Properties

Label 608.3.q
Level $608$
Weight $3$
Character orbit 608.q
Rep. character $\chi_{608}(159,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $2$
Sturm bound $240$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.q (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 76 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(240\)
Trace bound: \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(608, [\chi])\).

Total New Old
Modular forms 336 80 256
Cusp forms 304 80 224
Eisenstein series 32 0 32

Trace form

\( 80 q + 112 q^{9} - 16 q^{13} - 48 q^{17} + 48 q^{21} - 200 q^{25} - 88 q^{33} + 160 q^{37} - 88 q^{41} - 688 q^{49} + 16 q^{53} - 96 q^{57} + 64 q^{61} - 512 q^{65} + 56 q^{73} - 256 q^{77} - 136 q^{81}+ \cdots + 152 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(608, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
608.3.q.a 608.q 76.g $40$ $16.567$ None 608.3.q.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
608.3.q.b 608.q 76.g $40$ $16.567$ None 608.3.q.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{3}^{\mathrm{old}}(608, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(608, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(304, [\chi])\)\(^{\oplus 2}\)