Defining parameters
| Level: | \( N \) | \(=\) | \( 608 = 2^{5} \cdot 19 \) | 
| Weight: | \( k \) | \(=\) | \( 3 \) | 
| Character orbit: | \([\chi]\) | \(=\) | 608.o (of order \(6\) and degree \(2\)) | 
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 152 \) | 
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(240\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) | 
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(608, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 336 | 84 | 252 | 
| Cusp forms | 304 | 76 | 228 | 
| Eisenstein series | 32 | 8 | 24 | 
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(608, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 608.3.o.a | $4$ | $16.567$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Q(\sqrt{-2}) \) | \(0\) | \(2\) | \(0\) | \(0\) | \(q+(\beta _{1}-\beta _{2})q^{3}+(-2^{4}+2^{4}\beta _{1}-2\beta _{2}+\cdots)q^{9}+\cdots\) | 
| 608.3.o.b | $72$ | $16.567$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{3}^{\mathrm{old}}(608, [\chi])\) into lower level spaces
  \( S_{3}^{\mathrm{old}}(608, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 3}\)