Defining parameters
Level: | \( N \) | \(=\) | \( 608 = 2^{5} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 608.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 152 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(608, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 168 | 42 | 126 |
Cusp forms | 152 | 38 | 114 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(608, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
608.3.g.a | $3$ | $16.567$ | 3.3.4104.1 | \(\Q(\sqrt{-38}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{3}+(2\beta _{1}+\beta _{2})q^{7}+(9-\beta _{1}+2\beta _{2})q^{9}+\cdots\) |
608.3.g.b | $3$ | $16.567$ | 3.3.4104.1 | \(\Q(\sqrt{-38}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{3}+(2\beta _{1}+\beta _{2})q^{7}+(9-\beta _{1}+2\beta _{2})q^{9}+\cdots\) |
608.3.g.c | $32$ | $16.567$ | None | \(0\) | \(0\) | \(0\) | \(4\) |
Decomposition of \(S_{3}^{\mathrm{old}}(608, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(608, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(152, [\chi])\)\(^{\oplus 3}\)