Properties

Label 616.2.r.f.113.3
Level $616$
Weight $2$
Character 616.113
Analytic conductor $4.919$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [616,2,Mod(113,616)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("616.113"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(616, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 616 = 2^{3} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 616.r (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.91878476451\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} + 21 x^{18} - 58 x^{17} + 225 x^{16} - 348 x^{15} + 1296 x^{14} - 755 x^{13} + \cdots + 10000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 113.3
Root \(0.425479 - 0.309129i\) of defining polynomial
Character \(\chi\) \(=\) 616.113
Dual form 616.2.r.f.169.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.162519 - 0.500181i) q^{3} +(-1.76076 - 1.27927i) q^{5} +(-0.309017 + 0.951057i) q^{7} +(2.20328 - 1.60078i) q^{9} +(0.817183 - 3.21438i) q^{11} +(-4.14760 + 3.01341i) q^{13} +(-0.353708 + 1.08860i) q^{15} +(1.32207 + 0.960538i) q^{17} +(-1.67759 - 5.16308i) q^{19} +0.525921 q^{21} -8.91765 q^{23} +(-0.0813342 - 0.250321i) q^{25} +(-2.43519 - 1.76927i) q^{27} +(2.05779 - 6.33324i) q^{29} +(-7.29287 + 5.29858i) q^{31} +(-1.74058 + 0.113657i) q^{33} +(1.76076 - 1.27927i) q^{35} +(2.14635 - 6.60578i) q^{37} +(2.18131 + 1.58481i) q^{39} +(-0.417802 - 1.28586i) q^{41} -1.96423 q^{43} -5.92727 q^{45} +(-0.270521 - 0.832577i) q^{47} +(-0.809017 - 0.587785i) q^{49} +(0.265582 - 0.817378i) q^{51} +(1.98977 - 1.44565i) q^{53} +(-5.55091 + 4.61435i) q^{55} +(-2.30983 + 1.67819i) q^{57} +(0.640906 - 1.97251i) q^{59} +(12.0238 + 8.73579i) q^{61} +(0.841579 + 2.59011i) q^{63} +11.1579 q^{65} -13.4064 q^{67} +(1.44928 + 4.46043i) q^{69} +(6.02676 + 4.37870i) q^{71} +(-1.10888 + 3.41278i) q^{73} +(-0.111987 + 0.0813636i) q^{75} +(2.80453 + 1.77048i) q^{77} +(10.9314 - 7.94209i) q^{79} +(2.03555 - 6.26477i) q^{81} +(-1.93890 - 1.40869i) q^{83} +(-1.09906 - 3.38255i) q^{85} -3.50219 q^{87} +14.3192 q^{89} +(-1.58424 - 4.87579i) q^{91} +(3.83547 + 2.78663i) q^{93} +(-3.65113 + 11.2370i) q^{95} +(-10.1758 + 7.39317i) q^{97} +(-3.34502 - 8.39031i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{3} + 5 q^{7} - 6 q^{9} - 3 q^{11} + 2 q^{13} + 8 q^{15} + 21 q^{19} + 6 q^{21} - 6 q^{23} - 7 q^{25} + 32 q^{27} + 6 q^{29} - 18 q^{31} - 16 q^{33} + 5 q^{37} + 12 q^{39} - 12 q^{41} - 42 q^{43}+ \cdots - 57 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/616\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(309\) \(353\) \(463\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.162519 0.500181i −0.0938301 0.288779i 0.893117 0.449825i \(-0.148514\pi\)
−0.986947 + 0.161045i \(0.948514\pi\)
\(4\) 0 0
\(5\) −1.76076 1.27927i −0.787436 0.572105i 0.119766 0.992802i \(-0.461786\pi\)
−0.907201 + 0.420697i \(0.861786\pi\)
\(6\) 0 0
\(7\) −0.309017 + 0.951057i −0.116797 + 0.359466i
\(8\) 0 0
\(9\) 2.20328 1.60078i 0.734428 0.533593i
\(10\) 0 0
\(11\) 0.817183 3.21438i 0.246390 0.969171i
\(12\) 0 0
\(13\) −4.14760 + 3.01341i −1.15034 + 0.835768i −0.988526 0.151054i \(-0.951733\pi\)
−0.161811 + 0.986822i \(0.551733\pi\)
\(14\) 0 0
\(15\) −0.353708 + 1.08860i −0.0913271 + 0.281076i
\(16\) 0 0
\(17\) 1.32207 + 0.960538i 0.320649 + 0.232965i 0.736452 0.676490i \(-0.236500\pi\)
−0.415804 + 0.909454i \(0.636500\pi\)
\(18\) 0 0
\(19\) −1.67759 5.16308i −0.384865 1.18449i −0.936578 0.350459i \(-0.886026\pi\)
0.551713 0.834034i \(-0.313974\pi\)
\(20\) 0 0
\(21\) 0.525921 0.114765
\(22\) 0 0
\(23\) −8.91765 −1.85946 −0.929729 0.368245i \(-0.879959\pi\)
−0.929729 + 0.368245i \(0.879959\pi\)
\(24\) 0 0
\(25\) −0.0813342 0.250321i −0.0162668 0.0500642i
\(26\) 0 0
\(27\) −2.43519 1.76927i −0.468652 0.340496i
\(28\) 0 0
\(29\) 2.05779 6.33324i 0.382123 1.17605i −0.556423 0.830899i \(-0.687827\pi\)
0.938546 0.345154i \(-0.112173\pi\)
\(30\) 0 0
\(31\) −7.29287 + 5.29858i −1.30984 + 0.951653i −0.309838 + 0.950789i \(0.600275\pi\)
−1.00000 0.000863210i \(0.999725\pi\)
\(32\) 0 0
\(33\) −1.74058 + 0.113657i −0.302995 + 0.0197851i
\(34\) 0 0
\(35\) 1.76076 1.27927i 0.297623 0.216236i
\(36\) 0 0
\(37\) 2.14635 6.60578i 0.352857 1.08598i −0.604384 0.796693i \(-0.706581\pi\)
0.957241 0.289290i \(-0.0934192\pi\)
\(38\) 0 0
\(39\) 2.18131 + 1.58481i 0.349289 + 0.253773i
\(40\) 0 0
\(41\) −0.417802 1.28586i −0.0652497 0.200818i 0.913116 0.407699i \(-0.133669\pi\)
−0.978366 + 0.206881i \(0.933669\pi\)
\(42\) 0 0
\(43\) −1.96423 −0.299542 −0.149771 0.988721i \(-0.547854\pi\)
−0.149771 + 0.988721i \(0.547854\pi\)
\(44\) 0 0
\(45\) −5.92727 −0.883586
\(46\) 0 0
\(47\) −0.270521 0.832577i −0.0394595 0.121444i 0.929386 0.369108i \(-0.120337\pi\)
−0.968846 + 0.247665i \(0.920337\pi\)
\(48\) 0 0
\(49\) −0.809017 0.587785i −0.115574 0.0839693i
\(50\) 0 0
\(51\) 0.265582 0.817378i 0.0371889 0.114456i
\(52\) 0 0
\(53\) 1.98977 1.44565i 0.273316 0.198576i −0.442681 0.896679i \(-0.645973\pi\)
0.715997 + 0.698104i \(0.245973\pi\)
\(54\) 0 0
\(55\) −5.55091 + 4.61435i −0.748484 + 0.622199i
\(56\) 0 0
\(57\) −2.30983 + 1.67819i −0.305945 + 0.222282i
\(58\) 0 0
\(59\) 0.640906 1.97251i 0.0834388 0.256798i −0.900630 0.434587i \(-0.856894\pi\)
0.984069 + 0.177789i \(0.0568943\pi\)
\(60\) 0 0
\(61\) 12.0238 + 8.73579i 1.53949 + 1.11850i 0.950656 + 0.310248i \(0.100412\pi\)
0.588832 + 0.808255i \(0.299588\pi\)
\(62\) 0 0
\(63\) 0.841579 + 2.59011i 0.106029 + 0.326324i
\(64\) 0 0
\(65\) 11.1579 1.38396
\(66\) 0 0
\(67\) −13.4064 −1.63785 −0.818927 0.573898i \(-0.805431\pi\)
−0.818927 + 0.573898i \(0.805431\pi\)
\(68\) 0 0
\(69\) 1.44928 + 4.46043i 0.174473 + 0.536973i
\(70\) 0 0
\(71\) 6.02676 + 4.37870i 0.715245 + 0.519656i 0.884861 0.465854i \(-0.154253\pi\)
−0.169616 + 0.985510i \(0.554253\pi\)
\(72\) 0 0
\(73\) −1.10888 + 3.41278i −0.129785 + 0.399436i −0.994742 0.102408i \(-0.967345\pi\)
0.864958 + 0.501845i \(0.167345\pi\)
\(74\) 0 0
\(75\) −0.111987 + 0.0813636i −0.0129312 + 0.00939506i
\(76\) 0 0
\(77\) 2.80453 + 1.77048i 0.319606 + 0.201765i
\(78\) 0 0
\(79\) 10.9314 7.94209i 1.22987 0.893555i 0.232993 0.972478i \(-0.425148\pi\)
0.996881 + 0.0789231i \(0.0251482\pi\)
\(80\) 0 0
\(81\) 2.03555 6.26477i 0.226172 0.696085i
\(82\) 0 0
\(83\) −1.93890 1.40869i −0.212822 0.154624i 0.476268 0.879300i \(-0.341989\pi\)
−0.689089 + 0.724676i \(0.741989\pi\)
\(84\) 0 0
\(85\) −1.09906 3.38255i −0.119210 0.366890i
\(86\) 0 0
\(87\) −3.50219 −0.375475
\(88\) 0 0
\(89\) 14.3192 1.51783 0.758914 0.651191i \(-0.225730\pi\)
0.758914 + 0.651191i \(0.225730\pi\)
\(90\) 0 0
\(91\) −1.58424 4.87579i −0.166074 0.511122i
\(92\) 0 0
\(93\) 3.83547 + 2.78663i 0.397720 + 0.288960i
\(94\) 0 0
\(95\) −3.65113 + 11.2370i −0.374598 + 1.15289i
\(96\) 0 0
\(97\) −10.1758 + 7.39317i −1.03320 + 0.750663i −0.968946 0.247271i \(-0.920466\pi\)
−0.0642523 + 0.997934i \(0.520466\pi\)
\(98\) 0 0
\(99\) −3.34502 8.39031i −0.336187 0.843258i
\(100\) 0 0
\(101\) 13.3511 9.70014i 1.32848 0.965200i 0.328700 0.944434i \(-0.393390\pi\)
0.999784 0.0207660i \(-0.00661049\pi\)
\(102\) 0 0
\(103\) 5.02879 15.4770i 0.495501 1.52500i −0.320673 0.947190i \(-0.603909\pi\)
0.816174 0.577806i \(-0.196091\pi\)
\(104\) 0 0
\(105\) −0.926020 0.672793i −0.0903703 0.0656579i
\(106\) 0 0
\(107\) −0.706967 2.17582i −0.0683451 0.210345i 0.911051 0.412294i \(-0.135272\pi\)
−0.979396 + 0.201949i \(0.935272\pi\)
\(108\) 0 0
\(109\) −16.2045 −1.55211 −0.776055 0.630665i \(-0.782782\pi\)
−0.776055 + 0.630665i \(0.782782\pi\)
\(110\) 0 0
\(111\) −3.65290 −0.346718
\(112\) 0 0
\(113\) 1.72138 + 5.29785i 0.161933 + 0.498380i 0.998797 0.0490314i \(-0.0156134\pi\)
−0.836864 + 0.547411i \(0.815613\pi\)
\(114\) 0 0
\(115\) 15.7018 + 11.4080i 1.46420 + 1.06381i
\(116\) 0 0
\(117\) −4.31453 + 13.2788i −0.398879 + 1.22762i
\(118\) 0 0
\(119\) −1.32207 + 0.960538i −0.121194 + 0.0880524i
\(120\) 0 0
\(121\) −9.66442 5.25347i −0.878584 0.477588i
\(122\) 0 0
\(123\) −0.575263 + 0.417953i −0.0518697 + 0.0376855i
\(124\) 0 0
\(125\) −3.53977 + 10.8943i −0.316607 + 0.974415i
\(126\) 0 0
\(127\) 5.68733 + 4.13208i 0.504669 + 0.366663i 0.810797 0.585327i \(-0.199034\pi\)
−0.306129 + 0.951990i \(0.599034\pi\)
\(128\) 0 0
\(129\) 0.319223 + 0.982469i 0.0281061 + 0.0865016i
\(130\) 0 0
\(131\) 8.48279 0.741145 0.370573 0.928803i \(-0.379161\pi\)
0.370573 + 0.928803i \(0.379161\pi\)
\(132\) 0 0
\(133\) 5.42879 0.470736
\(134\) 0 0
\(135\) 2.02442 + 6.23051i 0.174234 + 0.536237i
\(136\) 0 0
\(137\) 10.2268 + 7.43019i 0.873732 + 0.634804i 0.931586 0.363521i \(-0.118426\pi\)
−0.0578535 + 0.998325i \(0.518426\pi\)
\(138\) 0 0
\(139\) −2.24998 + 6.92472i −0.190841 + 0.587347i −1.00000 0.000242269i \(-0.999923\pi\)
0.809159 + 0.587589i \(0.199923\pi\)
\(140\) 0 0
\(141\) −0.372474 + 0.270618i −0.0313680 + 0.0227902i
\(142\) 0 0
\(143\) 6.29687 + 15.7944i 0.526571 + 1.32080i
\(144\) 0 0
\(145\) −11.7252 + 8.51884i −0.973723 + 0.707452i
\(146\) 0 0
\(147\) −0.162519 + 0.500181i −0.0134043 + 0.0412542i
\(148\) 0 0
\(149\) 4.37675 + 3.17989i 0.358557 + 0.260507i 0.752450 0.658649i \(-0.228872\pi\)
−0.393893 + 0.919156i \(0.628872\pi\)
\(150\) 0 0
\(151\) 1.86595 + 5.74280i 0.151849 + 0.467342i 0.997828 0.0658736i \(-0.0209834\pi\)
−0.845979 + 0.533216i \(0.820983\pi\)
\(152\) 0 0
\(153\) 4.45050 0.359801
\(154\) 0 0
\(155\) 19.6193 1.57586
\(156\) 0 0
\(157\) −3.32454 10.2319i −0.265327 0.816593i −0.991618 0.129205i \(-0.958757\pi\)
0.726291 0.687387i \(-0.241243\pi\)
\(158\) 0 0
\(159\) −1.04646 0.760299i −0.0829898 0.0602956i
\(160\) 0 0
\(161\) 2.75570 8.48118i 0.217180 0.668411i
\(162\) 0 0
\(163\) 16.5785 12.0450i 1.29853 0.943436i 0.298589 0.954382i \(-0.403484\pi\)
0.999940 + 0.0109454i \(0.00348410\pi\)
\(164\) 0 0
\(165\) 3.21013 + 2.02654i 0.249908 + 0.157766i
\(166\) 0 0
\(167\) −3.31917 + 2.41152i −0.256845 + 0.186609i −0.708755 0.705455i \(-0.750743\pi\)
0.451910 + 0.892064i \(0.350743\pi\)
\(168\) 0 0
\(169\) 4.10473 12.6330i 0.315748 0.971773i
\(170\) 0 0
\(171\) −11.9612 8.69029i −0.914692 0.664563i
\(172\) 0 0
\(173\) −5.92970 18.2497i −0.450826 1.38750i −0.875966 0.482373i \(-0.839775\pi\)
0.425140 0.905128i \(-0.360225\pi\)
\(174\) 0 0
\(175\) 0.263203 0.0198963
\(176\) 0 0
\(177\) −1.09077 −0.0819871
\(178\) 0 0
\(179\) 3.04694 + 9.37751i 0.227739 + 0.700908i 0.998002 + 0.0631818i \(0.0201248\pi\)
−0.770263 + 0.637726i \(0.779875\pi\)
\(180\) 0 0
\(181\) −2.39615 1.74091i −0.178105 0.129401i 0.495161 0.868801i \(-0.335109\pi\)
−0.673266 + 0.739400i \(0.735109\pi\)
\(182\) 0 0
\(183\) 2.41538 7.43379i 0.178550 0.549522i
\(184\) 0 0
\(185\) −12.2298 + 8.88543i −0.899149 + 0.653270i
\(186\) 0 0
\(187\) 4.16790 3.46469i 0.304787 0.253363i
\(188\) 0 0
\(189\) 2.43519 1.76927i 0.177134 0.128695i
\(190\) 0 0
\(191\) −5.38171 + 16.5632i −0.389407 + 1.19847i 0.543826 + 0.839198i \(0.316975\pi\)
−0.933233 + 0.359273i \(0.883025\pi\)
\(192\) 0 0
\(193\) 14.0398 + 10.2005i 1.01061 + 0.734249i 0.964336 0.264680i \(-0.0852664\pi\)
0.0462703 + 0.998929i \(0.485266\pi\)
\(194\) 0 0
\(195\) −1.81336 5.58095i −0.129857 0.399660i
\(196\) 0 0
\(197\) 23.6207 1.68291 0.841453 0.540330i \(-0.181701\pi\)
0.841453 + 0.540330i \(0.181701\pi\)
\(198\) 0 0
\(199\) −7.11528 −0.504389 −0.252194 0.967677i \(-0.581152\pi\)
−0.252194 + 0.967677i \(0.581152\pi\)
\(200\) 0 0
\(201\) 2.17879 + 6.70562i 0.153680 + 0.472978i
\(202\) 0 0
\(203\) 5.38738 + 3.91416i 0.378120 + 0.274720i
\(204\) 0 0
\(205\) −0.909312 + 2.79857i −0.0635091 + 0.195461i
\(206\) 0 0
\(207\) −19.6481 + 14.2752i −1.36564 + 0.992193i
\(208\) 0 0
\(209\) −17.9670 + 1.17321i −1.24280 + 0.0811529i
\(210\) 0 0
\(211\) 8.48924 6.16780i 0.584424 0.424609i −0.255893 0.966705i \(-0.582369\pi\)
0.840316 + 0.542097i \(0.182369\pi\)
\(212\) 0 0
\(213\) 1.21068 3.72609i 0.0829544 0.255307i
\(214\) 0 0
\(215\) 3.45853 + 2.51277i 0.235870 + 0.171370i
\(216\) 0 0
\(217\) −2.78563 8.57328i −0.189101 0.581992i
\(218\) 0 0
\(219\) 1.88722 0.127527
\(220\) 0 0
\(221\) −8.37790 −0.563558
\(222\) 0 0
\(223\) −3.67479 11.3098i −0.246082 0.757362i −0.995457 0.0952161i \(-0.969646\pi\)
0.749375 0.662146i \(-0.230354\pi\)
\(224\) 0 0
\(225\) −0.579911 0.421330i −0.0386607 0.0280887i
\(226\) 0 0
\(227\) 2.61755 8.05600i 0.173733 0.534696i −0.825840 0.563904i \(-0.809299\pi\)
0.999573 + 0.0292086i \(0.00929869\pi\)
\(228\) 0 0
\(229\) −16.5057 + 11.9921i −1.09073 + 0.792458i −0.979522 0.201339i \(-0.935471\pi\)
−0.111204 + 0.993798i \(0.535471\pi\)
\(230\) 0 0
\(231\) 0.429774 1.69051i 0.0282770 0.111227i
\(232\) 0 0
\(233\) 9.19786 6.68264i 0.602572 0.437794i −0.244219 0.969720i \(-0.578532\pi\)
0.846791 + 0.531926i \(0.178532\pi\)
\(234\) 0 0
\(235\) −0.588766 + 1.81204i −0.0384069 + 0.118204i
\(236\) 0 0
\(237\) −5.74903 4.17691i −0.373440 0.271320i
\(238\) 0 0
\(239\) −7.42744 22.8593i −0.480441 1.47865i −0.838476 0.544938i \(-0.816553\pi\)
0.358035 0.933708i \(-0.383447\pi\)
\(240\) 0 0
\(241\) 7.87954 0.507566 0.253783 0.967261i \(-0.418325\pi\)
0.253783 + 0.967261i \(0.418325\pi\)
\(242\) 0 0
\(243\) −12.4945 −0.801523
\(244\) 0 0
\(245\) 0.672550 + 2.06990i 0.0429677 + 0.132241i
\(246\) 0 0
\(247\) 22.5164 + 16.3591i 1.43269 + 1.04091i
\(248\) 0 0
\(249\) −0.389494 + 1.19874i −0.0246832 + 0.0759669i
\(250\) 0 0
\(251\) −6.73999 + 4.89689i −0.425424 + 0.309089i −0.779817 0.626008i \(-0.784688\pi\)
0.354392 + 0.935097i \(0.384688\pi\)
\(252\) 0 0
\(253\) −7.28735 + 28.6647i −0.458152 + 1.80213i
\(254\) 0 0
\(255\) −1.51327 + 1.09946i −0.0947647 + 0.0688506i
\(256\) 0 0
\(257\) 1.06755 3.28557i 0.0665918 0.204948i −0.912224 0.409692i \(-0.865636\pi\)
0.978816 + 0.204744i \(0.0656361\pi\)
\(258\) 0 0
\(259\) 5.61921 + 4.08259i 0.349161 + 0.253680i
\(260\) 0 0
\(261\) −5.60421 17.2480i −0.346892 1.06762i
\(262\) 0 0
\(263\) −8.69569 −0.536199 −0.268100 0.963391i \(-0.586396\pi\)
−0.268100 + 0.963391i \(0.586396\pi\)
\(264\) 0 0
\(265\) −5.35288 −0.328825
\(266\) 0 0
\(267\) −2.32713 7.16217i −0.142418 0.438318i
\(268\) 0 0
\(269\) −20.7434 15.0710i −1.26475 0.918894i −0.265769 0.964037i \(-0.585626\pi\)
−0.998981 + 0.0451428i \(0.985626\pi\)
\(270\) 0 0
\(271\) 4.35600 13.4064i 0.264608 0.814380i −0.727175 0.686452i \(-0.759167\pi\)
0.991783 0.127928i \(-0.0408327\pi\)
\(272\) 0 0
\(273\) −2.18131 + 1.58481i −0.132019 + 0.0959172i
\(274\) 0 0
\(275\) −0.871091 + 0.0568807i −0.0525287 + 0.00343004i
\(276\) 0 0
\(277\) −7.10729 + 5.16375i −0.427036 + 0.310260i −0.780462 0.625203i \(-0.785016\pi\)
0.353427 + 0.935462i \(0.385016\pi\)
\(278\) 0 0
\(279\) −7.58640 + 23.3485i −0.454186 + 1.39784i
\(280\) 0 0
\(281\) −17.4558 12.6824i −1.04133 0.756569i −0.0707841 0.997492i \(-0.522550\pi\)
−0.970544 + 0.240922i \(0.922550\pi\)
\(282\) 0 0
\(283\) −0.167283 0.514843i −0.00994393 0.0306043i 0.945961 0.324279i \(-0.105122\pi\)
−0.955905 + 0.293675i \(0.905122\pi\)
\(284\) 0 0
\(285\) 6.21392 0.368081
\(286\) 0 0
\(287\) 1.35204 0.0798081
\(288\) 0 0
\(289\) −4.42806 13.6282i −0.260474 0.801657i
\(290\) 0 0
\(291\) 5.35168 + 3.88822i 0.313721 + 0.227932i
\(292\) 0 0
\(293\) −1.18755 + 3.65492i −0.0693776 + 0.213522i −0.979734 0.200303i \(-0.935807\pi\)
0.910356 + 0.413825i \(0.135807\pi\)
\(294\) 0 0
\(295\) −3.65184 + 2.65322i −0.212618 + 0.154476i
\(296\) 0 0
\(297\) −7.67709 + 6.38180i −0.445470 + 0.370309i
\(298\) 0 0
\(299\) 36.9868 26.8725i 2.13900 1.55408i
\(300\) 0 0
\(301\) 0.606980 1.86809i 0.0349857 0.107675i
\(302\) 0 0
\(303\) −7.02162 5.10151i −0.403382 0.293074i
\(304\) 0 0
\(305\) −9.99559 30.7633i −0.572346 1.76150i
\(306\) 0 0
\(307\) 1.90905 0.108955 0.0544775 0.998515i \(-0.482651\pi\)
0.0544775 + 0.998515i \(0.482651\pi\)
\(308\) 0 0
\(309\) −8.55858 −0.486880
\(310\) 0 0
\(311\) −1.24291 3.82528i −0.0704788 0.216911i 0.909613 0.415457i \(-0.136378\pi\)
−0.980092 + 0.198545i \(0.936378\pi\)
\(312\) 0 0
\(313\) −12.5924 9.14891i −0.711764 0.517127i 0.171978 0.985101i \(-0.444984\pi\)
−0.883742 + 0.467974i \(0.844984\pi\)
\(314\) 0 0
\(315\) 1.83163 5.63717i 0.103201 0.317619i
\(316\) 0 0
\(317\) 3.65768 2.65746i 0.205436 0.149258i −0.480310 0.877099i \(-0.659476\pi\)
0.685746 + 0.727841i \(0.259476\pi\)
\(318\) 0 0
\(319\) −18.6758 11.7899i −1.04565 0.660110i
\(320\) 0 0
\(321\) −0.973408 + 0.707222i −0.0543303 + 0.0394733i
\(322\) 0 0
\(323\) 2.74146 8.43733i 0.152539 0.469466i
\(324\) 0 0
\(325\) 1.09166 + 0.793138i 0.0605544 + 0.0439954i
\(326\) 0 0
\(327\) 2.63353 + 8.10518i 0.145635 + 0.448217i
\(328\) 0 0
\(329\) 0.875424 0.0482637
\(330\) 0 0
\(331\) −24.0631 −1.32263 −0.661313 0.750110i \(-0.730001\pi\)
−0.661313 + 0.750110i \(0.730001\pi\)
\(332\) 0 0
\(333\) −5.84538 17.9902i −0.320325 0.985858i
\(334\) 0 0
\(335\) 23.6055 + 17.1504i 1.28970 + 0.937025i
\(336\) 0 0
\(337\) −8.28335 + 25.4935i −0.451223 + 1.38872i 0.424290 + 0.905526i \(0.360524\pi\)
−0.875513 + 0.483195i \(0.839476\pi\)
\(338\) 0 0
\(339\) 2.37013 1.72200i 0.128728 0.0935260i
\(340\) 0 0
\(341\) 11.0720 + 27.7719i 0.599583 + 1.50393i
\(342\) 0 0
\(343\) 0.809017 0.587785i 0.0436828 0.0317374i
\(344\) 0 0
\(345\) 3.15425 9.70777i 0.169819 0.522649i
\(346\) 0 0
\(347\) 16.2447 + 11.8025i 0.872062 + 0.633590i 0.931140 0.364663i \(-0.118816\pi\)
−0.0590772 + 0.998253i \(0.518816\pi\)
\(348\) 0 0
\(349\) −8.80285 27.0924i −0.471206 1.45022i −0.851007 0.525154i \(-0.824008\pi\)
0.379802 0.925068i \(-0.375992\pi\)
\(350\) 0 0
\(351\) 15.4317 0.823684
\(352\) 0 0
\(353\) −6.03292 −0.321100 −0.160550 0.987028i \(-0.551327\pi\)
−0.160550 + 0.987028i \(0.551327\pi\)
\(354\) 0 0
\(355\) −5.01015 15.4197i −0.265911 0.818391i
\(356\) 0 0
\(357\) 0.695303 + 0.505167i 0.0367993 + 0.0267363i
\(358\) 0 0
\(359\) 0.744900 2.29257i 0.0393143 0.120997i −0.929473 0.368890i \(-0.879738\pi\)
0.968788 + 0.247893i \(0.0797380\pi\)
\(360\) 0 0
\(361\) −8.47181 + 6.15513i −0.445885 + 0.323954i
\(362\) 0 0
\(363\) −1.05703 + 5.68774i −0.0554799 + 0.298529i
\(364\) 0 0
\(365\) 6.31833 4.59054i 0.330717 0.240280i
\(366\) 0 0
\(367\) −1.58959 + 4.89224i −0.0829757 + 0.255373i −0.983934 0.178533i \(-0.942865\pi\)
0.900958 + 0.433906i \(0.142865\pi\)
\(368\) 0 0
\(369\) −2.97892 2.16431i −0.155076 0.112669i
\(370\) 0 0
\(371\) 0.760024 + 2.33911i 0.0394585 + 0.121441i
\(372\) 0 0
\(373\) 9.35489 0.484378 0.242189 0.970229i \(-0.422135\pi\)
0.242189 + 0.970229i \(0.422135\pi\)
\(374\) 0 0
\(375\) 6.02439 0.311098
\(376\) 0 0
\(377\) 10.5497 + 32.4687i 0.543338 + 1.67222i
\(378\) 0 0
\(379\) 0.462861 + 0.336288i 0.0237756 + 0.0172740i 0.599610 0.800293i \(-0.295323\pi\)
−0.575834 + 0.817567i \(0.695323\pi\)
\(380\) 0 0
\(381\) 1.14249 3.51623i 0.0585317 0.180142i
\(382\) 0 0
\(383\) 13.5191 9.82219i 0.690793 0.501890i −0.186128 0.982526i \(-0.559594\pi\)
0.876921 + 0.480635i \(0.159594\pi\)
\(384\) 0 0
\(385\) −2.67318 6.70514i −0.136238 0.341725i
\(386\) 0 0
\(387\) −4.32775 + 3.14429i −0.219992 + 0.159833i
\(388\) 0 0
\(389\) 1.57969 4.86178i 0.0800934 0.246502i −0.902990 0.429662i \(-0.858633\pi\)
0.983083 + 0.183160i \(0.0586326\pi\)
\(390\) 0 0
\(391\) −11.7897 8.56574i −0.596232 0.433188i
\(392\) 0 0
\(393\) −1.37861 4.24293i −0.0695417 0.214027i
\(394\) 0 0
\(395\) −29.4075 −1.47965
\(396\) 0 0
\(397\) −21.8271 −1.09547 −0.547737 0.836651i \(-0.684510\pi\)
−0.547737 + 0.836651i \(0.684510\pi\)
\(398\) 0 0
\(399\) −0.882278 2.71537i −0.0441692 0.135939i
\(400\) 0 0
\(401\) 18.1120 + 13.1591i 0.904471 + 0.657136i 0.939610 0.342246i \(-0.111188\pi\)
−0.0351397 + 0.999382i \(0.511188\pi\)
\(402\) 0 0
\(403\) 14.2811 43.9527i 0.711393 2.18944i
\(404\) 0 0
\(405\) −11.5984 + 8.42674i −0.576330 + 0.418728i
\(406\) 0 0
\(407\) −19.4795 12.2973i −0.965563 0.609554i
\(408\) 0 0
\(409\) 7.61220 5.53058i 0.376399 0.273470i −0.383460 0.923557i \(-0.625268\pi\)
0.759859 + 0.650087i \(0.225268\pi\)
\(410\) 0 0
\(411\) 2.05439 6.32278i 0.101336 0.311880i
\(412\) 0 0
\(413\) 1.67791 + 1.21908i 0.0825647 + 0.0599868i
\(414\) 0 0
\(415\) 1.61184 + 4.96074i 0.0791222 + 0.243513i
\(416\) 0 0
\(417\) 3.82927 0.187520
\(418\) 0 0
\(419\) −8.07960 −0.394714 −0.197357 0.980332i \(-0.563236\pi\)
−0.197357 + 0.980332i \(0.563236\pi\)
\(420\) 0 0
\(421\) 9.79656 + 30.1507i 0.477455 + 1.46946i 0.842618 + 0.538512i \(0.181013\pi\)
−0.365162 + 0.930944i \(0.618987\pi\)
\(422\) 0 0
\(423\) −1.92881 1.40136i −0.0937817 0.0681364i
\(424\) 0 0
\(425\) 0.132914 0.409066i 0.00644726 0.0198426i
\(426\) 0 0
\(427\) −12.0238 + 8.73579i −0.581872 + 0.422755i
\(428\) 0 0
\(429\) 6.87671 5.71646i 0.332011 0.275993i
\(430\) 0 0
\(431\) −0.237291 + 0.172402i −0.0114299 + 0.00830431i −0.593486 0.804845i \(-0.702249\pi\)
0.582056 + 0.813149i \(0.302249\pi\)
\(432\) 0 0
\(433\) −0.693983 + 2.13586i −0.0333507 + 0.102643i −0.966346 0.257245i \(-0.917185\pi\)
0.932995 + 0.359888i \(0.117185\pi\)
\(434\) 0 0
\(435\) 6.16652 + 4.48024i 0.295662 + 0.214811i
\(436\) 0 0
\(437\) 14.9601 + 46.0425i 0.715640 + 2.20251i
\(438\) 0 0
\(439\) 1.78897 0.0853829 0.0426915 0.999088i \(-0.486407\pi\)
0.0426915 + 0.999088i \(0.486407\pi\)
\(440\) 0 0
\(441\) −2.72341 −0.129686
\(442\) 0 0
\(443\) 3.67238 + 11.3024i 0.174480 + 0.536995i 0.999609 0.0279494i \(-0.00889773\pi\)
−0.825129 + 0.564944i \(0.808898\pi\)
\(444\) 0 0
\(445\) −25.2126 18.3180i −1.19519 0.868358i
\(446\) 0 0
\(447\) 0.879218 2.70596i 0.0415856 0.127987i
\(448\) 0 0
\(449\) 11.9846 8.70729i 0.565586 0.410922i −0.267913 0.963443i \(-0.586334\pi\)
0.833499 + 0.552521i \(0.186334\pi\)
\(450\) 0 0
\(451\) −4.47467 + 0.292188i −0.210704 + 0.0137586i
\(452\) 0 0
\(453\) 2.56918 1.86662i 0.120711 0.0877015i
\(454\) 0 0
\(455\) −3.44797 + 10.6118i −0.161643 + 0.497487i
\(456\) 0 0
\(457\) −21.8339 15.8632i −1.02135 0.742051i −0.0547877 0.998498i \(-0.517448\pi\)
−0.966558 + 0.256447i \(0.917448\pi\)
\(458\) 0 0
\(459\) −1.52003 4.67819i −0.0709492 0.218359i
\(460\) 0 0
\(461\) −6.47510 −0.301575 −0.150788 0.988566i \(-0.548181\pi\)
−0.150788 + 0.988566i \(0.548181\pi\)
\(462\) 0 0
\(463\) 19.3237 0.898047 0.449024 0.893520i \(-0.351772\pi\)
0.449024 + 0.893520i \(0.351772\pi\)
\(464\) 0 0
\(465\) −3.18850 9.81318i −0.147863 0.455075i
\(466\) 0 0
\(467\) −7.50653 5.45382i −0.347361 0.252372i 0.400400 0.916340i \(-0.368871\pi\)
−0.747761 + 0.663968i \(0.768871\pi\)
\(468\) 0 0
\(469\) 4.14281 12.7503i 0.191297 0.588752i
\(470\) 0 0
\(471\) −4.57749 + 3.32574i −0.210919 + 0.153242i
\(472\) 0 0
\(473\) −1.60513 + 6.31377i −0.0738041 + 0.290307i
\(474\) 0 0
\(475\) −1.15598 + 0.839871i −0.0530401 + 0.0385359i
\(476\) 0 0
\(477\) 2.06986 6.37036i 0.0947722 0.291679i
\(478\) 0 0
\(479\) 27.8893 + 20.2628i 1.27430 + 0.925831i 0.999365 0.0356331i \(-0.0113448\pi\)
0.274932 + 0.961464i \(0.411345\pi\)
\(480\) 0 0
\(481\) 11.0037 + 33.8659i 0.501726 + 1.54415i
\(482\) 0 0
\(483\) −4.68998 −0.213401
\(484\) 0 0
\(485\) 27.3750 1.24304
\(486\) 0 0
\(487\) 12.4959 + 38.4584i 0.566242 + 1.74272i 0.664231 + 0.747528i \(0.268759\pi\)
−0.0979883 + 0.995188i \(0.531241\pi\)
\(488\) 0 0
\(489\) −8.71898 6.33471i −0.394286 0.286466i
\(490\) 0 0
\(491\) 0.671162 2.06563i 0.0302891 0.0932204i −0.934769 0.355256i \(-0.884394\pi\)
0.965058 + 0.262035i \(0.0843937\pi\)
\(492\) 0 0
\(493\) 8.80386 6.39638i 0.396506 0.288079i
\(494\) 0 0
\(495\) −4.84367 + 19.0525i −0.217707 + 0.856345i
\(496\) 0 0
\(497\) −6.02676 + 4.37870i −0.270337 + 0.196411i
\(498\) 0 0
\(499\) −3.49078 + 10.7435i −0.156269 + 0.480945i −0.998287 0.0585032i \(-0.981367\pi\)
0.842019 + 0.539448i \(0.181367\pi\)
\(500\) 0 0
\(501\) 1.74562 + 1.26827i 0.0779887 + 0.0566621i
\(502\) 0 0
\(503\) −5.09354 15.6763i −0.227110 0.698971i −0.998071 0.0620890i \(-0.980224\pi\)
0.770961 0.636882i \(-0.219776\pi\)
\(504\) 0 0
\(505\) −35.9171 −1.59829
\(506\) 0 0
\(507\) −6.98590 −0.310255
\(508\) 0 0
\(509\) −6.91722 21.2890i −0.306600 0.943619i −0.979075 0.203499i \(-0.934769\pi\)
0.672475 0.740120i \(-0.265231\pi\)
\(510\) 0 0
\(511\) −2.90309 2.10922i −0.128425 0.0933063i
\(512\) 0 0
\(513\) −5.04964 + 15.5412i −0.222947 + 0.686160i
\(514\) 0 0
\(515\) −28.6537 + 20.8181i −1.26263 + 0.917357i
\(516\) 0 0
\(517\) −2.89728 + 0.189187i −0.127422 + 0.00832045i
\(518\) 0 0
\(519\) −8.16447 + 5.93184i −0.358381 + 0.260379i
\(520\) 0 0
\(521\) 10.3344 31.8061i 0.452759 1.39345i −0.420987 0.907067i \(-0.638316\pi\)
0.873746 0.486383i \(-0.161684\pi\)
\(522\) 0 0
\(523\) 9.66045 + 7.01873i 0.422422 + 0.306908i 0.778612 0.627506i \(-0.215924\pi\)
−0.356190 + 0.934414i \(0.615924\pi\)
\(524\) 0 0
\(525\) −0.0427754 0.131649i −0.00186687 0.00574564i
\(526\) 0 0
\(527\) −14.7312 −0.641699
\(528\) 0 0
\(529\) 56.5244 2.45758
\(530\) 0 0
\(531\) −1.74545 5.37194i −0.0757460 0.233122i
\(532\) 0 0
\(533\) 5.60770 + 4.07423i 0.242896 + 0.176475i
\(534\) 0 0
\(535\) −1.53866 + 4.73550i −0.0665219 + 0.204733i
\(536\) 0 0
\(537\) 4.19526 3.04804i 0.181039 0.131532i
\(538\) 0 0
\(539\) −2.55048 + 2.12016i −0.109857 + 0.0913216i
\(540\) 0 0
\(541\) −2.83855 + 2.06233i −0.122039 + 0.0886664i −0.647130 0.762379i \(-0.724031\pi\)
0.525092 + 0.851046i \(0.324031\pi\)
\(542\) 0 0
\(543\) −0.481349 + 1.48144i −0.0206567 + 0.0635747i
\(544\) 0 0
\(545\) 28.5322 + 20.7299i 1.22219 + 0.887970i
\(546\) 0 0
\(547\) −4.24880 13.0765i −0.181666 0.559109i 0.818209 0.574920i \(-0.194967\pi\)
−0.999875 + 0.0158110i \(0.994967\pi\)
\(548\) 0 0
\(549\) 40.4759 1.72747
\(550\) 0 0
\(551\) −36.1512 −1.54009
\(552\) 0 0
\(553\) 4.17541 + 12.8506i 0.177556 + 0.546462i
\(554\) 0 0
\(555\) 6.43188 + 4.67304i 0.273018 + 0.198359i
\(556\) 0 0
\(557\) 1.20258 3.70117i 0.0509551 0.156824i −0.922341 0.386377i \(-0.873726\pi\)
0.973296 + 0.229553i \(0.0737265\pi\)
\(558\) 0 0
\(559\) 8.14683 5.91902i 0.344574 0.250348i
\(560\) 0 0
\(561\) −2.41033 1.52163i −0.101764 0.0642432i
\(562\) 0 0
\(563\) 21.5723 15.6732i 0.909165 0.660547i −0.0316387 0.999499i \(-0.510073\pi\)
0.940803 + 0.338953i \(0.110073\pi\)
\(564\) 0 0
\(565\) 3.74643 11.5303i 0.157614 0.485085i
\(566\) 0 0
\(567\) 5.32913 + 3.87184i 0.223802 + 0.162602i
\(568\) 0 0
\(569\) −10.4757 32.2407i −0.439162 1.35160i −0.888761 0.458372i \(-0.848433\pi\)
0.449598 0.893231i \(-0.351567\pi\)
\(570\) 0 0
\(571\) 21.5596 0.902241 0.451121 0.892463i \(-0.351024\pi\)
0.451121 + 0.892463i \(0.351024\pi\)
\(572\) 0 0
\(573\) 9.15922 0.382632
\(574\) 0 0
\(575\) 0.725310 + 2.23227i 0.0302475 + 0.0930923i
\(576\) 0 0
\(577\) 14.1567 + 10.2854i 0.589350 + 0.428188i 0.842083 0.539348i \(-0.181329\pi\)
−0.252733 + 0.967536i \(0.581329\pi\)
\(578\) 0 0
\(579\) 2.82037 8.68020i 0.117211 0.360737i
\(580\) 0 0
\(581\) 1.93890 1.40869i 0.0804391 0.0584424i
\(582\) 0 0
\(583\) −3.02086 7.57723i −0.125111 0.313817i
\(584\) 0 0
\(585\) 24.5839 17.8613i 1.01642 0.738473i
\(586\) 0 0
\(587\) 10.8126 33.2777i 0.446283 1.37352i −0.434787 0.900534i \(-0.643176\pi\)
0.881070 0.472986i \(-0.156824\pi\)
\(588\) 0 0
\(589\) 39.5914 + 28.7649i 1.63134 + 1.18524i
\(590\) 0 0
\(591\) −3.83880 11.8146i −0.157907 0.485989i
\(592\) 0 0
\(593\) 5.55805 0.228242 0.114121 0.993467i \(-0.463595\pi\)
0.114121 + 0.993467i \(0.463595\pi\)
\(594\) 0 0
\(595\) 3.55663 0.145808
\(596\) 0 0
\(597\) 1.15636 + 3.55892i 0.0473268 + 0.145657i
\(598\) 0 0
\(599\) 14.7254 + 10.6986i 0.601662 + 0.437133i 0.846469 0.532439i \(-0.178724\pi\)
−0.244806 + 0.969572i \(0.578724\pi\)
\(600\) 0 0
\(601\) −11.8945 + 36.6076i −0.485188 + 1.49326i 0.346520 + 0.938043i \(0.387363\pi\)
−0.831708 + 0.555213i \(0.812637\pi\)
\(602\) 0 0
\(603\) −29.5381 + 21.4607i −1.20288 + 0.873947i
\(604\) 0 0
\(605\) 10.2961 + 21.6135i 0.418598 + 0.878712i
\(606\) 0 0
\(607\) −3.06013 + 2.22331i −0.124207 + 0.0902415i −0.648154 0.761509i \(-0.724459\pi\)
0.523948 + 0.851751i \(0.324459\pi\)
\(608\) 0 0
\(609\) 1.08224 3.33078i 0.0438545 0.134970i
\(610\) 0 0
\(611\) 3.63090 + 2.63801i 0.146891 + 0.106722i
\(612\) 0 0
\(613\) −0.934929 2.87742i −0.0377614 0.116218i 0.930399 0.366549i \(-0.119461\pi\)
−0.968160 + 0.250331i \(0.919461\pi\)
\(614\) 0 0
\(615\) 1.54757 0.0624041
\(616\) 0 0
\(617\) 11.1071 0.447156 0.223578 0.974686i \(-0.428226\pi\)
0.223578 + 0.974686i \(0.428226\pi\)
\(618\) 0 0
\(619\) 8.04604 + 24.7632i 0.323398 + 0.995315i 0.972159 + 0.234323i \(0.0752874\pi\)
−0.648761 + 0.760992i \(0.724713\pi\)
\(620\) 0 0
\(621\) 21.7162 + 15.7777i 0.871439 + 0.633138i
\(622\) 0 0
\(623\) −4.42487 + 13.6183i −0.177278 + 0.545607i
\(624\) 0 0
\(625\) 19.1047 13.8804i 0.764188 0.555215i
\(626\) 0 0
\(627\) 3.50679 + 8.79607i 0.140048 + 0.351281i
\(628\) 0 0
\(629\) 9.18272 6.67164i 0.366139 0.266016i
\(630\) 0 0
\(631\) −3.35155 + 10.3150i −0.133423 + 0.410634i −0.995341 0.0964131i \(-0.969263\pi\)
0.861918 + 0.507047i \(0.169263\pi\)
\(632\) 0 0
\(633\) −4.46467 3.24377i −0.177455 0.128928i
\(634\) 0 0
\(635\) −4.72798 14.5512i −0.187624 0.577447i
\(636\) 0 0
\(637\) 5.12671 0.203128
\(638\) 0 0
\(639\) 20.2880 0.802580
\(640\) 0 0
\(641\) 3.52074 + 10.8357i 0.139061 + 0.427985i 0.996200 0.0871006i \(-0.0277602\pi\)
−0.857139 + 0.515086i \(0.827760\pi\)
\(642\) 0 0
\(643\) 33.5046 + 24.3425i 1.32129 + 0.959976i 0.999915 + 0.0130256i \(0.00414631\pi\)
0.321379 + 0.946951i \(0.395854\pi\)
\(644\) 0 0
\(645\) 0.694764 2.13826i 0.0273563 0.0841940i
\(646\) 0 0
\(647\) −11.0936 + 8.06000i −0.436136 + 0.316871i −0.784098 0.620638i \(-0.786874\pi\)
0.347962 + 0.937509i \(0.386874\pi\)
\(648\) 0 0
\(649\) −5.81664 3.67201i −0.228323 0.144139i
\(650\) 0 0
\(651\) −3.83547 + 2.78663i −0.150324 + 0.109217i
\(652\) 0 0
\(653\) −6.22163 + 19.1482i −0.243471 + 0.749327i 0.752413 + 0.658692i \(0.228890\pi\)
−0.995884 + 0.0906355i \(0.971110\pi\)
\(654\) 0 0
\(655\) −14.9362 10.8518i −0.583604 0.424013i
\(656\) 0 0
\(657\) 3.01993 + 9.29440i 0.117819 + 0.362609i
\(658\) 0 0
\(659\) −28.8156 −1.12250 −0.561249 0.827647i \(-0.689679\pi\)
−0.561249 + 0.827647i \(0.689679\pi\)
\(660\) 0 0
\(661\) −49.5634 −1.92779 −0.963896 0.266278i \(-0.914206\pi\)
−0.963896 + 0.266278i \(0.914206\pi\)
\(662\) 0 0
\(663\) 1.36156 + 4.19046i 0.0528787 + 0.162744i
\(664\) 0 0
\(665\) −9.55879 6.94487i −0.370674 0.269310i
\(666\) 0 0
\(667\) −18.3507 + 56.4776i −0.710541 + 2.18682i
\(668\) 0 0
\(669\) −5.05974 + 3.67611i −0.195621 + 0.142127i
\(670\) 0 0
\(671\) 37.9057 31.5102i 1.46334 1.21644i
\(672\) 0 0
\(673\) −0.403959 + 0.293494i −0.0155715 + 0.0113133i −0.595544 0.803323i \(-0.703063\pi\)
0.579972 + 0.814636i \(0.303063\pi\)
\(674\) 0 0
\(675\) −0.244821 + 0.753481i −0.00942316 + 0.0290015i
\(676\) 0 0
\(677\) 5.39523 + 3.91986i 0.207355 + 0.150653i 0.686616 0.727020i \(-0.259095\pi\)
−0.479261 + 0.877672i \(0.659095\pi\)
\(678\) 0 0
\(679\) −3.88682 11.9624i −0.149162 0.459075i
\(680\) 0 0
\(681\) −4.45486 −0.170710
\(682\) 0 0
\(683\) −13.8925 −0.531583 −0.265792 0.964030i \(-0.585633\pi\)
−0.265792 + 0.964030i \(0.585633\pi\)
\(684\) 0 0
\(685\) −8.50170 26.1655i −0.324833 0.999734i
\(686\) 0 0
\(687\) 8.68068 + 6.30688i 0.331188 + 0.240622i
\(688\) 0 0
\(689\) −3.89642 + 11.9920i −0.148442 + 0.456857i
\(690\) 0 0
\(691\) −6.71119 + 4.87596i −0.255306 + 0.185490i −0.708075 0.706137i \(-0.750436\pi\)
0.452769 + 0.891628i \(0.350436\pi\)
\(692\) 0 0
\(693\) 9.01332 0.588555i 0.342388 0.0223573i
\(694\) 0 0
\(695\) 12.8202 9.31444i 0.486299 0.353317i
\(696\) 0 0
\(697\) 0.682758 2.10131i 0.0258613 0.0795929i
\(698\) 0 0
\(699\) −4.83735 3.51454i −0.182965 0.132932i
\(700\) 0 0
\(701\) 0.249605 + 0.768204i 0.00942743 + 0.0290147i 0.955660 0.294474i \(-0.0951443\pi\)
−0.946232 + 0.323488i \(0.895144\pi\)
\(702\) 0 0
\(703\) −37.7069 −1.42214
\(704\) 0 0
\(705\) 1.00203 0.0377387
\(706\) 0 0
\(707\) 5.09967 + 15.6952i 0.191793 + 0.590277i
\(708\) 0 0
\(709\) −4.81301 3.49686i −0.180756 0.131327i 0.493728 0.869617i \(-0.335634\pi\)
−0.674484 + 0.738289i \(0.735634\pi\)
\(710\) 0 0
\(711\) 11.3713 34.9974i 0.426458 1.31250i
\(712\) 0 0
\(713\) 65.0352 47.2508i 2.43559 1.76956i
\(714\) 0 0
\(715\) 9.11802 35.8656i 0.340995 1.34130i
\(716\) 0 0
\(717\) −10.2267 + 7.43012i −0.381923 + 0.277483i
\(718\) 0 0
\(719\) −2.35485 + 7.24747i −0.0878209 + 0.270285i −0.985316 0.170739i \(-0.945385\pi\)
0.897495 + 0.441024i \(0.145385\pi\)
\(720\) 0 0
\(721\) 13.1655 + 9.56532i 0.490310 + 0.356231i
\(722\) 0 0
\(723\) −1.28057 3.94119i −0.0476249 0.146574i
\(724\) 0 0
\(725\) −1.75271 −0.0650941
\(726\) 0 0
\(727\) −4.24890 −0.157583 −0.0787915 0.996891i \(-0.525106\pi\)
−0.0787915 + 0.996891i \(0.525106\pi\)
\(728\) 0 0
\(729\) −4.07605 12.5448i −0.150965 0.464622i
\(730\) 0 0
\(731\) −2.59684 1.88672i −0.0960477 0.0697827i
\(732\) 0 0
\(733\) −8.85532 + 27.2539i −0.327079 + 1.00665i 0.643415 + 0.765518i \(0.277517\pi\)
−0.970493 + 0.241127i \(0.922483\pi\)
\(734\) 0 0
\(735\) 0.926020 0.672793i 0.0341568 0.0248163i
\(736\) 0 0
\(737\) −10.9555 + 43.0932i −0.403551 + 1.58736i
\(738\) 0 0
\(739\) −22.9012 + 16.6387i −0.842433 + 0.612063i −0.923049 0.384682i \(-0.874311\pi\)
0.0806163 + 0.996745i \(0.474311\pi\)
\(740\) 0 0
\(741\) 4.52319 13.9209i 0.166163 0.511398i
\(742\) 0 0
\(743\) −17.6526 12.8253i −0.647609 0.470516i 0.214847 0.976648i \(-0.431075\pi\)
−0.862456 + 0.506132i \(0.831075\pi\)
\(744\) 0 0
\(745\) −3.63847 11.1981i −0.133303 0.410265i
\(746\) 0 0
\(747\) −6.52695 −0.238808
\(748\) 0 0
\(749\) 2.28779 0.0835942
\(750\) 0 0
\(751\) −14.9835 46.1145i −0.546756 1.68274i −0.716779 0.697301i \(-0.754384\pi\)
0.170023 0.985440i \(-0.445616\pi\)
\(752\) 0 0
\(753\) 3.54470 + 2.57538i 0.129176 + 0.0938520i
\(754\) 0 0
\(755\) 4.06108 12.4987i 0.147798 0.454875i
\(756\) 0 0
\(757\) −10.6851 + 7.76317i −0.388356 + 0.282157i −0.764781 0.644290i \(-0.777153\pi\)
0.376426 + 0.926447i \(0.377153\pi\)
\(758\) 0 0
\(759\) 15.5218 1.01355i 0.563407 0.0367895i
\(760\) 0 0
\(761\) −32.1685 + 23.3718i −1.16611 + 0.847225i −0.990538 0.137242i \(-0.956176\pi\)
−0.175568 + 0.984467i \(0.556176\pi\)
\(762\) 0 0
\(763\) 5.00747 15.4114i 0.181282 0.557930i
\(764\) 0 0
\(765\) −7.83626 5.69337i −0.283320 0.205844i
\(766\) 0 0
\(767\) 3.28574 + 10.1125i 0.118641 + 0.365140i
\(768\) 0 0
\(769\) 42.5687 1.53507 0.767534 0.641008i \(-0.221484\pi\)
0.767534 + 0.641008i \(0.221484\pi\)
\(770\) 0 0
\(771\) −1.81688 −0.0654332
\(772\) 0 0
\(773\) −11.2093 34.4988i −0.403172 1.24084i −0.922412 0.386207i \(-0.873785\pi\)
0.519240 0.854628i \(-0.326215\pi\)
\(774\) 0 0
\(775\) 1.91950 + 1.39460i 0.0689507 + 0.0500956i
\(776\) 0 0
\(777\) 1.12881 3.47412i 0.0404958 0.124633i
\(778\) 0 0
\(779\) −5.93812 + 4.31429i −0.212755 + 0.154576i
\(780\) 0 0
\(781\) 18.9998 15.7941i 0.679865 0.565157i
\(782\) 0 0
\(783\) −16.2163 + 11.7818i −0.579524 + 0.421049i
\(784\) 0 0
\(785\) −7.23559 + 22.2688i −0.258249 + 0.794809i
\(786\) 0 0
\(787\) 2.01066 + 1.46083i 0.0716725 + 0.0520731i 0.623045 0.782186i \(-0.285896\pi\)
−0.551372 + 0.834259i \(0.685896\pi\)
\(788\) 0 0
\(789\) 1.41321 + 4.34941i 0.0503116 + 0.154843i
\(790\) 0 0
\(791\) −5.57049 −0.198064
\(792\) 0 0
\(793\) −76.1943 −2.70574
\(794\) 0 0
\(795\) 0.869942 + 2.67741i 0.0308537 + 0.0949578i
\(796\) 0 0
\(797\) −45.4439 33.0169i −1.60971 1.16952i −0.864411 0.502785i \(-0.832309\pi\)
−0.745295 0.666735i \(-0.767691\pi\)
\(798\) 0 0
\(799\) 0.442076 1.36057i 0.0156395 0.0481335i
\(800\) 0 0
\(801\) 31.5492 22.9218i 1.11474 0.809902i
\(802\) 0 0
\(803\) 10.0638 + 6.35323i 0.355144 + 0.224201i
\(804\) 0 0
\(805\) −15.7018 + 11.4080i −0.553417 + 0.402081i
\(806\) 0 0
\(807\) −4.16702 + 12.8248i −0.146686 + 0.451453i
\(808\) 0 0
\(809\) −20.6667 15.0152i −0.726603 0.527908i 0.161884 0.986810i \(-0.448243\pi\)
−0.888487 + 0.458902i \(0.848243\pi\)
\(810\) 0 0
\(811\) −4.98339 15.3373i −0.174991 0.538566i 0.824642 0.565654i \(-0.191376\pi\)
−0.999633 + 0.0270887i \(0.991376\pi\)
\(812\) 0 0
\(813\) −7.41355 −0.260004
\(814\) 0 0
\(815\) −44.5995 −1.56225
\(816\) 0 0
\(817\) 3.29516 + 10.1415i 0.115283 + 0.354805i
\(818\) 0 0
\(819\) −11.2956 8.20673i −0.394700 0.286766i
\(820\) 0 0
\(821\) −5.88368 + 18.1081i −0.205342 + 0.631977i 0.794357 + 0.607451i \(0.207808\pi\)
−0.999699 + 0.0245266i \(0.992192\pi\)
\(822\) 0 0
\(823\) 29.5650 21.4802i 1.03057 0.748753i 0.0621473 0.998067i \(-0.480205\pi\)
0.968423 + 0.249314i \(0.0802051\pi\)
\(824\) 0 0
\(825\) 0.170019 + 0.426458i 0.00591930 + 0.0148474i
\(826\) 0 0
\(827\) −8.52492 + 6.19372i −0.296441 + 0.215377i −0.726057 0.687635i \(-0.758649\pi\)
0.429616 + 0.903012i \(0.358649\pi\)
\(828\) 0 0
\(829\) 12.1919 37.5227i 0.423441 1.30322i −0.481038 0.876700i \(-0.659740\pi\)
0.904479 0.426518i \(-0.140260\pi\)
\(830\) 0 0
\(831\) 3.73787 + 2.71572i 0.129665 + 0.0942074i
\(832\) 0 0
\(833\) −0.504985 1.55418i −0.0174967 0.0538493i
\(834\) 0 0
\(835\) 8.92925 0.309009
\(836\) 0 0
\(837\) 27.1341 0.937892
\(838\) 0 0
\(839\) 2.59670 + 7.99182i 0.0896480 + 0.275908i 0.985822 0.167795i \(-0.0536645\pi\)
−0.896174 + 0.443703i \(0.853665\pi\)
\(840\) 0 0
\(841\) −12.4139 9.01924i −0.428066 0.311008i
\(842\) 0 0
\(843\) −3.50660 + 10.7922i −0.120774 + 0.371703i
\(844\) 0 0
\(845\) −23.3885 + 16.9927i −0.804588 + 0.584567i
\(846\) 0 0
\(847\) 7.98281 7.56800i 0.274293 0.260040i
\(848\) 0 0
\(849\) −0.230328 + 0.167343i −0.00790484 + 0.00574320i
\(850\) 0 0
\(851\) −19.1404 + 58.9080i −0.656123 + 2.01934i
\(852\) 0 0
\(853\) 38.2269 + 27.7735i 1.30886 + 0.950945i 1.00000 0.000161167i \(-5.13011e-5\pi\)
0.308864 + 0.951106i \(0.400051\pi\)
\(854\) 0 0
\(855\) 9.94352 + 30.6030i 0.340061 + 1.04660i
\(856\) 0 0
\(857\) 2.80919 0.0959602 0.0479801 0.998848i \(-0.484722\pi\)
0.0479801 + 0.998848i \(0.484722\pi\)
\(858\) 0 0
\(859\) 26.7290 0.911980 0.455990 0.889985i \(-0.349285\pi\)
0.455990 + 0.889985i \(0.349285\pi\)
\(860\) 0 0
\(861\) −0.219731 0.676262i −0.00748841 0.0230469i
\(862\) 0 0
\(863\) −39.5669 28.7471i −1.34687 0.978561i −0.999161 0.0409600i \(-0.986958\pi\)
−0.347713 0.937601i \(-0.613042\pi\)
\(864\) 0 0
\(865\) −12.9055 + 39.7190i −0.438800 + 1.35049i
\(866\) 0 0
\(867\) −6.09690 + 4.42966i −0.207062 + 0.150439i
\(868\) 0 0
\(869\) −16.5960 41.6276i −0.562979 1.41212i
\(870\) 0 0
\(871\) 55.6044 40.3989i 1.88408 1.36887i
\(872\) 0 0
\(873\) −10.5854 + 32.5785i −0.358261 + 1.10261i
\(874\) 0 0
\(875\) −9.26723 6.73304i −0.313290 0.227618i
\(876\) 0 0
\(877\) 4.48656 + 13.8082i 0.151500 + 0.466270i 0.997790 0.0664538i \(-0.0211685\pi\)
−0.846289 + 0.532724i \(0.821168\pi\)
\(878\) 0 0
\(879\) 2.02112 0.0681706
\(880\) 0 0
\(881\) 42.3082 1.42540 0.712700 0.701469i \(-0.247472\pi\)
0.712700 + 0.701469i \(0.247472\pi\)
\(882\) 0 0
\(883\) 10.8791 + 33.4824i 0.366111 + 1.12677i 0.949283 + 0.314424i \(0.101811\pi\)
−0.583172 + 0.812349i \(0.698189\pi\)
\(884\) 0 0
\(885\) 1.92058 + 1.39538i 0.0645596 + 0.0469053i
\(886\) 0 0
\(887\) 16.0130 49.2829i 0.537664 1.65476i −0.200159 0.979763i \(-0.564146\pi\)
0.737822 0.674995i \(-0.235854\pi\)
\(888\) 0 0
\(889\) −5.68733 + 4.13208i −0.190747 + 0.138586i
\(890\) 0 0
\(891\) −18.4739 11.6625i −0.618899 0.390708i
\(892\) 0 0
\(893\) −3.84484 + 2.79344i −0.128663 + 0.0934790i
\(894\) 0 0
\(895\) 6.63141 20.4094i 0.221664 0.682210i
\(896\) 0 0
\(897\) −19.4521 14.1328i −0.649488 0.471880i
\(898\) 0 0
\(899\) 18.5499 + 57.0909i 0.618675 + 1.90409i
\(900\) 0 0
\(901\) 4.01921 0.133899
\(902\) 0 0
\(903\) −1.03303 −0.0343770
\(904\) 0 0
\(905\) 1.99197 + 6.13064i 0.0662152 + 0.203789i
\(906\) 0 0
\(907\) −7.35116 5.34093i −0.244091 0.177343i 0.459013 0.888430i \(-0.348203\pi\)
−0.703104 + 0.711087i \(0.748203\pi\)
\(908\) 0 0
\(909\) 13.8885 42.7443i 0.460651 1.41774i
\(910\) 0 0
\(911\) 12.1735 8.84458i 0.403327 0.293034i −0.367568 0.929997i \(-0.619809\pi\)
0.770895 + 0.636963i \(0.219809\pi\)
\(912\) 0 0
\(913\) −6.11250 + 5.08119i −0.202294 + 0.168163i
\(914\) 0 0
\(915\) −13.7627 + 9.99920i −0.454981 + 0.330563i
\(916\) 0 0
\(917\) −2.62133 + 8.06762i −0.0865639 + 0.266416i
\(918\) 0 0
\(919\) −7.24093 5.26084i −0.238856 0.173539i 0.461917 0.886923i \(-0.347162\pi\)
−0.700774 + 0.713384i \(0.747162\pi\)
\(920\) 0 0
\(921\) −0.310255 0.954868i −0.0102233 0.0314640i
\(922\) 0 0
\(923\) −38.1914 −1.25708
\(924\) 0 0
\(925\) −1.82814 −0.0601087
\(926\) 0 0
\(927\) −13.6954 42.1502i −0.449817 1.38440i
\(928\) 0 0
\(929\) −13.6523 9.91895i −0.447916 0.325430i 0.340856 0.940115i \(-0.389283\pi\)
−0.788772 + 0.614685i \(0.789283\pi\)
\(930\) 0 0
\(931\) −1.67759 + 5.16308i −0.0549807 + 0.169213i
\(932\) 0 0
\(933\) −1.71133 + 1.24336i −0.0560265 + 0.0407056i
\(934\) 0 0
\(935\) −11.7709 + 0.768622i −0.384951 + 0.0251366i
\(936\) 0 0
\(937\) 12.8897 9.36493i 0.421089 0.305939i −0.356987 0.934109i \(-0.616196\pi\)
0.778076 + 0.628170i \(0.216196\pi\)
\(938\) 0 0
\(939\) −2.52961 + 7.78534i −0.0825507 + 0.254065i
\(940\) 0 0
\(941\) −0.441300 0.320623i −0.0143860 0.0104520i 0.580569 0.814211i \(-0.302830\pi\)
−0.594955 + 0.803759i \(0.702830\pi\)
\(942\) 0 0
\(943\) 3.72581 + 11.4669i 0.121329 + 0.373412i
\(944\) 0 0
\(945\) −6.55115 −0.213109
\(946\) 0 0
\(947\) −37.6869 −1.22466 −0.612329 0.790603i \(-0.709767\pi\)
−0.612329 + 0.790603i \(0.709767\pi\)
\(948\) 0 0
\(949\) −5.68491 17.4964i −0.184540 0.567956i
\(950\) 0 0
\(951\) −1.92365 1.39762i −0.0623787 0.0453208i
\(952\) 0 0
\(953\) 5.74668 17.6865i 0.186153 0.572920i −0.813813 0.581127i \(-0.802612\pi\)
0.999966 + 0.00820613i \(0.00261212\pi\)
\(954\) 0 0
\(955\) 30.6646 22.2792i 0.992284 0.720937i
\(956\) 0 0
\(957\) −2.86193 + 11.2574i −0.0925131 + 0.363899i
\(958\) 0 0
\(959\) −10.2268 + 7.43019i −0.330240 + 0.239933i
\(960\) 0 0
\(961\) 15.5314 47.8009i 0.501014 1.54196i
\(962\) 0 0
\(963\) −5.04066 3.66225i −0.162433 0.118014i
\(964\) 0 0
\(965\) −11.6715 35.9213i −0.375720 1.15635i
\(966\) 0 0
\(967\) −31.2311 −1.00432 −0.502162 0.864774i \(-0.667462\pi\)
−0.502162 + 0.864774i \(0.667462\pi\)
\(968\) 0 0
\(969\) −4.66573 −0.149885
\(970\) 0 0
\(971\) −9.13248 28.1069i −0.293075 0.901992i −0.983861 0.178933i \(-0.942735\pi\)
0.690786 0.723059i \(-0.257265\pi\)
\(972\) 0 0
\(973\) −5.89052 4.27971i −0.188841 0.137201i
\(974\) 0 0
\(975\) 0.219297 0.674927i 0.00702312 0.0216150i
\(976\) 0 0
\(977\) −2.19684 + 1.59610i −0.0702830 + 0.0510636i −0.622372 0.782722i \(-0.713831\pi\)
0.552089 + 0.833785i \(0.313831\pi\)
\(978\) 0 0
\(979\) 11.7014 46.0272i 0.373978 1.47103i
\(980\) 0 0
\(981\) −35.7031 + 25.9398i −1.13991 + 0.828195i
\(982\) 0 0
\(983\) 11.9211 36.6893i 0.380223 1.17021i −0.559664 0.828720i \(-0.689070\pi\)
0.939887 0.341486i \(-0.110930\pi\)
\(984\) 0 0
\(985\) −41.5904 30.2172i −1.32518 0.962800i
\(986\) 0 0
\(987\) −0.142273 0.437870i −0.00452858 0.0139376i
\(988\) 0 0
\(989\) 17.5163 0.556986
\(990\) 0 0
\(991\) 37.8923 1.20369 0.601844 0.798614i \(-0.294433\pi\)
0.601844 + 0.798614i \(0.294433\pi\)
\(992\) 0 0
\(993\) 3.91070 + 12.0359i 0.124102 + 0.381947i
\(994\) 0 0
\(995\) 12.5283 + 9.10234i 0.397173 + 0.288563i
\(996\) 0 0
\(997\) −0.482514 + 1.48503i −0.0152814 + 0.0470313i −0.958406 0.285407i \(-0.907871\pi\)
0.943125 + 0.332438i \(0.107871\pi\)
\(998\) 0 0
\(999\) −16.9142 + 12.2889i −0.535140 + 0.388802i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 616.2.r.f.113.3 20
11.2 odd 10 6776.2.a.bn.1.5 10
11.4 even 5 inner 616.2.r.f.169.3 yes 20
11.9 even 5 6776.2.a.bm.1.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
616.2.r.f.113.3 20 1.1 even 1 trivial
616.2.r.f.169.3 yes 20 11.4 even 5 inner
6776.2.a.bm.1.5 10 11.9 even 5
6776.2.a.bn.1.5 10 11.2 odd 10