Properties

Label 6069.2.a.z.1.9
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-9,6,3,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(2.61669\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.61669 q^{2} -1.00000 q^{3} +4.84705 q^{4} +2.76381 q^{5} -2.61669 q^{6} -1.00000 q^{7} +7.44985 q^{8} +1.00000 q^{9} +7.23202 q^{10} +5.58538 q^{11} -4.84705 q^{12} -5.07348 q^{13} -2.61669 q^{14} -2.76381 q^{15} +9.79983 q^{16} +2.61669 q^{18} -5.85784 q^{19} +13.3963 q^{20} +1.00000 q^{21} +14.6152 q^{22} +7.19337 q^{23} -7.44985 q^{24} +2.63864 q^{25} -13.2757 q^{26} -1.00000 q^{27} -4.84705 q^{28} -0.275564 q^{29} -7.23202 q^{30} +0.624797 q^{31} +10.7434 q^{32} -5.58538 q^{33} -2.76381 q^{35} +4.84705 q^{36} +6.05974 q^{37} -15.3281 q^{38} +5.07348 q^{39} +20.5900 q^{40} +2.96242 q^{41} +2.61669 q^{42} +7.28189 q^{43} +27.0727 q^{44} +2.76381 q^{45} +18.8228 q^{46} +7.91595 q^{47} -9.79983 q^{48} +1.00000 q^{49} +6.90449 q^{50} -24.5914 q^{52} +13.2264 q^{53} -2.61669 q^{54} +15.4369 q^{55} -7.44985 q^{56} +5.85784 q^{57} -0.721064 q^{58} -9.62507 q^{59} -13.3963 q^{60} +2.87024 q^{61} +1.63490 q^{62} -1.00000 q^{63} +8.51243 q^{64} -14.0221 q^{65} -14.6152 q^{66} -6.08070 q^{67} -7.19337 q^{69} -7.23202 q^{70} -13.0963 q^{71} +7.44985 q^{72} +5.83555 q^{73} +15.8564 q^{74} -2.63864 q^{75} -28.3933 q^{76} -5.58538 q^{77} +13.2757 q^{78} +0.284512 q^{79} +27.0849 q^{80} +1.00000 q^{81} +7.75174 q^{82} +5.78939 q^{83} +4.84705 q^{84} +19.0544 q^{86} +0.275564 q^{87} +41.6103 q^{88} +12.5408 q^{89} +7.23202 q^{90} +5.07348 q^{91} +34.8667 q^{92} -0.624797 q^{93} +20.7136 q^{94} -16.1899 q^{95} -10.7434 q^{96} -0.129518 q^{97} +2.61669 q^{98} +5.58538 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} + 6 q^{4} + 3 q^{5} - 9 q^{7} + 9 q^{8} + 9 q^{9} + 12 q^{10} + 18 q^{11} - 6 q^{12} - 21 q^{13} - 3 q^{15} - 9 q^{19} + 15 q^{20} + 9 q^{21} + 6 q^{22} - 9 q^{24} + 3 q^{26} - 9 q^{27} - 6 q^{28}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.61669 1.85028 0.925139 0.379629i \(-0.123948\pi\)
0.925139 + 0.379629i \(0.123948\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.84705 2.42353
\(5\) 2.76381 1.23601 0.618006 0.786173i \(-0.287941\pi\)
0.618006 + 0.786173i \(0.287941\pi\)
\(6\) −2.61669 −1.06826
\(7\) −1.00000 −0.377964
\(8\) 7.44985 2.63392
\(9\) 1.00000 0.333333
\(10\) 7.23202 2.28697
\(11\) 5.58538 1.68406 0.842028 0.539434i \(-0.181362\pi\)
0.842028 + 0.539434i \(0.181362\pi\)
\(12\) −4.84705 −1.39922
\(13\) −5.07348 −1.40713 −0.703565 0.710631i \(-0.748410\pi\)
−0.703565 + 0.710631i \(0.748410\pi\)
\(14\) −2.61669 −0.699339
\(15\) −2.76381 −0.713612
\(16\) 9.79983 2.44996
\(17\) 0 0
\(18\) 2.61669 0.616759
\(19\) −5.85784 −1.34388 −0.671940 0.740606i \(-0.734539\pi\)
−0.671940 + 0.740606i \(0.734539\pi\)
\(20\) 13.3963 2.99551
\(21\) 1.00000 0.218218
\(22\) 14.6152 3.11597
\(23\) 7.19337 1.49992 0.749961 0.661482i \(-0.230072\pi\)
0.749961 + 0.661482i \(0.230072\pi\)
\(24\) −7.44985 −1.52069
\(25\) 2.63864 0.527727
\(26\) −13.2757 −2.60358
\(27\) −1.00000 −0.192450
\(28\) −4.84705 −0.916007
\(29\) −0.275564 −0.0511709 −0.0255855 0.999673i \(-0.508145\pi\)
−0.0255855 + 0.999673i \(0.508145\pi\)
\(30\) −7.23202 −1.32038
\(31\) 0.624797 0.112217 0.0561085 0.998425i \(-0.482131\pi\)
0.0561085 + 0.998425i \(0.482131\pi\)
\(32\) 10.7434 1.89918
\(33\) −5.58538 −0.972290
\(34\) 0 0
\(35\) −2.76381 −0.467169
\(36\) 4.84705 0.807842
\(37\) 6.05974 0.996215 0.498107 0.867115i \(-0.334029\pi\)
0.498107 + 0.867115i \(0.334029\pi\)
\(38\) −15.3281 −2.48655
\(39\) 5.07348 0.812407
\(40\) 20.5900 3.25556
\(41\) 2.96242 0.462653 0.231326 0.972876i \(-0.425693\pi\)
0.231326 + 0.972876i \(0.425693\pi\)
\(42\) 2.61669 0.403764
\(43\) 7.28189 1.11048 0.555239 0.831691i \(-0.312627\pi\)
0.555239 + 0.831691i \(0.312627\pi\)
\(44\) 27.0727 4.08136
\(45\) 2.76381 0.412004
\(46\) 18.8228 2.77527
\(47\) 7.91595 1.15466 0.577330 0.816511i \(-0.304095\pi\)
0.577330 + 0.816511i \(0.304095\pi\)
\(48\) −9.79983 −1.41448
\(49\) 1.00000 0.142857
\(50\) 6.90449 0.976442
\(51\) 0 0
\(52\) −24.5914 −3.41022
\(53\) 13.2264 1.81678 0.908391 0.418121i \(-0.137311\pi\)
0.908391 + 0.418121i \(0.137311\pi\)
\(54\) −2.61669 −0.356086
\(55\) 15.4369 2.08151
\(56\) −7.44985 −0.995529
\(57\) 5.85784 0.775889
\(58\) −0.721064 −0.0946804
\(59\) −9.62507 −1.25308 −0.626538 0.779391i \(-0.715529\pi\)
−0.626538 + 0.779391i \(0.715529\pi\)
\(60\) −13.3963 −1.72946
\(61\) 2.87024 0.367496 0.183748 0.982973i \(-0.441177\pi\)
0.183748 + 0.982973i \(0.441177\pi\)
\(62\) 1.63490 0.207632
\(63\) −1.00000 −0.125988
\(64\) 8.51243 1.06405
\(65\) −14.0221 −1.73923
\(66\) −14.6152 −1.79901
\(67\) −6.08070 −0.742876 −0.371438 0.928458i \(-0.621135\pi\)
−0.371438 + 0.928458i \(0.621135\pi\)
\(68\) 0 0
\(69\) −7.19337 −0.865981
\(70\) −7.23202 −0.864392
\(71\) −13.0963 −1.55424 −0.777122 0.629350i \(-0.783321\pi\)
−0.777122 + 0.629350i \(0.783321\pi\)
\(72\) 7.44985 0.877974
\(73\) 5.83555 0.682999 0.341499 0.939882i \(-0.389065\pi\)
0.341499 + 0.939882i \(0.389065\pi\)
\(74\) 15.8564 1.84327
\(75\) −2.63864 −0.304683
\(76\) −28.3933 −3.25693
\(77\) −5.58538 −0.636513
\(78\) 13.2757 1.50318
\(79\) 0.284512 0.0320101 0.0160051 0.999872i \(-0.494905\pi\)
0.0160051 + 0.999872i \(0.494905\pi\)
\(80\) 27.0849 3.02818
\(81\) 1.00000 0.111111
\(82\) 7.75174 0.856036
\(83\) 5.78939 0.635468 0.317734 0.948180i \(-0.397078\pi\)
0.317734 + 0.948180i \(0.397078\pi\)
\(84\) 4.84705 0.528857
\(85\) 0 0
\(86\) 19.0544 2.05469
\(87\) 0.275564 0.0295435
\(88\) 41.6103 4.43567
\(89\) 12.5408 1.32933 0.664663 0.747143i \(-0.268575\pi\)
0.664663 + 0.747143i \(0.268575\pi\)
\(90\) 7.23202 0.762322
\(91\) 5.07348 0.531845
\(92\) 34.8667 3.63510
\(93\) −0.624797 −0.0647885
\(94\) 20.7136 2.13644
\(95\) −16.1899 −1.66105
\(96\) −10.7434 −1.09649
\(97\) −0.129518 −0.0131506 −0.00657529 0.999978i \(-0.502093\pi\)
−0.00657529 + 0.999978i \(0.502093\pi\)
\(98\) 2.61669 0.264325
\(99\) 5.58538 0.561352
\(100\) 12.7896 1.27896
\(101\) −19.7540 −1.96560 −0.982798 0.184685i \(-0.940874\pi\)
−0.982798 + 0.184685i \(0.940874\pi\)
\(102\) 0 0
\(103\) 2.08651 0.205590 0.102795 0.994703i \(-0.467221\pi\)
0.102795 + 0.994703i \(0.467221\pi\)
\(104\) −37.7967 −3.70627
\(105\) 2.76381 0.269720
\(106\) 34.6093 3.36155
\(107\) −10.5516 −1.02006 −0.510029 0.860157i \(-0.670365\pi\)
−0.510029 + 0.860157i \(0.670365\pi\)
\(108\) −4.84705 −0.466408
\(109\) −13.1386 −1.25845 −0.629225 0.777223i \(-0.716628\pi\)
−0.629225 + 0.777223i \(0.716628\pi\)
\(110\) 40.3936 3.85138
\(111\) −6.05974 −0.575165
\(112\) −9.79983 −0.925997
\(113\) −14.7507 −1.38763 −0.693815 0.720153i \(-0.744071\pi\)
−0.693815 + 0.720153i \(0.744071\pi\)
\(114\) 15.3281 1.43561
\(115\) 19.8811 1.85392
\(116\) −1.33567 −0.124014
\(117\) −5.07348 −0.469043
\(118\) −25.1858 −2.31854
\(119\) 0 0
\(120\) −20.5900 −1.87960
\(121\) 20.1965 1.83604
\(122\) 7.51051 0.679970
\(123\) −2.96242 −0.267113
\(124\) 3.02843 0.271961
\(125\) −6.52636 −0.583735
\(126\) −2.61669 −0.233113
\(127\) −11.4133 −1.01277 −0.506384 0.862308i \(-0.669018\pi\)
−0.506384 + 0.862308i \(0.669018\pi\)
\(128\) 0.787603 0.0696149
\(129\) −7.28189 −0.641135
\(130\) −36.6915 −3.21806
\(131\) 5.89815 0.515324 0.257662 0.966235i \(-0.417048\pi\)
0.257662 + 0.966235i \(0.417048\pi\)
\(132\) −27.0727 −2.35637
\(133\) 5.85784 0.507939
\(134\) −15.9113 −1.37453
\(135\) −2.76381 −0.237871
\(136\) 0 0
\(137\) −6.03719 −0.515792 −0.257896 0.966173i \(-0.583029\pi\)
−0.257896 + 0.966173i \(0.583029\pi\)
\(138\) −18.8228 −1.60230
\(139\) 13.1383 1.11437 0.557186 0.830388i \(-0.311881\pi\)
0.557186 + 0.830388i \(0.311881\pi\)
\(140\) −13.3963 −1.13220
\(141\) −7.91595 −0.666643
\(142\) −34.2689 −2.87578
\(143\) −28.3373 −2.36969
\(144\) 9.79983 0.816653
\(145\) −0.761605 −0.0632479
\(146\) 15.2698 1.26374
\(147\) −1.00000 −0.0824786
\(148\) 29.3719 2.41435
\(149\) −9.76050 −0.799611 −0.399805 0.916600i \(-0.630922\pi\)
−0.399805 + 0.916600i \(0.630922\pi\)
\(150\) −6.90449 −0.563749
\(151\) −6.38384 −0.519510 −0.259755 0.965675i \(-0.583642\pi\)
−0.259755 + 0.965675i \(0.583642\pi\)
\(152\) −43.6400 −3.53967
\(153\) 0 0
\(154\) −14.6152 −1.17773
\(155\) 1.72682 0.138702
\(156\) 24.5914 1.96889
\(157\) −7.05575 −0.563110 −0.281555 0.959545i \(-0.590850\pi\)
−0.281555 + 0.959545i \(0.590850\pi\)
\(158\) 0.744480 0.0592276
\(159\) −13.2264 −1.04892
\(160\) 29.6927 2.34741
\(161\) −7.19337 −0.566917
\(162\) 2.61669 0.205586
\(163\) 6.11704 0.479124 0.239562 0.970881i \(-0.422996\pi\)
0.239562 + 0.970881i \(0.422996\pi\)
\(164\) 14.3590 1.12125
\(165\) −15.4369 −1.20176
\(166\) 15.1490 1.17579
\(167\) −11.6264 −0.899678 −0.449839 0.893110i \(-0.648519\pi\)
−0.449839 + 0.893110i \(0.648519\pi\)
\(168\) 7.44985 0.574769
\(169\) 12.7402 0.980016
\(170\) 0 0
\(171\) −5.85784 −0.447960
\(172\) 35.2957 2.69127
\(173\) 17.4498 1.32668 0.663341 0.748317i \(-0.269138\pi\)
0.663341 + 0.748317i \(0.269138\pi\)
\(174\) 0.721064 0.0546637
\(175\) −2.63864 −0.199462
\(176\) 54.7358 4.12587
\(177\) 9.62507 0.723464
\(178\) 32.8155 2.45962
\(179\) 4.87845 0.364632 0.182316 0.983240i \(-0.441641\pi\)
0.182316 + 0.983240i \(0.441641\pi\)
\(180\) 13.3963 0.998503
\(181\) 5.44597 0.404796 0.202398 0.979303i \(-0.435127\pi\)
0.202398 + 0.979303i \(0.435127\pi\)
\(182\) 13.2757 0.984061
\(183\) −2.87024 −0.212174
\(184\) 53.5896 3.95068
\(185\) 16.7480 1.23133
\(186\) −1.63490 −0.119877
\(187\) 0 0
\(188\) 38.3691 2.79835
\(189\) 1.00000 0.0727393
\(190\) −42.3640 −3.07341
\(191\) 8.69999 0.629509 0.314755 0.949173i \(-0.398078\pi\)
0.314755 + 0.949173i \(0.398078\pi\)
\(192\) −8.51243 −0.614332
\(193\) −5.38757 −0.387806 −0.193903 0.981021i \(-0.562115\pi\)
−0.193903 + 0.981021i \(0.562115\pi\)
\(194\) −0.338909 −0.0243322
\(195\) 14.0221 1.00415
\(196\) 4.84705 0.346218
\(197\) −19.1210 −1.36232 −0.681158 0.732137i \(-0.738523\pi\)
−0.681158 + 0.732137i \(0.738523\pi\)
\(198\) 14.6152 1.03866
\(199\) 15.6272 1.10778 0.553892 0.832588i \(-0.313142\pi\)
0.553892 + 0.832588i \(0.313142\pi\)
\(200\) 19.6575 1.38999
\(201\) 6.08070 0.428900
\(202\) −51.6900 −3.63690
\(203\) 0.275564 0.0193408
\(204\) 0 0
\(205\) 8.18757 0.571845
\(206\) 5.45975 0.380399
\(207\) 7.19337 0.499974
\(208\) −49.7192 −3.44741
\(209\) −32.7183 −2.26317
\(210\) 7.23202 0.499057
\(211\) 0.403460 0.0277754 0.0138877 0.999904i \(-0.495579\pi\)
0.0138877 + 0.999904i \(0.495579\pi\)
\(212\) 64.1090 4.40302
\(213\) 13.0963 0.897343
\(214\) −27.6101 −1.88739
\(215\) 20.1258 1.37256
\(216\) −7.44985 −0.506898
\(217\) −0.624797 −0.0424140
\(218\) −34.3796 −2.32848
\(219\) −5.83555 −0.394330
\(220\) 74.8236 5.04461
\(221\) 0 0
\(222\) −15.8564 −1.06421
\(223\) −14.9272 −0.999600 −0.499800 0.866141i \(-0.666593\pi\)
−0.499800 + 0.866141i \(0.666593\pi\)
\(224\) −10.7434 −0.717823
\(225\) 2.63864 0.175909
\(226\) −38.5980 −2.56750
\(227\) 21.6525 1.43713 0.718564 0.695461i \(-0.244800\pi\)
0.718564 + 0.695461i \(0.244800\pi\)
\(228\) 28.3933 1.88039
\(229\) −7.26368 −0.479997 −0.239999 0.970773i \(-0.577147\pi\)
−0.239999 + 0.970773i \(0.577147\pi\)
\(230\) 52.0227 3.43027
\(231\) 5.58538 0.367491
\(232\) −2.05291 −0.134780
\(233\) 12.4353 0.814663 0.407331 0.913280i \(-0.366459\pi\)
0.407331 + 0.913280i \(0.366459\pi\)
\(234\) −13.2757 −0.867861
\(235\) 21.8782 1.42717
\(236\) −46.6532 −3.03687
\(237\) −0.284512 −0.0184811
\(238\) 0 0
\(239\) −15.8342 −1.02423 −0.512114 0.858918i \(-0.671137\pi\)
−0.512114 + 0.858918i \(0.671137\pi\)
\(240\) −27.0849 −1.74832
\(241\) −15.5853 −1.00394 −0.501968 0.864886i \(-0.667391\pi\)
−0.501968 + 0.864886i \(0.667391\pi\)
\(242\) 52.8479 3.39719
\(243\) −1.00000 −0.0641500
\(244\) 13.9122 0.890637
\(245\) 2.76381 0.176573
\(246\) −7.75174 −0.494233
\(247\) 29.7196 1.89101
\(248\) 4.65465 0.295570
\(249\) −5.78939 −0.366888
\(250\) −17.0774 −1.08007
\(251\) −2.55446 −0.161236 −0.0806181 0.996745i \(-0.525689\pi\)
−0.0806181 + 0.996745i \(0.525689\pi\)
\(252\) −4.84705 −0.305336
\(253\) 40.1777 2.52595
\(254\) −29.8651 −1.87390
\(255\) 0 0
\(256\) −14.9640 −0.935247
\(257\) −10.3379 −0.644859 −0.322430 0.946593i \(-0.604500\pi\)
−0.322430 + 0.946593i \(0.604500\pi\)
\(258\) −19.0544 −1.18628
\(259\) −6.05974 −0.376534
\(260\) −67.9660 −4.21507
\(261\) −0.275564 −0.0170570
\(262\) 15.4336 0.953492
\(263\) −19.0391 −1.17400 −0.587000 0.809587i \(-0.699691\pi\)
−0.587000 + 0.809587i \(0.699691\pi\)
\(264\) −41.6103 −2.56094
\(265\) 36.5552 2.24557
\(266\) 15.3281 0.939828
\(267\) −12.5408 −0.767487
\(268\) −29.4735 −1.80038
\(269\) −12.4382 −0.758368 −0.379184 0.925321i \(-0.623795\pi\)
−0.379184 + 0.925321i \(0.623795\pi\)
\(270\) −7.23202 −0.440127
\(271\) 19.0256 1.15572 0.577862 0.816135i \(-0.303887\pi\)
0.577862 + 0.816135i \(0.303887\pi\)
\(272\) 0 0
\(273\) −5.07348 −0.307061
\(274\) −15.7974 −0.954359
\(275\) 14.7378 0.888722
\(276\) −34.8667 −2.09873
\(277\) 21.1859 1.27294 0.636469 0.771302i \(-0.280394\pi\)
0.636469 + 0.771302i \(0.280394\pi\)
\(278\) 34.3787 2.06190
\(279\) 0.624797 0.0374056
\(280\) −20.5900 −1.23049
\(281\) 15.0367 0.897013 0.448506 0.893780i \(-0.351956\pi\)
0.448506 + 0.893780i \(0.351956\pi\)
\(282\) −20.7136 −1.23348
\(283\) 22.9827 1.36618 0.683089 0.730335i \(-0.260636\pi\)
0.683089 + 0.730335i \(0.260636\pi\)
\(284\) −63.4784 −3.76675
\(285\) 16.1899 0.959009
\(286\) −74.1499 −4.38458
\(287\) −2.96242 −0.174866
\(288\) 10.7434 0.633060
\(289\) 0 0
\(290\) −1.99288 −0.117026
\(291\) 0.129518 0.00759249
\(292\) 28.2852 1.65527
\(293\) −21.8382 −1.27580 −0.637901 0.770118i \(-0.720197\pi\)
−0.637901 + 0.770118i \(0.720197\pi\)
\(294\) −2.61669 −0.152608
\(295\) −26.6018 −1.54882
\(296\) 45.1441 2.62395
\(297\) −5.58538 −0.324097
\(298\) −25.5402 −1.47950
\(299\) −36.4954 −2.11059
\(300\) −12.7896 −0.738409
\(301\) −7.28189 −0.419721
\(302\) −16.7045 −0.961237
\(303\) 19.7540 1.13484
\(304\) −57.4058 −3.29245
\(305\) 7.93278 0.454230
\(306\) 0 0
\(307\) −26.8841 −1.53436 −0.767180 0.641432i \(-0.778341\pi\)
−0.767180 + 0.641432i \(0.778341\pi\)
\(308\) −27.0727 −1.54261
\(309\) −2.08651 −0.118697
\(310\) 4.51855 0.256636
\(311\) 7.26449 0.411931 0.205966 0.978559i \(-0.433966\pi\)
0.205966 + 0.978559i \(0.433966\pi\)
\(312\) 37.7967 2.13982
\(313\) −8.34124 −0.471475 −0.235737 0.971817i \(-0.575751\pi\)
−0.235737 + 0.971817i \(0.575751\pi\)
\(314\) −18.4627 −1.04191
\(315\) −2.76381 −0.155723
\(316\) 1.37905 0.0775774
\(317\) 8.02321 0.450628 0.225314 0.974286i \(-0.427659\pi\)
0.225314 + 0.974286i \(0.427659\pi\)
\(318\) −34.6093 −1.94079
\(319\) −1.53913 −0.0861747
\(320\) 23.5267 1.31518
\(321\) 10.5516 0.588930
\(322\) −18.8228 −1.04895
\(323\) 0 0
\(324\) 4.84705 0.269281
\(325\) −13.3871 −0.742581
\(326\) 16.0064 0.886512
\(327\) 13.1386 0.726566
\(328\) 22.0696 1.21859
\(329\) −7.91595 −0.436421
\(330\) −40.3936 −2.22359
\(331\) −17.7841 −0.977504 −0.488752 0.872423i \(-0.662548\pi\)
−0.488752 + 0.872423i \(0.662548\pi\)
\(332\) 28.0615 1.54008
\(333\) 6.05974 0.332072
\(334\) −30.4227 −1.66465
\(335\) −16.8059 −0.918204
\(336\) 9.79983 0.534625
\(337\) −19.3293 −1.05293 −0.526467 0.850195i \(-0.676484\pi\)
−0.526467 + 0.850195i \(0.676484\pi\)
\(338\) 33.3371 1.81330
\(339\) 14.7507 0.801149
\(340\) 0 0
\(341\) 3.48973 0.188980
\(342\) −15.3281 −0.828850
\(343\) −1.00000 −0.0539949
\(344\) 54.2490 2.92491
\(345\) −19.8811 −1.07036
\(346\) 45.6607 2.45473
\(347\) −10.7771 −0.578543 −0.289271 0.957247i \(-0.593413\pi\)
−0.289271 + 0.957247i \(0.593413\pi\)
\(348\) 1.33567 0.0715996
\(349\) 17.4483 0.933984 0.466992 0.884262i \(-0.345338\pi\)
0.466992 + 0.884262i \(0.345338\pi\)
\(350\) −6.90449 −0.369060
\(351\) 5.07348 0.270802
\(352\) 60.0059 3.19833
\(353\) −17.6615 −0.940028 −0.470014 0.882659i \(-0.655751\pi\)
−0.470014 + 0.882659i \(0.655751\pi\)
\(354\) 25.1858 1.33861
\(355\) −36.1956 −1.92106
\(356\) 60.7862 3.22166
\(357\) 0 0
\(358\) 12.7654 0.674671
\(359\) 29.1158 1.53667 0.768337 0.640045i \(-0.221084\pi\)
0.768337 + 0.640045i \(0.221084\pi\)
\(360\) 20.5900 1.08519
\(361\) 15.3142 0.806013
\(362\) 14.2504 0.748985
\(363\) −20.1965 −1.06004
\(364\) 24.5914 1.28894
\(365\) 16.1283 0.844195
\(366\) −7.51051 −0.392581
\(367\) −2.95843 −0.154429 −0.0772143 0.997015i \(-0.524603\pi\)
−0.0772143 + 0.997015i \(0.524603\pi\)
\(368\) 70.4939 3.67475
\(369\) 2.96242 0.154218
\(370\) 43.8242 2.27831
\(371\) −13.2264 −0.686679
\(372\) −3.02843 −0.157017
\(373\) −21.2072 −1.09807 −0.549034 0.835800i \(-0.685004\pi\)
−0.549034 + 0.835800i \(0.685004\pi\)
\(374\) 0 0
\(375\) 6.52636 0.337020
\(376\) 58.9727 3.04128
\(377\) 1.39807 0.0720041
\(378\) 2.61669 0.134588
\(379\) 36.9808 1.89958 0.949789 0.312891i \(-0.101297\pi\)
0.949789 + 0.312891i \(0.101297\pi\)
\(380\) −78.4735 −4.02561
\(381\) 11.4133 0.584721
\(382\) 22.7652 1.16477
\(383\) 16.5879 0.847600 0.423800 0.905756i \(-0.360696\pi\)
0.423800 + 0.905756i \(0.360696\pi\)
\(384\) −0.787603 −0.0401922
\(385\) −15.4369 −0.786738
\(386\) −14.0976 −0.717549
\(387\) 7.28189 0.370159
\(388\) −0.627782 −0.0318708
\(389\) −2.29142 −0.116179 −0.0580897 0.998311i \(-0.518501\pi\)
−0.0580897 + 0.998311i \(0.518501\pi\)
\(390\) 36.6915 1.85795
\(391\) 0 0
\(392\) 7.44985 0.376274
\(393\) −5.89815 −0.297522
\(394\) −50.0337 −2.52066
\(395\) 0.786337 0.0395649
\(396\) 27.0727 1.36045
\(397\) −13.8984 −0.697540 −0.348770 0.937208i \(-0.613401\pi\)
−0.348770 + 0.937208i \(0.613401\pi\)
\(398\) 40.8916 2.04971
\(399\) −5.85784 −0.293259
\(400\) 25.8582 1.29291
\(401\) 7.95363 0.397185 0.198593 0.980082i \(-0.436363\pi\)
0.198593 + 0.980082i \(0.436363\pi\)
\(402\) 15.9113 0.793583
\(403\) −3.16990 −0.157904
\(404\) −95.7487 −4.76367
\(405\) 2.76381 0.137335
\(406\) 0.721064 0.0357858
\(407\) 33.8459 1.67768
\(408\) 0 0
\(409\) −28.1423 −1.39155 −0.695773 0.718262i \(-0.744938\pi\)
−0.695773 + 0.718262i \(0.744938\pi\)
\(410\) 21.4243 1.05807
\(411\) 6.03719 0.297793
\(412\) 10.1134 0.498253
\(413\) 9.62507 0.473619
\(414\) 18.8228 0.925091
\(415\) 16.0008 0.785447
\(416\) −54.5064 −2.67240
\(417\) −13.1383 −0.643383
\(418\) −85.6135 −4.18749
\(419\) −9.30811 −0.454731 −0.227365 0.973809i \(-0.573011\pi\)
−0.227365 + 0.973809i \(0.573011\pi\)
\(420\) 13.3963 0.653674
\(421\) −23.1810 −1.12977 −0.564887 0.825168i \(-0.691080\pi\)
−0.564887 + 0.825168i \(0.691080\pi\)
\(422\) 1.05573 0.0513921
\(423\) 7.91595 0.384887
\(424\) 98.5346 4.78526
\(425\) 0 0
\(426\) 34.2689 1.66033
\(427\) −2.87024 −0.138901
\(428\) −51.1440 −2.47214
\(429\) 28.3373 1.36814
\(430\) 52.6628 2.53963
\(431\) −33.2822 −1.60315 −0.801574 0.597896i \(-0.796004\pi\)
−0.801574 + 0.597896i \(0.796004\pi\)
\(432\) −9.79983 −0.471495
\(433\) −1.07693 −0.0517542 −0.0258771 0.999665i \(-0.508238\pi\)
−0.0258771 + 0.999665i \(0.508238\pi\)
\(434\) −1.63490 −0.0784777
\(435\) 0.761605 0.0365162
\(436\) −63.6835 −3.04989
\(437\) −42.1376 −2.01572
\(438\) −15.2698 −0.729619
\(439\) −26.5568 −1.26749 −0.633743 0.773544i \(-0.718482\pi\)
−0.633743 + 0.773544i \(0.718482\pi\)
\(440\) 115.003 5.48254
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −11.6004 −0.551151 −0.275575 0.961279i \(-0.588868\pi\)
−0.275575 + 0.961279i \(0.588868\pi\)
\(444\) −29.3719 −1.39393
\(445\) 34.6605 1.64306
\(446\) −39.0599 −1.84954
\(447\) 9.76050 0.461656
\(448\) −8.51243 −0.402175
\(449\) −12.0212 −0.567314 −0.283657 0.958926i \(-0.591548\pi\)
−0.283657 + 0.958926i \(0.591548\pi\)
\(450\) 6.90449 0.325481
\(451\) 16.5463 0.779133
\(452\) −71.4975 −3.36296
\(453\) 6.38384 0.299939
\(454\) 56.6579 2.65909
\(455\) 14.0221 0.657368
\(456\) 43.6400 2.04363
\(457\) −26.7807 −1.25275 −0.626374 0.779523i \(-0.715462\pi\)
−0.626374 + 0.779523i \(0.715462\pi\)
\(458\) −19.0068 −0.888128
\(459\) 0 0
\(460\) 96.3648 4.49303
\(461\) 10.3367 0.481430 0.240715 0.970596i \(-0.422618\pi\)
0.240715 + 0.970596i \(0.422618\pi\)
\(462\) 14.6152 0.679961
\(463\) −29.3959 −1.36614 −0.683072 0.730351i \(-0.739357\pi\)
−0.683072 + 0.730351i \(0.739357\pi\)
\(464\) −2.70048 −0.125367
\(465\) −1.72682 −0.0800794
\(466\) 32.5393 1.50735
\(467\) 9.33117 0.431795 0.215898 0.976416i \(-0.430732\pi\)
0.215898 + 0.976416i \(0.430732\pi\)
\(468\) −24.5914 −1.13674
\(469\) 6.08070 0.280781
\(470\) 57.2484 2.64067
\(471\) 7.05575 0.325112
\(472\) −71.7053 −3.30051
\(473\) 40.6721 1.87011
\(474\) −0.744480 −0.0341951
\(475\) −15.4567 −0.709202
\(476\) 0 0
\(477\) 13.2264 0.605594
\(478\) −41.4331 −1.89511
\(479\) 24.3969 1.11472 0.557360 0.830271i \(-0.311814\pi\)
0.557360 + 0.830271i \(0.311814\pi\)
\(480\) −29.6927 −1.35528
\(481\) −30.7440 −1.40180
\(482\) −40.7818 −1.85756
\(483\) 7.19337 0.327310
\(484\) 97.8935 4.44970
\(485\) −0.357963 −0.0162543
\(486\) −2.61669 −0.118695
\(487\) 30.1340 1.36550 0.682750 0.730652i \(-0.260784\pi\)
0.682750 + 0.730652i \(0.260784\pi\)
\(488\) 21.3828 0.967956
\(489\) −6.11704 −0.276622
\(490\) 7.23202 0.326710
\(491\) −4.36531 −0.197004 −0.0985018 0.995137i \(-0.531405\pi\)
−0.0985018 + 0.995137i \(0.531405\pi\)
\(492\) −14.3590 −0.647355
\(493\) 0 0
\(494\) 77.7670 3.49890
\(495\) 15.4369 0.693838
\(496\) 6.12291 0.274927
\(497\) 13.0963 0.587449
\(498\) −15.1490 −0.678844
\(499\) 37.4564 1.67678 0.838390 0.545071i \(-0.183497\pi\)
0.838390 + 0.545071i \(0.183497\pi\)
\(500\) −31.6336 −1.41470
\(501\) 11.6264 0.519429
\(502\) −6.68423 −0.298332
\(503\) −11.8848 −0.529918 −0.264959 0.964260i \(-0.585358\pi\)
−0.264959 + 0.964260i \(0.585358\pi\)
\(504\) −7.44985 −0.331843
\(505\) −54.5962 −2.42950
\(506\) 105.133 4.67371
\(507\) −12.7402 −0.565812
\(508\) −55.3209 −2.45447
\(509\) −4.59528 −0.203682 −0.101841 0.994801i \(-0.532473\pi\)
−0.101841 + 0.994801i \(0.532473\pi\)
\(510\) 0 0
\(511\) −5.83555 −0.258149
\(512\) −40.7312 −1.80008
\(513\) 5.85784 0.258630
\(514\) −27.0510 −1.19317
\(515\) 5.76672 0.254112
\(516\) −35.2957 −1.55381
\(517\) 44.2136 1.94451
\(518\) −15.8564 −0.696692
\(519\) −17.4498 −0.765961
\(520\) −104.463 −4.58100
\(521\) 15.8135 0.692804 0.346402 0.938086i \(-0.387403\pi\)
0.346402 + 0.938086i \(0.387403\pi\)
\(522\) −0.721064 −0.0315601
\(523\) 36.0341 1.57566 0.787830 0.615893i \(-0.211204\pi\)
0.787830 + 0.615893i \(0.211204\pi\)
\(524\) 28.5887 1.24890
\(525\) 2.63864 0.115160
\(526\) −49.8193 −2.17222
\(527\) 0 0
\(528\) −54.7358 −2.38207
\(529\) 28.7446 1.24977
\(530\) 95.6535 4.15492
\(531\) −9.62507 −0.417692
\(532\) 28.3933 1.23100
\(533\) −15.0298 −0.651013
\(534\) −32.8155 −1.42006
\(535\) −29.1625 −1.26080
\(536\) −45.3003 −1.95668
\(537\) −4.87845 −0.210521
\(538\) −32.5468 −1.40319
\(539\) 5.58538 0.240579
\(540\) −13.3963 −0.576486
\(541\) 2.43128 0.104529 0.0522645 0.998633i \(-0.483356\pi\)
0.0522645 + 0.998633i \(0.483356\pi\)
\(542\) 49.7841 2.13841
\(543\) −5.44597 −0.233709
\(544\) 0 0
\(545\) −36.3126 −1.55546
\(546\) −13.2757 −0.568148
\(547\) −17.4796 −0.747375 −0.373687 0.927555i \(-0.621907\pi\)
−0.373687 + 0.927555i \(0.621907\pi\)
\(548\) −29.2626 −1.25004
\(549\) 2.87024 0.122499
\(550\) 38.5642 1.64438
\(551\) 1.61421 0.0687675
\(552\) −53.5896 −2.28092
\(553\) −0.284512 −0.0120987
\(554\) 55.4370 2.35529
\(555\) −16.7480 −0.710911
\(556\) 63.6819 2.70071
\(557\) 7.58526 0.321398 0.160699 0.987003i \(-0.448625\pi\)
0.160699 + 0.987003i \(0.448625\pi\)
\(558\) 1.63490 0.0692108
\(559\) −36.9445 −1.56259
\(560\) −27.0849 −1.14454
\(561\) 0 0
\(562\) 39.3463 1.65972
\(563\) 13.8322 0.582957 0.291479 0.956577i \(-0.405853\pi\)
0.291479 + 0.956577i \(0.405853\pi\)
\(564\) −38.3691 −1.61563
\(565\) −40.7681 −1.71513
\(566\) 60.1385 2.52781
\(567\) −1.00000 −0.0419961
\(568\) −97.5654 −4.09375
\(569\) 34.9751 1.46623 0.733116 0.680103i \(-0.238065\pi\)
0.733116 + 0.680103i \(0.238065\pi\)
\(570\) 42.3640 1.77443
\(571\) 14.5370 0.608356 0.304178 0.952615i \(-0.401618\pi\)
0.304178 + 0.952615i \(0.401618\pi\)
\(572\) −137.353 −5.74300
\(573\) −8.69999 −0.363447
\(574\) −7.75174 −0.323551
\(575\) 18.9807 0.791550
\(576\) 8.51243 0.354685
\(577\) −30.2940 −1.26115 −0.630577 0.776127i \(-0.717182\pi\)
−0.630577 + 0.776127i \(0.717182\pi\)
\(578\) 0 0
\(579\) 5.38757 0.223900
\(580\) −3.69154 −0.153283
\(581\) −5.78939 −0.240184
\(582\) 0.338909 0.0140482
\(583\) 73.8744 3.05956
\(584\) 43.4740 1.79897
\(585\) −14.0221 −0.579744
\(586\) −57.1438 −2.36059
\(587\) 31.9801 1.31996 0.659980 0.751283i \(-0.270565\pi\)
0.659980 + 0.751283i \(0.270565\pi\)
\(588\) −4.84705 −0.199889
\(589\) −3.65996 −0.150806
\(590\) −69.6087 −2.86574
\(591\) 19.1210 0.786533
\(592\) 59.3844 2.44068
\(593\) −5.32747 −0.218773 −0.109387 0.993999i \(-0.534889\pi\)
−0.109387 + 0.993999i \(0.534889\pi\)
\(594\) −14.6152 −0.599669
\(595\) 0 0
\(596\) −47.3097 −1.93788
\(597\) −15.6272 −0.639580
\(598\) −95.4972 −3.90517
\(599\) −36.7506 −1.50159 −0.750794 0.660537i \(-0.770329\pi\)
−0.750794 + 0.660537i \(0.770329\pi\)
\(600\) −19.6575 −0.802512
\(601\) −16.4824 −0.672331 −0.336166 0.941803i \(-0.609130\pi\)
−0.336166 + 0.941803i \(0.609130\pi\)
\(602\) −19.0544 −0.776601
\(603\) −6.08070 −0.247625
\(604\) −30.9428 −1.25905
\(605\) 55.8192 2.26937
\(606\) 51.6900 2.09976
\(607\) −7.55618 −0.306696 −0.153348 0.988172i \(-0.549005\pi\)
−0.153348 + 0.988172i \(0.549005\pi\)
\(608\) −62.9330 −2.55227
\(609\) −0.275564 −0.0111664
\(610\) 20.7576 0.840451
\(611\) −40.1614 −1.62476
\(612\) 0 0
\(613\) 0.616253 0.0248902 0.0124451 0.999923i \(-0.496038\pi\)
0.0124451 + 0.999923i \(0.496038\pi\)
\(614\) −70.3474 −2.83899
\(615\) −8.18757 −0.330155
\(616\) −41.6103 −1.67653
\(617\) 7.42430 0.298891 0.149446 0.988770i \(-0.452251\pi\)
0.149446 + 0.988770i \(0.452251\pi\)
\(618\) −5.45975 −0.219623
\(619\) 4.87422 0.195912 0.0979558 0.995191i \(-0.468770\pi\)
0.0979558 + 0.995191i \(0.468770\pi\)
\(620\) 8.36999 0.336147
\(621\) −7.19337 −0.288660
\(622\) 19.0089 0.762187
\(623\) −12.5408 −0.502438
\(624\) 49.7192 1.99036
\(625\) −31.2308 −1.24923
\(626\) −21.8264 −0.872360
\(627\) 32.7183 1.30664
\(628\) −34.1996 −1.36471
\(629\) 0 0
\(630\) −7.23202 −0.288131
\(631\) 22.5285 0.896844 0.448422 0.893822i \(-0.351986\pi\)
0.448422 + 0.893822i \(0.351986\pi\)
\(632\) 2.11957 0.0843121
\(633\) −0.403460 −0.0160361
\(634\) 20.9942 0.833787
\(635\) −31.5442 −1.25179
\(636\) −64.1090 −2.54209
\(637\) −5.07348 −0.201019
\(638\) −4.02742 −0.159447
\(639\) −13.0963 −0.518081
\(640\) 2.17678 0.0860450
\(641\) −21.6098 −0.853536 −0.426768 0.904361i \(-0.640348\pi\)
−0.426768 + 0.904361i \(0.640348\pi\)
\(642\) 27.6101 1.08968
\(643\) −4.51189 −0.177931 −0.0889657 0.996035i \(-0.528356\pi\)
−0.0889657 + 0.996035i \(0.528356\pi\)
\(644\) −34.8667 −1.37394
\(645\) −20.1258 −0.792451
\(646\) 0 0
\(647\) −28.9261 −1.13720 −0.568601 0.822613i \(-0.692515\pi\)
−0.568601 + 0.822613i \(0.692515\pi\)
\(648\) 7.44985 0.292658
\(649\) −53.7597 −2.11025
\(650\) −35.0298 −1.37398
\(651\) 0.624797 0.0244877
\(652\) 29.6497 1.16117
\(653\) 27.4859 1.07561 0.537803 0.843071i \(-0.319255\pi\)
0.537803 + 0.843071i \(0.319255\pi\)
\(654\) 34.3796 1.34435
\(655\) 16.3014 0.636947
\(656\) 29.0312 1.13348
\(657\) 5.83555 0.227666
\(658\) −20.7136 −0.807499
\(659\) −37.9793 −1.47946 −0.739731 0.672903i \(-0.765047\pi\)
−0.739731 + 0.672903i \(0.765047\pi\)
\(660\) −74.8236 −2.91251
\(661\) 28.3154 1.10134 0.550672 0.834722i \(-0.314372\pi\)
0.550672 + 0.834722i \(0.314372\pi\)
\(662\) −46.5355 −1.80865
\(663\) 0 0
\(664\) 43.1301 1.67377
\(665\) 16.1899 0.627819
\(666\) 15.8564 0.614425
\(667\) −1.98223 −0.0767524
\(668\) −56.3538 −2.18039
\(669\) 14.9272 0.577120
\(670\) −43.9758 −1.69893
\(671\) 16.0314 0.618884
\(672\) 10.7434 0.414435
\(673\) −26.5155 −1.02210 −0.511049 0.859552i \(-0.670743\pi\)
−0.511049 + 0.859552i \(0.670743\pi\)
\(674\) −50.5788 −1.94822
\(675\) −2.63864 −0.101561
\(676\) 61.7525 2.37510
\(677\) −19.8325 −0.762227 −0.381113 0.924528i \(-0.624459\pi\)
−0.381113 + 0.924528i \(0.624459\pi\)
\(678\) 38.5980 1.48235
\(679\) 0.129518 0.00497045
\(680\) 0 0
\(681\) −21.6525 −0.829726
\(682\) 9.13154 0.349665
\(683\) −15.3010 −0.585476 −0.292738 0.956193i \(-0.594566\pi\)
−0.292738 + 0.956193i \(0.594566\pi\)
\(684\) −28.3933 −1.08564
\(685\) −16.6856 −0.637526
\(686\) −2.61669 −0.0999056
\(687\) 7.26368 0.277127
\(688\) 71.3613 2.72062
\(689\) −67.1038 −2.55645
\(690\) −52.0227 −1.98047
\(691\) −41.8654 −1.59263 −0.796317 0.604880i \(-0.793221\pi\)
−0.796317 + 0.604880i \(0.793221\pi\)
\(692\) 84.5801 3.21525
\(693\) −5.58538 −0.212171
\(694\) −28.2002 −1.07046
\(695\) 36.3116 1.37738
\(696\) 2.05291 0.0778153
\(697\) 0 0
\(698\) 45.6566 1.72813
\(699\) −12.4353 −0.470346
\(700\) −12.7896 −0.483402
\(701\) 28.4222 1.07349 0.536745 0.843744i \(-0.319654\pi\)
0.536745 + 0.843744i \(0.319654\pi\)
\(702\) 13.2757 0.501060
\(703\) −35.4969 −1.33879
\(704\) 47.5452 1.79193
\(705\) −21.8782 −0.823980
\(706\) −46.2147 −1.73931
\(707\) 19.7540 0.742925
\(708\) 46.6532 1.75334
\(709\) 23.2643 0.873708 0.436854 0.899532i \(-0.356093\pi\)
0.436854 + 0.899532i \(0.356093\pi\)
\(710\) −94.7127 −3.55450
\(711\) 0.284512 0.0106700
\(712\) 93.4274 3.50134
\(713\) 4.49440 0.168317
\(714\) 0 0
\(715\) −78.3189 −2.92896
\(716\) 23.6461 0.883697
\(717\) 15.8342 0.591338
\(718\) 76.1870 2.84328
\(719\) −14.5943 −0.544275 −0.272137 0.962258i \(-0.587731\pi\)
−0.272137 + 0.962258i \(0.587731\pi\)
\(720\) 27.0849 1.00939
\(721\) −2.08651 −0.0777058
\(722\) 40.0726 1.49135
\(723\) 15.5853 0.579623
\(724\) 26.3969 0.981034
\(725\) −0.727112 −0.0270043
\(726\) −52.8479 −1.96137
\(727\) 0.762956 0.0282965 0.0141482 0.999900i \(-0.495496\pi\)
0.0141482 + 0.999900i \(0.495496\pi\)
\(728\) 37.7967 1.40084
\(729\) 1.00000 0.0370370
\(730\) 42.2028 1.56200
\(731\) 0 0
\(732\) −13.9122 −0.514210
\(733\) 17.8009 0.657492 0.328746 0.944418i \(-0.393374\pi\)
0.328746 + 0.944418i \(0.393374\pi\)
\(734\) −7.74128 −0.285736
\(735\) −2.76381 −0.101945
\(736\) 77.2812 2.84862
\(737\) −33.9630 −1.25104
\(738\) 7.75174 0.285345
\(739\) 19.8524 0.730284 0.365142 0.930952i \(-0.381020\pi\)
0.365142 + 0.930952i \(0.381020\pi\)
\(740\) 81.1782 2.98417
\(741\) −29.7196 −1.09178
\(742\) −34.6093 −1.27055
\(743\) −10.3252 −0.378794 −0.189397 0.981901i \(-0.560653\pi\)
−0.189397 + 0.981901i \(0.560653\pi\)
\(744\) −4.65465 −0.170648
\(745\) −26.9761 −0.988329
\(746\) −55.4926 −2.03173
\(747\) 5.78939 0.211823
\(748\) 0 0
\(749\) 10.5516 0.385545
\(750\) 17.0774 0.623580
\(751\) 16.5138 0.602599 0.301299 0.953530i \(-0.402580\pi\)
0.301299 + 0.953530i \(0.402580\pi\)
\(752\) 77.5750 2.82887
\(753\) 2.55446 0.0930898
\(754\) 3.65831 0.133228
\(755\) −17.6437 −0.642120
\(756\) 4.84705 0.176286
\(757\) 43.1759 1.56925 0.784627 0.619969i \(-0.212855\pi\)
0.784627 + 0.619969i \(0.212855\pi\)
\(758\) 96.7673 3.51475
\(759\) −40.1777 −1.45836
\(760\) −120.613 −4.37508
\(761\) −2.70210 −0.0979510 −0.0489755 0.998800i \(-0.515596\pi\)
−0.0489755 + 0.998800i \(0.515596\pi\)
\(762\) 29.8651 1.08190
\(763\) 13.1386 0.475649
\(764\) 42.1693 1.52563
\(765\) 0 0
\(766\) 43.4053 1.56830
\(767\) 48.8326 1.76324
\(768\) 14.9640 0.539965
\(769\) −13.6795 −0.493295 −0.246647 0.969105i \(-0.579329\pi\)
−0.246647 + 0.969105i \(0.579329\pi\)
\(770\) −40.3936 −1.45568
\(771\) 10.3379 0.372310
\(772\) −26.1139 −0.939859
\(773\) 1.25509 0.0451425 0.0225712 0.999745i \(-0.492815\pi\)
0.0225712 + 0.999745i \(0.492815\pi\)
\(774\) 19.0544 0.684898
\(775\) 1.64861 0.0592199
\(776\) −0.964892 −0.0346376
\(777\) 6.05974 0.217392
\(778\) −5.99592 −0.214964
\(779\) −17.3534 −0.621750
\(780\) 67.9660 2.43357
\(781\) −73.1478 −2.61743
\(782\) 0 0
\(783\) 0.275564 0.00984785
\(784\) 9.79983 0.349994
\(785\) −19.5007 −0.696011
\(786\) −15.4336 −0.550499
\(787\) −49.0395 −1.74807 −0.874034 0.485865i \(-0.838505\pi\)
−0.874034 + 0.485865i \(0.838505\pi\)
\(788\) −92.6806 −3.30161
\(789\) 19.0391 0.677809
\(790\) 2.05760 0.0732061
\(791\) 14.7507 0.524475
\(792\) 41.6103 1.47856
\(793\) −14.5621 −0.517115
\(794\) −36.3677 −1.29064
\(795\) −36.5552 −1.29648
\(796\) 75.7460 2.68475
\(797\) −6.18255 −0.218997 −0.109499 0.993987i \(-0.534925\pi\)
−0.109499 + 0.993987i \(0.534925\pi\)
\(798\) −15.3281 −0.542610
\(799\) 0 0
\(800\) 28.3479 1.00225
\(801\) 12.5408 0.443109
\(802\) 20.8122 0.734903
\(803\) 32.5937 1.15021
\(804\) 29.4735 1.03945
\(805\) −19.8811 −0.700717
\(806\) −8.29463 −0.292166
\(807\) 12.4382 0.437844
\(808\) −147.164 −5.17722
\(809\) −28.5917 −1.00523 −0.502615 0.864510i \(-0.667629\pi\)
−0.502615 + 0.864510i \(0.667629\pi\)
\(810\) 7.23202 0.254107
\(811\) 9.03830 0.317378 0.158689 0.987329i \(-0.449273\pi\)
0.158689 + 0.987329i \(0.449273\pi\)
\(812\) 1.33567 0.0468729
\(813\) −19.0256 −0.667257
\(814\) 88.5643 3.10418
\(815\) 16.9063 0.592203
\(816\) 0 0
\(817\) −42.6561 −1.49235
\(818\) −73.6395 −2.57475
\(819\) 5.07348 0.177282
\(820\) 39.6856 1.38588
\(821\) 7.67418 0.267831 0.133915 0.990993i \(-0.457245\pi\)
0.133915 + 0.990993i \(0.457245\pi\)
\(822\) 15.7974 0.550999
\(823\) −5.95277 −0.207500 −0.103750 0.994603i \(-0.533084\pi\)
−0.103750 + 0.994603i \(0.533084\pi\)
\(824\) 15.5442 0.541508
\(825\) −14.7378 −0.513104
\(826\) 25.1858 0.876326
\(827\) −41.3595 −1.43821 −0.719106 0.694901i \(-0.755448\pi\)
−0.719106 + 0.694901i \(0.755448\pi\)
\(828\) 34.8667 1.21170
\(829\) 15.5716 0.540825 0.270412 0.962745i \(-0.412840\pi\)
0.270412 + 0.962745i \(0.412840\pi\)
\(830\) 41.8690 1.45329
\(831\) −21.1859 −0.734932
\(832\) −43.1877 −1.49726
\(833\) 0 0
\(834\) −34.3787 −1.19044
\(835\) −32.1331 −1.11201
\(836\) −158.587 −5.48485
\(837\) −0.624797 −0.0215962
\(838\) −24.3564 −0.841379
\(839\) 56.3582 1.94570 0.972851 0.231432i \(-0.0743412\pi\)
0.972851 + 0.231432i \(0.0743412\pi\)
\(840\) 20.5900 0.710421
\(841\) −28.9241 −0.997382
\(842\) −60.6575 −2.09040
\(843\) −15.0367 −0.517890
\(844\) 1.95559 0.0673143
\(845\) 35.2115 1.21131
\(846\) 20.7136 0.712147
\(847\) −20.1965 −0.693960
\(848\) 129.616 4.45104
\(849\) −22.9827 −0.788763
\(850\) 0 0
\(851\) 43.5900 1.49424
\(852\) 63.4784 2.17473
\(853\) 24.7043 0.845859 0.422930 0.906163i \(-0.361002\pi\)
0.422930 + 0.906163i \(0.361002\pi\)
\(854\) −7.51051 −0.257005
\(855\) −16.1899 −0.553684
\(856\) −78.6075 −2.68675
\(857\) 2.85535 0.0975371 0.0487685 0.998810i \(-0.484470\pi\)
0.0487685 + 0.998810i \(0.484470\pi\)
\(858\) 74.1499 2.53144
\(859\) 18.0803 0.616893 0.308447 0.951242i \(-0.400191\pi\)
0.308447 + 0.951242i \(0.400191\pi\)
\(860\) 97.5506 3.32645
\(861\) 2.96242 0.100959
\(862\) −87.0892 −2.96627
\(863\) 28.6098 0.973889 0.486945 0.873433i \(-0.338111\pi\)
0.486945 + 0.873433i \(0.338111\pi\)
\(864\) −10.7434 −0.365498
\(865\) 48.2279 1.63980
\(866\) −2.81800 −0.0957596
\(867\) 0 0
\(868\) −3.02843 −0.102792
\(869\) 1.58911 0.0539068
\(870\) 1.99288 0.0675651
\(871\) 30.8503 1.04532
\(872\) −97.8806 −3.31466
\(873\) −0.129518 −0.00438353
\(874\) −110.261 −3.72963
\(875\) 6.52636 0.220631
\(876\) −28.2852 −0.955669
\(877\) −46.7191 −1.57759 −0.788795 0.614656i \(-0.789295\pi\)
−0.788795 + 0.614656i \(0.789295\pi\)
\(878\) −69.4908 −2.34520
\(879\) 21.8382 0.736585
\(880\) 151.279 5.09962
\(881\) 29.7130 1.00106 0.500528 0.865721i \(-0.333139\pi\)
0.500528 + 0.865721i \(0.333139\pi\)
\(882\) 2.61669 0.0881085
\(883\) 21.3317 0.717869 0.358935 0.933363i \(-0.383140\pi\)
0.358935 + 0.933363i \(0.383140\pi\)
\(884\) 0 0
\(885\) 26.6018 0.894211
\(886\) −30.3546 −1.01978
\(887\) 30.5336 1.02522 0.512609 0.858622i \(-0.328679\pi\)
0.512609 + 0.858622i \(0.328679\pi\)
\(888\) −45.1441 −1.51494
\(889\) 11.4133 0.382790
\(890\) 90.6957 3.04013
\(891\) 5.58538 0.187117
\(892\) −72.3530 −2.42256
\(893\) −46.3704 −1.55172
\(894\) 25.5402 0.854191
\(895\) 13.4831 0.450690
\(896\) −0.787603 −0.0263120
\(897\) 36.4954 1.21855
\(898\) −31.4557 −1.04969
\(899\) −0.172171 −0.00574224
\(900\) 12.7896 0.426320
\(901\) 0 0
\(902\) 43.2964 1.44161
\(903\) 7.28189 0.242326
\(904\) −109.891 −3.65491
\(905\) 15.0516 0.500333
\(906\) 16.7045 0.554970
\(907\) 16.9926 0.564230 0.282115 0.959381i \(-0.408964\pi\)
0.282115 + 0.959381i \(0.408964\pi\)
\(908\) 104.951 3.48292
\(909\) −19.7540 −0.655199
\(910\) 36.6915 1.21631
\(911\) −11.8657 −0.393127 −0.196564 0.980491i \(-0.562978\pi\)
−0.196564 + 0.980491i \(0.562978\pi\)
\(912\) 57.4058 1.90090
\(913\) 32.3360 1.07016
\(914\) −70.0767 −2.31793
\(915\) −7.93278 −0.262250
\(916\) −35.2074 −1.16329
\(917\) −5.89815 −0.194774
\(918\) 0 0
\(919\) 48.0482 1.58496 0.792482 0.609895i \(-0.208788\pi\)
0.792482 + 0.609895i \(0.208788\pi\)
\(920\) 148.111 4.88309
\(921\) 26.8841 0.885863
\(922\) 27.0480 0.890779
\(923\) 66.4438 2.18702
\(924\) 27.0727 0.890625
\(925\) 15.9894 0.525730
\(926\) −76.9200 −2.52775
\(927\) 2.08651 0.0685300
\(928\) −2.96049 −0.0971828
\(929\) 43.7755 1.43623 0.718115 0.695925i \(-0.245005\pi\)
0.718115 + 0.695925i \(0.245005\pi\)
\(930\) −4.51855 −0.148169
\(931\) −5.85784 −0.191983
\(932\) 60.2745 1.97436
\(933\) −7.26449 −0.237829
\(934\) 24.4168 0.798941
\(935\) 0 0
\(936\) −37.7967 −1.23542
\(937\) −37.1767 −1.21451 −0.607255 0.794507i \(-0.707729\pi\)
−0.607255 + 0.794507i \(0.707729\pi\)
\(938\) 15.9113 0.519522
\(939\) 8.34124 0.272206
\(940\) 106.045 3.45880
\(941\) −38.5404 −1.25638 −0.628191 0.778059i \(-0.716204\pi\)
−0.628191 + 0.778059i \(0.716204\pi\)
\(942\) 18.4627 0.601547
\(943\) 21.3098 0.693943
\(944\) −94.3240 −3.06998
\(945\) 2.76381 0.0899067
\(946\) 106.426 3.46022
\(947\) −20.4311 −0.663921 −0.331961 0.943293i \(-0.607710\pi\)
−0.331961 + 0.943293i \(0.607710\pi\)
\(948\) −1.37905 −0.0447893
\(949\) −29.6065 −0.961068
\(950\) −40.4454 −1.31222
\(951\) −8.02321 −0.260170
\(952\) 0 0
\(953\) −5.28068 −0.171058 −0.0855290 0.996336i \(-0.527258\pi\)
−0.0855290 + 0.996336i \(0.527258\pi\)
\(954\) 34.6093 1.12052
\(955\) 24.0451 0.778081
\(956\) −76.7491 −2.48224
\(957\) 1.53913 0.0497530
\(958\) 63.8389 2.06254
\(959\) 6.03719 0.194951
\(960\) −23.5267 −0.759322
\(961\) −30.6096 −0.987407
\(962\) −80.4473 −2.59373
\(963\) −10.5516 −0.340019
\(964\) −75.5428 −2.43307
\(965\) −14.8902 −0.479333
\(966\) 18.8228 0.605614
\(967\) 21.0273 0.676191 0.338096 0.941112i \(-0.390217\pi\)
0.338096 + 0.941112i \(0.390217\pi\)
\(968\) 150.461 4.83600
\(969\) 0 0
\(970\) −0.936679 −0.0300749
\(971\) −6.39655 −0.205275 −0.102637 0.994719i \(-0.532728\pi\)
−0.102637 + 0.994719i \(0.532728\pi\)
\(972\) −4.84705 −0.155469
\(973\) −13.1383 −0.421193
\(974\) 78.8512 2.52655
\(975\) 13.3871 0.428729
\(976\) 28.1278 0.900350
\(977\) 0.806875 0.0258142 0.0129071 0.999917i \(-0.495891\pi\)
0.0129071 + 0.999917i \(0.495891\pi\)
\(978\) −16.0064 −0.511828
\(979\) 70.0454 2.23866
\(980\) 13.3963 0.427930
\(981\) −13.1386 −0.419483
\(982\) −11.4226 −0.364511
\(983\) 47.2420 1.50679 0.753394 0.657570i \(-0.228415\pi\)
0.753394 + 0.657570i \(0.228415\pi\)
\(984\) −22.0696 −0.703554
\(985\) −52.8468 −1.68384
\(986\) 0 0
\(987\) 7.91595 0.251968
\(988\) 144.053 4.58292
\(989\) 52.3814 1.66563
\(990\) 40.3936 1.28379
\(991\) −25.4030 −0.806953 −0.403477 0.914990i \(-0.632198\pi\)
−0.403477 + 0.914990i \(0.632198\pi\)
\(992\) 6.71244 0.213120
\(993\) 17.7841 0.564362
\(994\) 34.2689 1.08694
\(995\) 43.1907 1.36924
\(996\) −28.0615 −0.889163
\(997\) −36.8561 −1.16725 −0.583623 0.812025i \(-0.698365\pi\)
−0.583623 + 0.812025i \(0.698365\pi\)
\(998\) 98.0118 3.10251
\(999\) −6.05974 −0.191722
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.z.1.9 9
17.16 even 2 6069.2.a.bc.1.9 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6069.2.a.z.1.9 9 1.1 even 1 trivial
6069.2.a.bc.1.9 yes 9 17.16 even 2