Properties

Label 608.3.g
Level $608$
Weight $3$
Character orbit 608.g
Rep. character $\chi_{608}(113,\cdot)$
Character field $\Q$
Dimension $38$
Newform subspaces $3$
Sturm bound $240$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 608 = 2^{5} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 608.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 152 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(240\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(608, [\chi])\).

Total New Old
Modular forms 168 42 126
Cusp forms 152 38 114
Eisenstein series 16 4 12

Trace form

\( 38 q + 4 q^{7} + 98 q^{9} - 4 q^{17} + 4 q^{23} - 154 q^{25} + 40 q^{39} + 196 q^{47} + 210 q^{49} - 96 q^{55} - 108 q^{57} + 236 q^{63} + 156 q^{73} + 270 q^{81} - 408 q^{87} + 304 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(608, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
608.3.g.a 608.g 152.g $3$ $16.567$ 3.3.4104.1 \(\Q(\sqrt{-38}) \) 152.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{3}+(2\beta _{1}+\beta _{2})q^{7}+(9-\beta _{1}+2\beta _{2})q^{9}+\cdots\)
608.3.g.b 608.g 152.g $3$ $16.567$ 3.3.4104.1 \(\Q(\sqrt{-38}) \) 152.3.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{1}q^{3}+(2\beta _{1}+\beta _{2})q^{7}+(9-\beta _{1}+2\beta _{2})q^{9}+\cdots\)
608.3.g.c 608.g 152.g $32$ $16.567$ None 152.3.g.c \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{3}^{\mathrm{old}}(608, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(608, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 3}\)