529 | − | 1070.64i |
3.11 | 4.57649 | − | 3.32502i | −23.6344 | − | 2.48408i | 9.88854 | − | 30.4338i | −24.7800 | + | 42.9202i | −116.422 | + | 67.2164i | 139.041 | − | 29.5540i | −55.9381 | − | 172.160i | −160.655 | − | 34.1482i | 29.3049 | + | 278.818i |
3.12 | 4.57649 | − | 3.32502i | −15.5310 | − | 1.63237i | 9.88854 | − | 30.4338i | −72.8842 | + | 126.239i | −76.5050 | + | 44.1702i | 528.294 | − | 112.292i | −55.9381 | − | 172.160i | −474.523 | − | 100.863i | 86.1932 | + | 820.074i |
3.13 | 4.57649 | − | 3.32502i | 2.34617 | + | 0.246592i | 9.88854 | − | 30.4338i | 27.8406 | − | 48.2213i | 11.5571 | − | 6.67251i | −563.950 | + | 119.871i | −55.9381 | − | 172.160i | −707.626 | − | 150.411i | −32.9244 | − | 313.255i |
3.14 | 4.57649 | − | 3.32502i | 14.9143 | + | 1.56756i | 9.88854 | − | 30.4338i | −87.6873 | + | 151.879i | 73.4674 | − | 42.4164i | −289.524 | + | 61.5402i | −55.9381 | − | 172.160i | −493.090 | − | 104.809i | 103.699 | + | 986.634i |
3.15 | 4.57649 | − | 3.32502i | 27.1876 | + | 2.85753i | 9.88854 | − | 30.4338i | 69.0328 | − | 119.568i | 133.925 | − | 77.3216i | 200.192 | − | 42.5522i | −55.9381 | − | 172.160i | 17.9280 | + | 3.81071i | −81.6385 | − | 776.738i |
3.16 | 4.57649 | − | 3.32502i | 51.0110 | + | 5.36147i | 9.88854 | − | 30.4338i | −50.8015 | + | 87.9908i | 251.278 | − | 145.076i | −56.9648 | + | 12.1082i | −55.9381 | − | 172.160i | 1860.31 | + | 395.420i | 60.0781 | + | 571.605i |
11.1 | −1.74806 | − | 5.37999i | −34.0546 | + | 30.6629i | −25.8885 | + | 18.8091i | 110.734 | + | 191.796i | 224.496 | + | 129.613i | 27.6421 | + | 262.997i | 146.448 | + | 106.400i | 143.302 | − | 1363.42i | 838.293 | − | 931.019i |
11.2 | −1.74806 | − | 5.37999i | −22.3809 | + | 20.1518i | −25.8885 | + | 18.8091i | −53.7040 | − | 93.0180i | 147.540 | + | 85.1822i | 46.4818 | + | 442.245i | 146.448 | + | 106.400i | 18.6062 | − | 177.026i | −406.558 | + | 451.528i |
11.3 | −1.74806 | − | 5.37999i | −12.7083 | + | 11.4426i | −25.8885 | + | 18.8091i | 34.4516 | + | 59.6719i | 83.7757 | + | 48.3679i | −13.5804 | − | 129.208i | 146.448 | + | 106.400i | −45.6338 | + | 434.176i | 260.811 | − | 289.660i |
11.4 | −1.74806 | − | 5.37999i | 2.16828 | − | 1.95233i | −25.8885 | + | 18.8091i | −19.4805 | − | 33.7413i | −14.2938 | − | 8.25253i | 21.4015 | + | 203.622i | 146.448 | + | 106.400i | −75.3114 | + | 716.540i | −147.474 | + | 163.787i |
See next 80 embeddings (of 128 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.h | odd | 30 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 62.7.h.a | ✓ | 128 |
31.h | odd | 30 | 1 | inner | 62.7.h.a | ✓ | 128 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
62.7.h.a | ✓ | 128 | 1.a | even | 1 | 1 | trivial |
62.7.h.a | ✓ | 128 | 31.h | odd | 30 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(62, [\chi])\).