Properties

Label 6069.2.a.z.1.5
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-9,6,3,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 12x^{7} - 3x^{6} + 45x^{5} + 21x^{4} - 53x^{3} - 39x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.445735\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.445735 q^{2} -1.00000 q^{3} -1.80132 q^{4} +0.514255 q^{5} +0.445735 q^{6} -1.00000 q^{7} +1.69438 q^{8} +1.00000 q^{9} -0.229221 q^{10} -1.44709 q^{11} +1.80132 q^{12} -2.34882 q^{13} +0.445735 q^{14} -0.514255 q^{15} +2.84740 q^{16} -0.445735 q^{18} -3.00884 q^{19} -0.926338 q^{20} +1.00000 q^{21} +0.645017 q^{22} -3.42130 q^{23} -1.69438 q^{24} -4.73554 q^{25} +1.04695 q^{26} -1.00000 q^{27} +1.80132 q^{28} -0.288640 q^{29} +0.229221 q^{30} -0.236498 q^{31} -4.65795 q^{32} +1.44709 q^{33} -0.514255 q^{35} -1.80132 q^{36} +0.719966 q^{37} +1.34115 q^{38} +2.34882 q^{39} +0.871344 q^{40} +9.80360 q^{41} -0.445735 q^{42} +8.07825 q^{43} +2.60667 q^{44} +0.514255 q^{45} +1.52499 q^{46} -8.60291 q^{47} -2.84740 q^{48} +1.00000 q^{49} +2.11080 q^{50} +4.23098 q^{52} -10.4697 q^{53} +0.445735 q^{54} -0.744171 q^{55} -1.69438 q^{56} +3.00884 q^{57} +0.128657 q^{58} +1.16539 q^{59} +0.926338 q^{60} -8.25095 q^{61} +0.105415 q^{62} -1.00000 q^{63} -3.61858 q^{64} -1.20789 q^{65} -0.645017 q^{66} +6.38786 q^{67} +3.42130 q^{69} +0.229221 q^{70} -1.93783 q^{71} +1.69438 q^{72} -2.52808 q^{73} -0.320914 q^{74} +4.73554 q^{75} +5.41989 q^{76} +1.44709 q^{77} -1.04695 q^{78} +0.919304 q^{79} +1.46429 q^{80} +1.00000 q^{81} -4.36980 q^{82} +4.90747 q^{83} -1.80132 q^{84} -3.60076 q^{86} +0.288640 q^{87} -2.45192 q^{88} -5.33991 q^{89} -0.229221 q^{90} +2.34882 q^{91} +6.16286 q^{92} +0.236498 q^{93} +3.83462 q^{94} -1.54731 q^{95} +4.65795 q^{96} +5.97700 q^{97} -0.445735 q^{98} -1.44709 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 9 q^{3} + 6 q^{4} + 3 q^{5} - 9 q^{7} + 9 q^{8} + 9 q^{9} + 12 q^{10} + 18 q^{11} - 6 q^{12} - 21 q^{13} - 3 q^{15} - 9 q^{19} + 15 q^{20} + 9 q^{21} + 6 q^{22} - 9 q^{24} + 3 q^{26} - 9 q^{27} - 6 q^{28}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.445735 −0.315182 −0.157591 0.987504i \(-0.550373\pi\)
−0.157591 + 0.987504i \(0.550373\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.80132 −0.900660
\(5\) 0.514255 0.229982 0.114991 0.993367i \(-0.463316\pi\)
0.114991 + 0.993367i \(0.463316\pi\)
\(6\) 0.445735 0.181971
\(7\) −1.00000 −0.377964
\(8\) 1.69438 0.599054
\(9\) 1.00000 0.333333
\(10\) −0.229221 −0.0724862
\(11\) −1.44709 −0.436313 −0.218156 0.975914i \(-0.570004\pi\)
−0.218156 + 0.975914i \(0.570004\pi\)
\(12\) 1.80132 0.519996
\(13\) −2.34882 −0.651446 −0.325723 0.945465i \(-0.605608\pi\)
−0.325723 + 0.945465i \(0.605608\pi\)
\(14\) 0.445735 0.119128
\(15\) −0.514255 −0.132780
\(16\) 2.84740 0.711849
\(17\) 0 0
\(18\) −0.445735 −0.105061
\(19\) −3.00884 −0.690276 −0.345138 0.938552i \(-0.612168\pi\)
−0.345138 + 0.938552i \(0.612168\pi\)
\(20\) −0.926338 −0.207135
\(21\) 1.00000 0.218218
\(22\) 0.645017 0.137518
\(23\) −3.42130 −0.713391 −0.356696 0.934221i \(-0.616097\pi\)
−0.356696 + 0.934221i \(0.616097\pi\)
\(24\) −1.69438 −0.345864
\(25\) −4.73554 −0.947108
\(26\) 1.04695 0.205324
\(27\) −1.00000 −0.192450
\(28\) 1.80132 0.340418
\(29\) −0.288640 −0.0535990 −0.0267995 0.999641i \(-0.508532\pi\)
−0.0267995 + 0.999641i \(0.508532\pi\)
\(30\) 0.229221 0.0418499
\(31\) −0.236498 −0.0424763 −0.0212382 0.999774i \(-0.506761\pi\)
−0.0212382 + 0.999774i \(0.506761\pi\)
\(32\) −4.65795 −0.823416
\(33\) 1.44709 0.251905
\(34\) 0 0
\(35\) −0.514255 −0.0869250
\(36\) −1.80132 −0.300220
\(37\) 0.719966 0.118362 0.0591808 0.998247i \(-0.481151\pi\)
0.0591808 + 0.998247i \(0.481151\pi\)
\(38\) 1.34115 0.217563
\(39\) 2.34882 0.376113
\(40\) 0.871344 0.137772
\(41\) 9.80360 1.53106 0.765532 0.643398i \(-0.222476\pi\)
0.765532 + 0.643398i \(0.222476\pi\)
\(42\) −0.445735 −0.0687784
\(43\) 8.07825 1.23192 0.615961 0.787777i \(-0.288768\pi\)
0.615961 + 0.787777i \(0.288768\pi\)
\(44\) 2.60667 0.392970
\(45\) 0.514255 0.0766606
\(46\) 1.52499 0.224848
\(47\) −8.60291 −1.25486 −0.627432 0.778672i \(-0.715894\pi\)
−0.627432 + 0.778672i \(0.715894\pi\)
\(48\) −2.84740 −0.410986
\(49\) 1.00000 0.142857
\(50\) 2.11080 0.298512
\(51\) 0 0
\(52\) 4.23098 0.586732
\(53\) −10.4697 −1.43812 −0.719062 0.694946i \(-0.755428\pi\)
−0.719062 + 0.694946i \(0.755428\pi\)
\(54\) 0.445735 0.0606568
\(55\) −0.744171 −0.100344
\(56\) −1.69438 −0.226421
\(57\) 3.00884 0.398531
\(58\) 0.128657 0.0168935
\(59\) 1.16539 0.151721 0.0758604 0.997118i \(-0.475830\pi\)
0.0758604 + 0.997118i \(0.475830\pi\)
\(60\) 0.926338 0.119590
\(61\) −8.25095 −1.05643 −0.528213 0.849112i \(-0.677138\pi\)
−0.528213 + 0.849112i \(0.677138\pi\)
\(62\) 0.105415 0.0133878
\(63\) −1.00000 −0.125988
\(64\) −3.61858 −0.452323
\(65\) −1.20789 −0.149821
\(66\) −0.645017 −0.0793961
\(67\) 6.38786 0.780402 0.390201 0.920730i \(-0.372406\pi\)
0.390201 + 0.920730i \(0.372406\pi\)
\(68\) 0 0
\(69\) 3.42130 0.411877
\(70\) 0.229221 0.0273972
\(71\) −1.93783 −0.229978 −0.114989 0.993367i \(-0.536683\pi\)
−0.114989 + 0.993367i \(0.536683\pi\)
\(72\) 1.69438 0.199685
\(73\) −2.52808 −0.295889 −0.147945 0.988996i \(-0.547266\pi\)
−0.147945 + 0.988996i \(0.547266\pi\)
\(74\) −0.320914 −0.0373055
\(75\) 4.73554 0.546813
\(76\) 5.41989 0.621704
\(77\) 1.44709 0.164911
\(78\) −1.04695 −0.118544
\(79\) 0.919304 0.103430 0.0517149 0.998662i \(-0.483531\pi\)
0.0517149 + 0.998662i \(0.483531\pi\)
\(80\) 1.46429 0.163712
\(81\) 1.00000 0.111111
\(82\) −4.36980 −0.482564
\(83\) 4.90747 0.538664 0.269332 0.963047i \(-0.413197\pi\)
0.269332 + 0.963047i \(0.413197\pi\)
\(84\) −1.80132 −0.196540
\(85\) 0 0
\(86\) −3.60076 −0.388280
\(87\) 0.288640 0.0309454
\(88\) −2.45192 −0.261375
\(89\) −5.33991 −0.566029 −0.283015 0.959116i \(-0.591335\pi\)
−0.283015 + 0.959116i \(0.591335\pi\)
\(90\) −0.229221 −0.0241621
\(91\) 2.34882 0.246224
\(92\) 6.16286 0.642523
\(93\) 0.236498 0.0245237
\(94\) 3.83462 0.395510
\(95\) −1.54731 −0.158751
\(96\) 4.65795 0.475400
\(97\) 5.97700 0.606872 0.303436 0.952852i \(-0.401866\pi\)
0.303436 + 0.952852i \(0.401866\pi\)
\(98\) −0.445735 −0.0450260
\(99\) −1.44709 −0.145438
\(100\) 8.53023 0.853023
\(101\) 3.17747 0.316170 0.158085 0.987426i \(-0.449468\pi\)
0.158085 + 0.987426i \(0.449468\pi\)
\(102\) 0 0
\(103\) −18.6240 −1.83508 −0.917538 0.397648i \(-0.869827\pi\)
−0.917538 + 0.397648i \(0.869827\pi\)
\(104\) −3.97980 −0.390252
\(105\) 0.514255 0.0501861
\(106\) 4.66671 0.453271
\(107\) −4.00160 −0.386850 −0.193425 0.981115i \(-0.561960\pi\)
−0.193425 + 0.981115i \(0.561960\pi\)
\(108\) 1.80132 0.173332
\(109\) 3.56320 0.341293 0.170646 0.985332i \(-0.445414\pi\)
0.170646 + 0.985332i \(0.445414\pi\)
\(110\) 0.331703 0.0316267
\(111\) −0.719966 −0.0683361
\(112\) −2.84740 −0.269054
\(113\) −11.2616 −1.05940 −0.529702 0.848184i \(-0.677696\pi\)
−0.529702 + 0.848184i \(0.677696\pi\)
\(114\) −1.34115 −0.125610
\(115\) −1.75942 −0.164067
\(116\) 0.519933 0.0482745
\(117\) −2.34882 −0.217149
\(118\) −0.519455 −0.0478197
\(119\) 0 0
\(120\) −0.871344 −0.0795425
\(121\) −8.90594 −0.809631
\(122\) 3.67774 0.332967
\(123\) −9.80360 −0.883960
\(124\) 0.426009 0.0382567
\(125\) −5.00655 −0.447800
\(126\) 0.445735 0.0397092
\(127\) 9.34671 0.829386 0.414693 0.909961i \(-0.363889\pi\)
0.414693 + 0.909961i \(0.363889\pi\)
\(128\) 10.9288 0.965980
\(129\) −8.07825 −0.711250
\(130\) 0.538401 0.0472209
\(131\) −1.68959 −0.147620 −0.0738100 0.997272i \(-0.523516\pi\)
−0.0738100 + 0.997272i \(0.523516\pi\)
\(132\) −2.60667 −0.226881
\(133\) 3.00884 0.260900
\(134\) −2.84729 −0.245969
\(135\) −0.514255 −0.0442600
\(136\) 0 0
\(137\) −11.5611 −0.987730 −0.493865 0.869539i \(-0.664416\pi\)
−0.493865 + 0.869539i \(0.664416\pi\)
\(138\) −1.52499 −0.129816
\(139\) 11.2732 0.956179 0.478089 0.878311i \(-0.341330\pi\)
0.478089 + 0.878311i \(0.341330\pi\)
\(140\) 0.926338 0.0782899
\(141\) 8.60291 0.724496
\(142\) 0.863758 0.0724850
\(143\) 3.39895 0.284235
\(144\) 2.84740 0.237283
\(145\) −0.148434 −0.0123268
\(146\) 1.12685 0.0932590
\(147\) −1.00000 −0.0824786
\(148\) −1.29689 −0.106604
\(149\) −18.5197 −1.51719 −0.758596 0.651561i \(-0.774115\pi\)
−0.758596 + 0.651561i \(0.774115\pi\)
\(150\) −2.11080 −0.172346
\(151\) 8.74105 0.711337 0.355668 0.934612i \(-0.384253\pi\)
0.355668 + 0.934612i \(0.384253\pi\)
\(152\) −5.09812 −0.413513
\(153\) 0 0
\(154\) −0.645017 −0.0519769
\(155\) −0.121620 −0.00976878
\(156\) −4.23098 −0.338750
\(157\) −17.2693 −1.37824 −0.689121 0.724647i \(-0.742003\pi\)
−0.689121 + 0.724647i \(0.742003\pi\)
\(158\) −0.409766 −0.0325992
\(159\) 10.4697 0.830302
\(160\) −2.39537 −0.189371
\(161\) 3.42130 0.269636
\(162\) −0.445735 −0.0350202
\(163\) −7.64240 −0.598599 −0.299300 0.954159i \(-0.596753\pi\)
−0.299300 + 0.954159i \(0.596753\pi\)
\(164\) −17.6594 −1.37897
\(165\) 0.744171 0.0579337
\(166\) −2.18743 −0.169777
\(167\) 19.8998 1.53990 0.769948 0.638107i \(-0.220282\pi\)
0.769948 + 0.638107i \(0.220282\pi\)
\(168\) 1.69438 0.130724
\(169\) −7.48303 −0.575617
\(170\) 0 0
\(171\) −3.00884 −0.230092
\(172\) −14.5515 −1.10954
\(173\) −12.0975 −0.919756 −0.459878 0.887982i \(-0.652107\pi\)
−0.459878 + 0.887982i \(0.652107\pi\)
\(174\) −0.128657 −0.00975345
\(175\) 4.73554 0.357973
\(176\) −4.12043 −0.310589
\(177\) −1.16539 −0.0875961
\(178\) 2.38018 0.178402
\(179\) 23.4966 1.75622 0.878108 0.478463i \(-0.158806\pi\)
0.878108 + 0.478463i \(0.158806\pi\)
\(180\) −0.926338 −0.0690452
\(181\) 5.62024 0.417749 0.208874 0.977942i \(-0.433020\pi\)
0.208874 + 0.977942i \(0.433020\pi\)
\(182\) −1.04695 −0.0776053
\(183\) 8.25095 0.609928
\(184\) −5.79699 −0.427360
\(185\) 0.370246 0.0272210
\(186\) −0.105415 −0.00772944
\(187\) 0 0
\(188\) 15.4966 1.13021
\(189\) 1.00000 0.0727393
\(190\) 0.689691 0.0500354
\(191\) 17.1383 1.24009 0.620043 0.784568i \(-0.287115\pi\)
0.620043 + 0.784568i \(0.287115\pi\)
\(192\) 3.61858 0.261149
\(193\) 24.3552 1.75312 0.876561 0.481290i \(-0.159832\pi\)
0.876561 + 0.481290i \(0.159832\pi\)
\(194\) −2.66416 −0.191275
\(195\) 1.20789 0.0864991
\(196\) −1.80132 −0.128666
\(197\) −5.14873 −0.366832 −0.183416 0.983035i \(-0.558716\pi\)
−0.183416 + 0.983035i \(0.558716\pi\)
\(198\) 0.645017 0.0458394
\(199\) −2.17553 −0.154219 −0.0771097 0.997023i \(-0.524569\pi\)
−0.0771097 + 0.997023i \(0.524569\pi\)
\(200\) −8.02381 −0.567369
\(201\) −6.38786 −0.450565
\(202\) −1.41631 −0.0996511
\(203\) 0.288640 0.0202585
\(204\) 0 0
\(205\) 5.04155 0.352117
\(206\) 8.30136 0.578383
\(207\) −3.42130 −0.237797
\(208\) −6.68803 −0.463732
\(209\) 4.35405 0.301176
\(210\) −0.229221 −0.0158178
\(211\) 11.5302 0.793770 0.396885 0.917868i \(-0.370091\pi\)
0.396885 + 0.917868i \(0.370091\pi\)
\(212\) 18.8593 1.29526
\(213\) 1.93783 0.132778
\(214\) 1.78365 0.121928
\(215\) 4.15428 0.283320
\(216\) −1.69438 −0.115288
\(217\) 0.236498 0.0160545
\(218\) −1.58824 −0.107569
\(219\) 2.52808 0.170832
\(220\) 1.34049 0.0903759
\(221\) 0 0
\(222\) 0.320914 0.0215383
\(223\) −1.79652 −0.120304 −0.0601520 0.998189i \(-0.519159\pi\)
−0.0601520 + 0.998189i \(0.519159\pi\)
\(224\) 4.65795 0.311222
\(225\) −4.73554 −0.315703
\(226\) 5.01969 0.333905
\(227\) 19.7638 1.31177 0.655883 0.754862i \(-0.272296\pi\)
0.655883 + 0.754862i \(0.272296\pi\)
\(228\) −5.41989 −0.358941
\(229\) 0.479494 0.0316859 0.0158429 0.999874i \(-0.494957\pi\)
0.0158429 + 0.999874i \(0.494957\pi\)
\(230\) 0.784236 0.0517110
\(231\) −1.44709 −0.0952113
\(232\) −0.489066 −0.0321087
\(233\) 20.3096 1.33053 0.665263 0.746609i \(-0.268319\pi\)
0.665263 + 0.746609i \(0.268319\pi\)
\(234\) 1.04695 0.0684414
\(235\) −4.42409 −0.288596
\(236\) −2.09924 −0.136649
\(237\) −0.919304 −0.0597152
\(238\) 0 0
\(239\) 8.46865 0.547792 0.273896 0.961759i \(-0.411688\pi\)
0.273896 + 0.961759i \(0.411688\pi\)
\(240\) −1.46429 −0.0945194
\(241\) 25.9117 1.66912 0.834560 0.550917i \(-0.185722\pi\)
0.834560 + 0.550917i \(0.185722\pi\)
\(242\) 3.96969 0.255181
\(243\) −1.00000 −0.0641500
\(244\) 14.8626 0.951481
\(245\) 0.514255 0.0328545
\(246\) 4.36980 0.278609
\(247\) 7.06724 0.449678
\(248\) −0.400718 −0.0254456
\(249\) −4.90747 −0.310998
\(250\) 2.23159 0.141138
\(251\) −15.4020 −0.972166 −0.486083 0.873913i \(-0.661575\pi\)
−0.486083 + 0.873913i \(0.661575\pi\)
\(252\) 1.80132 0.113473
\(253\) 4.95092 0.311262
\(254\) −4.16616 −0.261408
\(255\) 0 0
\(256\) 2.36581 0.147863
\(257\) 12.3161 0.768256 0.384128 0.923280i \(-0.374502\pi\)
0.384128 + 0.923280i \(0.374502\pi\)
\(258\) 3.60076 0.224173
\(259\) −0.719966 −0.0447365
\(260\) 2.17580 0.134938
\(261\) −0.288640 −0.0178663
\(262\) 0.753108 0.0465272
\(263\) −7.90731 −0.487585 −0.243793 0.969827i \(-0.578392\pi\)
−0.243793 + 0.969827i \(0.578392\pi\)
\(264\) 2.45192 0.150905
\(265\) −5.38410 −0.330742
\(266\) −1.34115 −0.0822309
\(267\) 5.33991 0.326797
\(268\) −11.5066 −0.702877
\(269\) 15.4174 0.940014 0.470007 0.882663i \(-0.344251\pi\)
0.470007 + 0.882663i \(0.344251\pi\)
\(270\) 0.229221 0.0139500
\(271\) −4.89568 −0.297391 −0.148696 0.988883i \(-0.547507\pi\)
−0.148696 + 0.988883i \(0.547507\pi\)
\(272\) 0 0
\(273\) −2.34882 −0.142157
\(274\) 5.15318 0.311315
\(275\) 6.85274 0.413236
\(276\) −6.16286 −0.370961
\(277\) −0.312488 −0.0187756 −0.00938779 0.999956i \(-0.502988\pi\)
−0.00938779 + 0.999956i \(0.502988\pi\)
\(278\) −5.02485 −0.301370
\(279\) −0.236498 −0.0141588
\(280\) −0.871344 −0.0520728
\(281\) −2.96508 −0.176882 −0.0884411 0.996081i \(-0.528188\pi\)
−0.0884411 + 0.996081i \(0.528188\pi\)
\(282\) −3.83462 −0.228348
\(283\) −4.89256 −0.290832 −0.145416 0.989371i \(-0.546452\pi\)
−0.145416 + 0.989371i \(0.546452\pi\)
\(284\) 3.49065 0.207132
\(285\) 1.54731 0.0916548
\(286\) −1.51503 −0.0895857
\(287\) −9.80360 −0.578688
\(288\) −4.65795 −0.274472
\(289\) 0 0
\(290\) 0.0661624 0.00388519
\(291\) −5.97700 −0.350378
\(292\) 4.55388 0.266496
\(293\) 14.1788 0.828335 0.414167 0.910201i \(-0.364073\pi\)
0.414167 + 0.910201i \(0.364073\pi\)
\(294\) 0.445735 0.0259958
\(295\) 0.599307 0.0348930
\(296\) 1.21990 0.0709050
\(297\) 1.44709 0.0839685
\(298\) 8.25488 0.478192
\(299\) 8.03604 0.464736
\(300\) −8.53023 −0.492493
\(301\) −8.07825 −0.465623
\(302\) −3.89619 −0.224201
\(303\) −3.17747 −0.182541
\(304\) −8.56736 −0.491372
\(305\) −4.24309 −0.242959
\(306\) 0 0
\(307\) −3.39953 −0.194021 −0.0970107 0.995283i \(-0.530928\pi\)
−0.0970107 + 0.995283i \(0.530928\pi\)
\(308\) −2.60667 −0.148529
\(309\) 18.6240 1.05948
\(310\) 0.0542104 0.00307894
\(311\) −4.53443 −0.257124 −0.128562 0.991701i \(-0.541036\pi\)
−0.128562 + 0.991701i \(0.541036\pi\)
\(312\) 3.97980 0.225312
\(313\) 6.72503 0.380121 0.190061 0.981772i \(-0.439132\pi\)
0.190061 + 0.981772i \(0.439132\pi\)
\(314\) 7.69754 0.434397
\(315\) −0.514255 −0.0289750
\(316\) −1.65596 −0.0931551
\(317\) −16.0885 −0.903618 −0.451809 0.892115i \(-0.649221\pi\)
−0.451809 + 0.892115i \(0.649221\pi\)
\(318\) −4.66671 −0.261696
\(319\) 0.417687 0.0233860
\(320\) −1.86087 −0.104026
\(321\) 4.00160 0.223348
\(322\) −1.52499 −0.0849846
\(323\) 0 0
\(324\) −1.80132 −0.100073
\(325\) 11.1230 0.616990
\(326\) 3.40648 0.188668
\(327\) −3.56320 −0.197046
\(328\) 16.6110 0.917191
\(329\) 8.60291 0.474294
\(330\) −0.331703 −0.0182597
\(331\) 12.2824 0.675100 0.337550 0.941308i \(-0.390402\pi\)
0.337550 + 0.941308i \(0.390402\pi\)
\(332\) −8.83992 −0.485154
\(333\) 0.719966 0.0394539
\(334\) −8.87005 −0.485348
\(335\) 3.28499 0.179478
\(336\) 2.84740 0.155338
\(337\) 27.9084 1.52027 0.760135 0.649765i \(-0.225133\pi\)
0.760135 + 0.649765i \(0.225133\pi\)
\(338\) 3.33545 0.181424
\(339\) 11.2616 0.611647
\(340\) 0 0
\(341\) 0.342233 0.0185330
\(342\) 1.34115 0.0725209
\(343\) −1.00000 −0.0539949
\(344\) 13.6876 0.737988
\(345\) 1.75942 0.0947241
\(346\) 5.39228 0.289891
\(347\) 35.8346 1.92370 0.961851 0.273574i \(-0.0882059\pi\)
0.961851 + 0.273574i \(0.0882059\pi\)
\(348\) −0.519933 −0.0278713
\(349\) −21.4982 −1.15077 −0.575386 0.817882i \(-0.695148\pi\)
−0.575386 + 0.817882i \(0.695148\pi\)
\(350\) −2.11080 −0.112827
\(351\) 2.34882 0.125371
\(352\) 6.74045 0.359267
\(353\) −33.4652 −1.78117 −0.890585 0.454816i \(-0.849705\pi\)
−0.890585 + 0.454816i \(0.849705\pi\)
\(354\) 0.519455 0.0276087
\(355\) −0.996538 −0.0528908
\(356\) 9.61889 0.509800
\(357\) 0 0
\(358\) −10.4732 −0.553528
\(359\) −0.184516 −0.00973838 −0.00486919 0.999988i \(-0.501550\pi\)
−0.00486919 + 0.999988i \(0.501550\pi\)
\(360\) 0.871344 0.0459239
\(361\) −9.94687 −0.523520
\(362\) −2.50514 −0.131667
\(363\) 8.90594 0.467441
\(364\) −4.23098 −0.221764
\(365\) −1.30008 −0.0680491
\(366\) −3.67774 −0.192238
\(367\) −26.7096 −1.39423 −0.697115 0.716960i \(-0.745533\pi\)
−0.697115 + 0.716960i \(0.745533\pi\)
\(368\) −9.74180 −0.507827
\(369\) 9.80360 0.510355
\(370\) −0.165032 −0.00857958
\(371\) 10.4697 0.543560
\(372\) −0.426009 −0.0220875
\(373\) 0.169678 0.00878559 0.00439280 0.999990i \(-0.498602\pi\)
0.00439280 + 0.999990i \(0.498602\pi\)
\(374\) 0 0
\(375\) 5.00655 0.258537
\(376\) −14.5766 −0.751731
\(377\) 0.677964 0.0349169
\(378\) −0.445735 −0.0229261
\(379\) 15.0496 0.773048 0.386524 0.922279i \(-0.373676\pi\)
0.386524 + 0.922279i \(0.373676\pi\)
\(380\) 2.78720 0.142981
\(381\) −9.34671 −0.478846
\(382\) −7.63915 −0.390853
\(383\) 23.2469 1.18786 0.593931 0.804516i \(-0.297575\pi\)
0.593931 + 0.804516i \(0.297575\pi\)
\(384\) −10.9288 −0.557709
\(385\) 0.744171 0.0379265
\(386\) −10.8559 −0.552553
\(387\) 8.07825 0.410641
\(388\) −10.7665 −0.546586
\(389\) 6.44486 0.326767 0.163384 0.986563i \(-0.447759\pi\)
0.163384 + 0.986563i \(0.447759\pi\)
\(390\) −0.538401 −0.0272630
\(391\) 0 0
\(392\) 1.69438 0.0855792
\(393\) 1.68959 0.0852284
\(394\) 2.29497 0.115619
\(395\) 0.472757 0.0237870
\(396\) 2.60667 0.130990
\(397\) 27.8021 1.39535 0.697675 0.716415i \(-0.254218\pi\)
0.697675 + 0.716415i \(0.254218\pi\)
\(398\) 0.969711 0.0486072
\(399\) −3.00884 −0.150630
\(400\) −13.4840 −0.674198
\(401\) 25.5015 1.27348 0.636742 0.771077i \(-0.280282\pi\)
0.636742 + 0.771077i \(0.280282\pi\)
\(402\) 2.84729 0.142010
\(403\) 0.555492 0.0276710
\(404\) −5.72363 −0.284761
\(405\) 0.514255 0.0255535
\(406\) −0.128657 −0.00638513
\(407\) −1.04185 −0.0516427
\(408\) 0 0
\(409\) −11.5643 −0.571817 −0.285908 0.958257i \(-0.592295\pi\)
−0.285908 + 0.958257i \(0.592295\pi\)
\(410\) −2.24719 −0.110981
\(411\) 11.5611 0.570266
\(412\) 33.5478 1.65278
\(413\) −1.16539 −0.0573451
\(414\) 1.52499 0.0749494
\(415\) 2.52369 0.123883
\(416\) 10.9407 0.536412
\(417\) −11.2732 −0.552050
\(418\) −1.94075 −0.0949254
\(419\) 23.0174 1.12447 0.562237 0.826976i \(-0.309941\pi\)
0.562237 + 0.826976i \(0.309941\pi\)
\(420\) −0.926338 −0.0452007
\(421\) 5.60601 0.273220 0.136610 0.990625i \(-0.456379\pi\)
0.136610 + 0.990625i \(0.456379\pi\)
\(422\) −5.13940 −0.250182
\(423\) −8.60291 −0.418288
\(424\) −17.7397 −0.861515
\(425\) 0 0
\(426\) −0.863758 −0.0418492
\(427\) 8.25095 0.399291
\(428\) 7.20817 0.348420
\(429\) −3.39895 −0.164103
\(430\) −1.85171 −0.0892973
\(431\) 3.98058 0.191738 0.0958689 0.995394i \(-0.469437\pi\)
0.0958689 + 0.995394i \(0.469437\pi\)
\(432\) −2.84740 −0.136995
\(433\) 26.0067 1.24980 0.624902 0.780703i \(-0.285139\pi\)
0.624902 + 0.780703i \(0.285139\pi\)
\(434\) −0.105415 −0.00506010
\(435\) 0.148434 0.00711688
\(436\) −6.41847 −0.307389
\(437\) 10.2942 0.492436
\(438\) −1.12685 −0.0538431
\(439\) 22.3742 1.06786 0.533931 0.845528i \(-0.320714\pi\)
0.533931 + 0.845528i \(0.320714\pi\)
\(440\) −1.26091 −0.0601115
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 22.2088 1.05517 0.527587 0.849501i \(-0.323097\pi\)
0.527587 + 0.849501i \(0.323097\pi\)
\(444\) 1.29689 0.0615476
\(445\) −2.74608 −0.130176
\(446\) 0.800772 0.0379177
\(447\) 18.5197 0.875952
\(448\) 3.61858 0.170962
\(449\) 23.7681 1.12169 0.560844 0.827922i \(-0.310477\pi\)
0.560844 + 0.827922i \(0.310477\pi\)
\(450\) 2.11080 0.0995039
\(451\) −14.1866 −0.668023
\(452\) 20.2858 0.954162
\(453\) −8.74105 −0.410691
\(454\) −8.80940 −0.413446
\(455\) 1.20789 0.0566270
\(456\) 5.09812 0.238742
\(457\) 26.9600 1.26113 0.630567 0.776135i \(-0.282822\pi\)
0.630567 + 0.776135i \(0.282822\pi\)
\(458\) −0.213727 −0.00998682
\(459\) 0 0
\(460\) 3.16928 0.147769
\(461\) 27.1562 1.26479 0.632395 0.774646i \(-0.282072\pi\)
0.632395 + 0.774646i \(0.282072\pi\)
\(462\) 0.645017 0.0300089
\(463\) −23.6835 −1.10067 −0.550333 0.834945i \(-0.685499\pi\)
−0.550333 + 0.834945i \(0.685499\pi\)
\(464\) −0.821871 −0.0381544
\(465\) 0.121620 0.00564001
\(466\) −9.05270 −0.419358
\(467\) −13.6392 −0.631148 −0.315574 0.948901i \(-0.602197\pi\)
−0.315574 + 0.948901i \(0.602197\pi\)
\(468\) 4.23098 0.195577
\(469\) −6.38786 −0.294964
\(470\) 1.97197 0.0909602
\(471\) 17.2693 0.795728
\(472\) 1.97461 0.0908890
\(473\) −11.6899 −0.537503
\(474\) 0.409766 0.0188212
\(475\) 14.2485 0.653766
\(476\) 0 0
\(477\) −10.4697 −0.479375
\(478\) −3.77477 −0.172654
\(479\) 28.2855 1.29240 0.646198 0.763170i \(-0.276358\pi\)
0.646198 + 0.763170i \(0.276358\pi\)
\(480\) 2.39537 0.109333
\(481\) −1.69107 −0.0771063
\(482\) −11.5498 −0.526077
\(483\) −3.42130 −0.155675
\(484\) 16.0425 0.729202
\(485\) 3.07370 0.139570
\(486\) 0.445735 0.0202189
\(487\) 22.4959 1.01939 0.509693 0.860356i \(-0.329759\pi\)
0.509693 + 0.860356i \(0.329759\pi\)
\(488\) −13.9803 −0.632856
\(489\) 7.64240 0.345601
\(490\) −0.229221 −0.0103552
\(491\) 17.7879 0.802755 0.401378 0.915913i \(-0.368532\pi\)
0.401378 + 0.915913i \(0.368532\pi\)
\(492\) 17.6594 0.796148
\(493\) 0 0
\(494\) −3.15012 −0.141730
\(495\) −0.744171 −0.0334480
\(496\) −0.673404 −0.0302367
\(497\) 1.93783 0.0869235
\(498\) 2.18743 0.0980211
\(499\) −34.3526 −1.53783 −0.768917 0.639348i \(-0.779204\pi\)
−0.768917 + 0.639348i \(0.779204\pi\)
\(500\) 9.01840 0.403315
\(501\) −19.8998 −0.889059
\(502\) 6.86521 0.306409
\(503\) −8.76690 −0.390897 −0.195448 0.980714i \(-0.562616\pi\)
−0.195448 + 0.980714i \(0.562616\pi\)
\(504\) −1.69438 −0.0754737
\(505\) 1.63403 0.0727133
\(506\) −2.20680 −0.0981042
\(507\) 7.48303 0.332333
\(508\) −16.8364 −0.746995
\(509\) −6.01970 −0.266819 −0.133409 0.991061i \(-0.542593\pi\)
−0.133409 + 0.991061i \(0.542593\pi\)
\(510\) 0 0
\(511\) 2.52808 0.111836
\(512\) −22.9122 −1.01258
\(513\) 3.00884 0.132844
\(514\) −5.48971 −0.242141
\(515\) −9.57748 −0.422034
\(516\) 14.5515 0.640595
\(517\) 12.4492 0.547513
\(518\) 0.320914 0.0141001
\(519\) 12.0975 0.531022
\(520\) −2.04663 −0.0897508
\(521\) 8.52210 0.373360 0.186680 0.982421i \(-0.440227\pi\)
0.186680 + 0.982421i \(0.440227\pi\)
\(522\) 0.128657 0.00563115
\(523\) −34.3441 −1.50176 −0.750882 0.660436i \(-0.770371\pi\)
−0.750882 + 0.660436i \(0.770371\pi\)
\(524\) 3.04349 0.132955
\(525\) −4.73554 −0.206676
\(526\) 3.52456 0.153678
\(527\) 0 0
\(528\) 4.12043 0.179319
\(529\) −11.2947 −0.491073
\(530\) 2.39988 0.104244
\(531\) 1.16539 0.0505736
\(532\) −5.41989 −0.234982
\(533\) −23.0269 −0.997406
\(534\) −2.38018 −0.103001
\(535\) −2.05785 −0.0889684
\(536\) 10.8235 0.467503
\(537\) −23.4966 −1.01395
\(538\) −6.87206 −0.296276
\(539\) −1.44709 −0.0623304
\(540\) 0.926338 0.0398632
\(541\) −24.6469 −1.05965 −0.529827 0.848106i \(-0.677743\pi\)
−0.529827 + 0.848106i \(0.677743\pi\)
\(542\) 2.18218 0.0937325
\(543\) −5.62024 −0.241187
\(544\) 0 0
\(545\) 1.83239 0.0784912
\(546\) 1.04695 0.0448054
\(547\) 27.5403 1.17754 0.588770 0.808301i \(-0.299612\pi\)
0.588770 + 0.808301i \(0.299612\pi\)
\(548\) 20.8252 0.889609
\(549\) −8.25095 −0.352142
\(550\) −3.05450 −0.130245
\(551\) 0.868471 0.0369981
\(552\) 5.79699 0.246736
\(553\) −0.919304 −0.0390928
\(554\) 0.139287 0.00591773
\(555\) −0.370246 −0.0157161
\(556\) −20.3066 −0.861192
\(557\) −26.1121 −1.10640 −0.553202 0.833047i \(-0.686594\pi\)
−0.553202 + 0.833047i \(0.686594\pi\)
\(558\) 0.105415 0.00446259
\(559\) −18.9744 −0.802531
\(560\) −1.46429 −0.0618774
\(561\) 0 0
\(562\) 1.32164 0.0557501
\(563\) 46.8459 1.97432 0.987160 0.159736i \(-0.0510643\pi\)
0.987160 + 0.159736i \(0.0510643\pi\)
\(564\) −15.4966 −0.652524
\(565\) −5.79134 −0.243643
\(566\) 2.18078 0.0916651
\(567\) −1.00000 −0.0419961
\(568\) −3.28342 −0.137769
\(569\) 34.4052 1.44234 0.721170 0.692758i \(-0.243605\pi\)
0.721170 + 0.692758i \(0.243605\pi\)
\(570\) −0.689691 −0.0288880
\(571\) 29.9599 1.25378 0.626892 0.779106i \(-0.284327\pi\)
0.626892 + 0.779106i \(0.284327\pi\)
\(572\) −6.12260 −0.255999
\(573\) −17.1383 −0.715964
\(574\) 4.36980 0.182392
\(575\) 16.2017 0.675659
\(576\) −3.61858 −0.150774
\(577\) −16.8873 −0.703025 −0.351513 0.936183i \(-0.614333\pi\)
−0.351513 + 0.936183i \(0.614333\pi\)
\(578\) 0 0
\(579\) −24.3552 −1.01217
\(580\) 0.267378 0.0111023
\(581\) −4.90747 −0.203596
\(582\) 2.66416 0.110433
\(583\) 15.1506 0.627472
\(584\) −4.28353 −0.177254
\(585\) −1.20789 −0.0499403
\(586\) −6.31999 −0.261076
\(587\) 24.1450 0.996570 0.498285 0.867013i \(-0.333963\pi\)
0.498285 + 0.867013i \(0.333963\pi\)
\(588\) 1.80132 0.0742852
\(589\) 0.711585 0.0293204
\(590\) −0.267132 −0.0109977
\(591\) 5.14873 0.211791
\(592\) 2.05003 0.0842556
\(593\) −2.44639 −0.100461 −0.0502307 0.998738i \(-0.515996\pi\)
−0.0502307 + 0.998738i \(0.515996\pi\)
\(594\) −0.645017 −0.0264654
\(595\) 0 0
\(596\) 33.3599 1.36648
\(597\) 2.17553 0.0890386
\(598\) −3.58194 −0.146477
\(599\) 4.77706 0.195185 0.0975926 0.995226i \(-0.468886\pi\)
0.0975926 + 0.995226i \(0.468886\pi\)
\(600\) 8.02381 0.327571
\(601\) −0.748720 −0.0305409 −0.0152705 0.999883i \(-0.504861\pi\)
−0.0152705 + 0.999883i \(0.504861\pi\)
\(602\) 3.60076 0.146756
\(603\) 6.38786 0.260134
\(604\) −15.7454 −0.640673
\(605\) −4.57992 −0.186200
\(606\) 1.41631 0.0575336
\(607\) 20.6683 0.838899 0.419449 0.907779i \(-0.362223\pi\)
0.419449 + 0.907779i \(0.362223\pi\)
\(608\) 14.0150 0.568384
\(609\) −0.288640 −0.0116963
\(610\) 1.89129 0.0765763
\(611\) 20.2067 0.817476
\(612\) 0 0
\(613\) −33.5425 −1.35477 −0.677384 0.735629i \(-0.736887\pi\)
−0.677384 + 0.735629i \(0.736887\pi\)
\(614\) 1.51529 0.0611521
\(615\) −5.04155 −0.203295
\(616\) 2.45192 0.0987905
\(617\) −37.2457 −1.49945 −0.749727 0.661747i \(-0.769815\pi\)
−0.749727 + 0.661747i \(0.769815\pi\)
\(618\) −8.30136 −0.333930
\(619\) −15.3771 −0.618059 −0.309030 0.951052i \(-0.600004\pi\)
−0.309030 + 0.951052i \(0.600004\pi\)
\(620\) 0.219077 0.00879835
\(621\) 3.42130 0.137292
\(622\) 2.02115 0.0810408
\(623\) 5.33991 0.213939
\(624\) 6.68803 0.267736
\(625\) 21.1031 0.844123
\(626\) −2.99758 −0.119808
\(627\) −4.35405 −0.173884
\(628\) 31.1076 1.24133
\(629\) 0 0
\(630\) 0.229221 0.00913240
\(631\) −37.8573 −1.50707 −0.753537 0.657405i \(-0.771654\pi\)
−0.753537 + 0.657405i \(0.771654\pi\)
\(632\) 1.55765 0.0619600
\(633\) −11.5302 −0.458283
\(634\) 7.17119 0.284804
\(635\) 4.80659 0.190744
\(636\) −18.8593 −0.747820
\(637\) −2.34882 −0.0930638
\(638\) −0.186177 −0.00737084
\(639\) −1.93783 −0.0766593
\(640\) 5.62020 0.222158
\(641\) −9.66414 −0.381711 −0.190855 0.981618i \(-0.561126\pi\)
−0.190855 + 0.981618i \(0.561126\pi\)
\(642\) −1.78365 −0.0703952
\(643\) −7.15672 −0.282234 −0.141117 0.989993i \(-0.545069\pi\)
−0.141117 + 0.989993i \(0.545069\pi\)
\(644\) −6.16286 −0.242851
\(645\) −4.15428 −0.163575
\(646\) 0 0
\(647\) 20.4038 0.802156 0.401078 0.916044i \(-0.368636\pi\)
0.401078 + 0.916044i \(0.368636\pi\)
\(648\) 1.69438 0.0665616
\(649\) −1.68642 −0.0661978
\(650\) −4.95789 −0.194464
\(651\) −0.236498 −0.00926909
\(652\) 13.7664 0.539134
\(653\) 6.40451 0.250628 0.125314 0.992117i \(-0.460006\pi\)
0.125314 + 0.992117i \(0.460006\pi\)
\(654\) 1.58824 0.0621052
\(655\) −0.868879 −0.0339499
\(656\) 27.9147 1.08989
\(657\) −2.52808 −0.0986297
\(658\) −3.83462 −0.149489
\(659\) 30.0564 1.17083 0.585415 0.810733i \(-0.300931\pi\)
0.585415 + 0.810733i \(0.300931\pi\)
\(660\) −1.34049 −0.0521785
\(661\) −45.7701 −1.78025 −0.890126 0.455715i \(-0.849383\pi\)
−0.890126 + 0.455715i \(0.849383\pi\)
\(662\) −5.47468 −0.212780
\(663\) 0 0
\(664\) 8.31512 0.322689
\(665\) 1.54731 0.0600022
\(666\) −0.320914 −0.0124352
\(667\) 0.987524 0.0382371
\(668\) −35.8460 −1.38692
\(669\) 1.79652 0.0694575
\(670\) −1.46424 −0.0565683
\(671\) 11.9398 0.460932
\(672\) −4.65795 −0.179684
\(673\) −27.8412 −1.07320 −0.536599 0.843837i \(-0.680291\pi\)
−0.536599 + 0.843837i \(0.680291\pi\)
\(674\) −12.4398 −0.479162
\(675\) 4.73554 0.182271
\(676\) 13.4793 0.518436
\(677\) −2.79349 −0.107363 −0.0536813 0.998558i \(-0.517095\pi\)
−0.0536813 + 0.998558i \(0.517095\pi\)
\(678\) −5.01969 −0.192780
\(679\) −5.97700 −0.229376
\(680\) 0 0
\(681\) −19.7638 −0.757349
\(682\) −0.152545 −0.00584126
\(683\) −8.27399 −0.316596 −0.158298 0.987391i \(-0.550601\pi\)
−0.158298 + 0.987391i \(0.550601\pi\)
\(684\) 5.41989 0.207235
\(685\) −5.94534 −0.227160
\(686\) 0.445735 0.0170182
\(687\) −0.479494 −0.0182938
\(688\) 23.0020 0.876942
\(689\) 24.5915 0.936861
\(690\) −0.784236 −0.0298554
\(691\) 1.00604 0.0382714 0.0191357 0.999817i \(-0.493909\pi\)
0.0191357 + 0.999817i \(0.493909\pi\)
\(692\) 21.7915 0.828388
\(693\) 1.44709 0.0549703
\(694\) −15.9727 −0.606317
\(695\) 5.79729 0.219904
\(696\) 0.489066 0.0185380
\(697\) 0 0
\(698\) 9.58249 0.362703
\(699\) −20.3096 −0.768180
\(700\) −8.53023 −0.322412
\(701\) 41.0477 1.55035 0.775174 0.631747i \(-0.217662\pi\)
0.775174 + 0.631747i \(0.217662\pi\)
\(702\) −1.04695 −0.0395147
\(703\) −2.16626 −0.0817021
\(704\) 5.23640 0.197354
\(705\) 4.42409 0.166621
\(706\) 14.9166 0.561393
\(707\) −3.17747 −0.119501
\(708\) 2.09924 0.0788943
\(709\) 26.1743 0.982995 0.491497 0.870879i \(-0.336450\pi\)
0.491497 + 0.870879i \(0.336450\pi\)
\(710\) 0.444192 0.0166702
\(711\) 0.919304 0.0344766
\(712\) −9.04784 −0.339082
\(713\) 0.809132 0.0303022
\(714\) 0 0
\(715\) 1.74793 0.0653688
\(716\) −42.3248 −1.58175
\(717\) −8.46865 −0.316268
\(718\) 0.0822452 0.00306936
\(719\) −46.6429 −1.73949 −0.869744 0.493503i \(-0.835716\pi\)
−0.869744 + 0.493503i \(0.835716\pi\)
\(720\) 1.46429 0.0545708
\(721\) 18.6240 0.693594
\(722\) 4.43367 0.165004
\(723\) −25.9117 −0.963667
\(724\) −10.1238 −0.376250
\(725\) 1.36687 0.0507641
\(726\) −3.96969 −0.147329
\(727\) 23.4447 0.869516 0.434758 0.900547i \(-0.356834\pi\)
0.434758 + 0.900547i \(0.356834\pi\)
\(728\) 3.97980 0.147501
\(729\) 1.00000 0.0370370
\(730\) 0.579490 0.0214479
\(731\) 0 0
\(732\) −14.8626 −0.549338
\(733\) 24.8488 0.917810 0.458905 0.888485i \(-0.348242\pi\)
0.458905 + 0.888485i \(0.348242\pi\)
\(734\) 11.9054 0.439436
\(735\) −0.514255 −0.0189686
\(736\) 15.9362 0.587418
\(737\) −9.24379 −0.340499
\(738\) −4.36980 −0.160855
\(739\) −13.2408 −0.487071 −0.243536 0.969892i \(-0.578307\pi\)
−0.243536 + 0.969892i \(0.578307\pi\)
\(740\) −0.666931 −0.0245169
\(741\) −7.06724 −0.259621
\(742\) −4.66671 −0.171320
\(743\) 4.77103 0.175032 0.0875160 0.996163i \(-0.472107\pi\)
0.0875160 + 0.996163i \(0.472107\pi\)
\(744\) 0.400718 0.0146910
\(745\) −9.52385 −0.348927
\(746\) −0.0756314 −0.00276906
\(747\) 4.90747 0.179555
\(748\) 0 0
\(749\) 4.00160 0.146215
\(750\) −2.23159 −0.0814863
\(751\) −25.8402 −0.942921 −0.471461 0.881887i \(-0.656273\pi\)
−0.471461 + 0.881887i \(0.656273\pi\)
\(752\) −24.4959 −0.893273
\(753\) 15.4020 0.561280
\(754\) −0.302192 −0.0110052
\(755\) 4.49513 0.163595
\(756\) −1.80132 −0.0655134
\(757\) −39.3638 −1.43070 −0.715350 0.698766i \(-0.753733\pi\)
−0.715350 + 0.698766i \(0.753733\pi\)
\(758\) −6.70815 −0.243651
\(759\) −4.95092 −0.179707
\(760\) −2.62174 −0.0951004
\(761\) 50.9757 1.84787 0.923934 0.382553i \(-0.124955\pi\)
0.923934 + 0.382553i \(0.124955\pi\)
\(762\) 4.16616 0.150924
\(763\) −3.56320 −0.128997
\(764\) −30.8716 −1.11690
\(765\) 0 0
\(766\) −10.3620 −0.374393
\(767\) −2.73730 −0.0988380
\(768\) −2.36581 −0.0853687
\(769\) 29.1332 1.05057 0.525285 0.850926i \(-0.323959\pi\)
0.525285 + 0.850926i \(0.323959\pi\)
\(770\) −0.331703 −0.0119538
\(771\) −12.3161 −0.443553
\(772\) −43.8714 −1.57897
\(773\) −28.5029 −1.02518 −0.512588 0.858635i \(-0.671313\pi\)
−0.512588 + 0.858635i \(0.671313\pi\)
\(774\) −3.60076 −0.129427
\(775\) 1.11995 0.0402297
\(776\) 10.1273 0.363549
\(777\) 0.719966 0.0258286
\(778\) −2.87270 −0.102991
\(779\) −29.4975 −1.05686
\(780\) −2.17580 −0.0779063
\(781\) 2.80421 0.100342
\(782\) 0 0
\(783\) 0.288640 0.0103151
\(784\) 2.84740 0.101693
\(785\) −8.88083 −0.316970
\(786\) −0.753108 −0.0268625
\(787\) −37.4755 −1.33586 −0.667929 0.744225i \(-0.732819\pi\)
−0.667929 + 0.744225i \(0.732819\pi\)
\(788\) 9.27451 0.330391
\(789\) 7.90731 0.281508
\(790\) −0.210724 −0.00749723
\(791\) 11.2616 0.400417
\(792\) −2.45192 −0.0871250
\(793\) 19.3800 0.688205
\(794\) −12.3924 −0.439789
\(795\) 5.38410 0.190954
\(796\) 3.91883 0.138899
\(797\) 51.3309 1.81823 0.909116 0.416543i \(-0.136758\pi\)
0.909116 + 0.416543i \(0.136758\pi\)
\(798\) 1.34115 0.0474760
\(799\) 0 0
\(800\) 22.0579 0.779865
\(801\) −5.33991 −0.188676
\(802\) −11.3669 −0.401380
\(803\) 3.65835 0.129100
\(804\) 11.5066 0.405806
\(805\) 1.75942 0.0620115
\(806\) −0.247602 −0.00872142
\(807\) −15.4174 −0.542717
\(808\) 5.38384 0.189403
\(809\) −16.9190 −0.594839 −0.297419 0.954747i \(-0.596126\pi\)
−0.297419 + 0.954747i \(0.596126\pi\)
\(810\) −0.229221 −0.00805402
\(811\) 4.77991 0.167845 0.0839227 0.996472i \(-0.473255\pi\)
0.0839227 + 0.996472i \(0.473255\pi\)
\(812\) −0.519933 −0.0182461
\(813\) 4.89568 0.171699
\(814\) 0.464390 0.0162769
\(815\) −3.93014 −0.137667
\(816\) 0 0
\(817\) −24.3062 −0.850366
\(818\) 5.15460 0.180226
\(819\) 2.34882 0.0820745
\(820\) −9.08144 −0.317138
\(821\) 37.8415 1.32068 0.660339 0.750968i \(-0.270413\pi\)
0.660339 + 0.750968i \(0.270413\pi\)
\(822\) −5.15318 −0.179738
\(823\) −21.7490 −0.758122 −0.379061 0.925372i \(-0.623753\pi\)
−0.379061 + 0.925372i \(0.623753\pi\)
\(824\) −31.5561 −1.09931
\(825\) −6.85274 −0.238582
\(826\) 0.519455 0.0180741
\(827\) 4.06189 0.141246 0.0706230 0.997503i \(-0.477501\pi\)
0.0706230 + 0.997503i \(0.477501\pi\)
\(828\) 6.16286 0.214174
\(829\) −6.31918 −0.219474 −0.109737 0.993961i \(-0.535001\pi\)
−0.109737 + 0.993961i \(0.535001\pi\)
\(830\) −1.12490 −0.0390457
\(831\) 0.312488 0.0108401
\(832\) 8.49941 0.294664
\(833\) 0 0
\(834\) 5.02485 0.173996
\(835\) 10.2336 0.354148
\(836\) −7.84305 −0.271257
\(837\) 0.236498 0.00817457
\(838\) −10.2597 −0.354414
\(839\) −56.1354 −1.93801 −0.969005 0.247042i \(-0.920542\pi\)
−0.969005 + 0.247042i \(0.920542\pi\)
\(840\) 0.871344 0.0300642
\(841\) −28.9167 −0.997127
\(842\) −2.49879 −0.0861141
\(843\) 2.96508 0.102123
\(844\) −20.7695 −0.714917
\(845\) −3.84818 −0.132382
\(846\) 3.83462 0.131837
\(847\) 8.90594 0.306012
\(848\) −29.8114 −1.02373
\(849\) 4.89256 0.167912
\(850\) 0 0
\(851\) −2.46322 −0.0844381
\(852\) −3.49065 −0.119588
\(853\) 13.2070 0.452200 0.226100 0.974104i \(-0.427402\pi\)
0.226100 + 0.974104i \(0.427402\pi\)
\(854\) −3.67774 −0.125850
\(855\) −1.54731 −0.0529169
\(856\) −6.78024 −0.231744
\(857\) 40.1590 1.37180 0.685902 0.727694i \(-0.259408\pi\)
0.685902 + 0.727694i \(0.259408\pi\)
\(858\) 1.51503 0.0517223
\(859\) 22.1538 0.755879 0.377940 0.925830i \(-0.376633\pi\)
0.377940 + 0.925830i \(0.376633\pi\)
\(860\) −7.48319 −0.255175
\(861\) 9.80360 0.334106
\(862\) −1.77428 −0.0604324
\(863\) −11.6834 −0.397706 −0.198853 0.980029i \(-0.563722\pi\)
−0.198853 + 0.980029i \(0.563722\pi\)
\(864\) 4.65795 0.158467
\(865\) −6.22120 −0.211527
\(866\) −11.5921 −0.393916
\(867\) 0 0
\(868\) −0.426009 −0.0144597
\(869\) −1.33031 −0.0451277
\(870\) −0.0661624 −0.00224312
\(871\) −15.0040 −0.508390
\(872\) 6.03742 0.204453
\(873\) 5.97700 0.202291
\(874\) −4.58847 −0.155207
\(875\) 5.00655 0.169252
\(876\) −4.55388 −0.153861
\(877\) −3.52434 −0.119008 −0.0595042 0.998228i \(-0.518952\pi\)
−0.0595042 + 0.998228i \(0.518952\pi\)
\(878\) −9.97296 −0.336571
\(879\) −14.1788 −0.478239
\(880\) −2.11895 −0.0714298
\(881\) −24.3026 −0.818776 −0.409388 0.912360i \(-0.634258\pi\)
−0.409388 + 0.912360i \(0.634258\pi\)
\(882\) −0.445735 −0.0150087
\(883\) 18.4675 0.621482 0.310741 0.950495i \(-0.399423\pi\)
0.310741 + 0.950495i \(0.399423\pi\)
\(884\) 0 0
\(885\) −0.599307 −0.0201455
\(886\) −9.89925 −0.332572
\(887\) −48.7259 −1.63606 −0.818028 0.575178i \(-0.804933\pi\)
−0.818028 + 0.575178i \(0.804933\pi\)
\(888\) −1.21990 −0.0409370
\(889\) −9.34671 −0.313479
\(890\) 1.22402 0.0410293
\(891\) −1.44709 −0.0484792
\(892\) 3.23611 0.108353
\(893\) 25.8848 0.866201
\(894\) −8.25488 −0.276084
\(895\) 12.0832 0.403898
\(896\) −10.9288 −0.365106
\(897\) −8.03604 −0.268316
\(898\) −10.5943 −0.353536
\(899\) 0.0682627 0.00227669
\(900\) 8.53023 0.284341
\(901\) 0 0
\(902\) 6.32348 0.210549
\(903\) 8.07825 0.268827
\(904\) −19.0815 −0.634640
\(905\) 2.89023 0.0960747
\(906\) 3.89619 0.129442
\(907\) 24.6051 0.816998 0.408499 0.912759i \(-0.366052\pi\)
0.408499 + 0.912759i \(0.366052\pi\)
\(908\) −35.6009 −1.18146
\(909\) 3.17747 0.105390
\(910\) −0.538401 −0.0178478
\(911\) 33.5850 1.11272 0.556360 0.830941i \(-0.312198\pi\)
0.556360 + 0.830941i \(0.312198\pi\)
\(912\) 8.56736 0.283694
\(913\) −7.10153 −0.235026
\(914\) −12.0170 −0.397487
\(915\) 4.24309 0.140272
\(916\) −0.863722 −0.0285382
\(917\) 1.68959 0.0557951
\(918\) 0 0
\(919\) −29.8477 −0.984583 −0.492292 0.870430i \(-0.663841\pi\)
−0.492292 + 0.870430i \(0.663841\pi\)
\(920\) −2.98113 −0.0982850
\(921\) 3.39953 0.112018
\(922\) −12.1045 −0.398639
\(923\) 4.55162 0.149818
\(924\) 2.60667 0.0857530
\(925\) −3.40943 −0.112101
\(926\) 10.5566 0.346910
\(927\) −18.6240 −0.611692
\(928\) 1.34447 0.0441343
\(929\) 33.5548 1.10090 0.550449 0.834869i \(-0.314456\pi\)
0.550449 + 0.834869i \(0.314456\pi\)
\(930\) −0.0542104 −0.00177763
\(931\) −3.00884 −0.0986108
\(932\) −36.5841 −1.19835
\(933\) 4.53443 0.148450
\(934\) 6.07948 0.198927
\(935\) 0 0
\(936\) −3.97980 −0.130084
\(937\) −35.5864 −1.16256 −0.581278 0.813705i \(-0.697447\pi\)
−0.581278 + 0.813705i \(0.697447\pi\)
\(938\) 2.84729 0.0929674
\(939\) −6.72503 −0.219463
\(940\) 7.96920 0.259927
\(941\) −8.86604 −0.289025 −0.144512 0.989503i \(-0.546161\pi\)
−0.144512 + 0.989503i \(0.546161\pi\)
\(942\) −7.69754 −0.250799
\(943\) −33.5411 −1.09225
\(944\) 3.31833 0.108002
\(945\) 0.514255 0.0167287
\(946\) 5.21061 0.169412
\(947\) 51.6992 1.68000 0.839999 0.542588i \(-0.182555\pi\)
0.839999 + 0.542588i \(0.182555\pi\)
\(948\) 1.65596 0.0537831
\(949\) 5.93801 0.192756
\(950\) −6.35105 −0.206055
\(951\) 16.0885 0.521704
\(952\) 0 0
\(953\) 27.8668 0.902695 0.451347 0.892348i \(-0.350944\pi\)
0.451347 + 0.892348i \(0.350944\pi\)
\(954\) 4.66671 0.151090
\(955\) 8.81347 0.285197
\(956\) −15.2548 −0.493374
\(957\) −0.417687 −0.0135019
\(958\) −12.6078 −0.407340
\(959\) 11.5611 0.373327
\(960\) 1.86087 0.0600595
\(961\) −30.9441 −0.998196
\(962\) 0.753770 0.0243025
\(963\) −4.00160 −0.128950
\(964\) −46.6753 −1.50331
\(965\) 12.5248 0.403186
\(966\) 1.52499 0.0490659
\(967\) 5.93299 0.190792 0.0953960 0.995439i \(-0.469588\pi\)
0.0953960 + 0.995439i \(0.469588\pi\)
\(968\) −15.0901 −0.485013
\(969\) 0 0
\(970\) −1.37006 −0.0439898
\(971\) 46.5606 1.49420 0.747100 0.664712i \(-0.231446\pi\)
0.747100 + 0.664712i \(0.231446\pi\)
\(972\) 1.80132 0.0577774
\(973\) −11.2732 −0.361402
\(974\) −10.0272 −0.321292
\(975\) −11.1230 −0.356220
\(976\) −23.4937 −0.752016
\(977\) −29.0317 −0.928805 −0.464403 0.885624i \(-0.653731\pi\)
−0.464403 + 0.885624i \(0.653731\pi\)
\(978\) −3.40648 −0.108927
\(979\) 7.72731 0.246966
\(980\) −0.926338 −0.0295908
\(981\) 3.56320 0.113764
\(982\) −7.92867 −0.253014
\(983\) 0.620543 0.0197923 0.00989613 0.999951i \(-0.496850\pi\)
0.00989613 + 0.999951i \(0.496850\pi\)
\(984\) −16.6110 −0.529540
\(985\) −2.64776 −0.0843647
\(986\) 0 0
\(987\) −8.60291 −0.273834
\(988\) −12.7304 −0.405007
\(989\) −27.6382 −0.878842
\(990\) 0.331703 0.0105422
\(991\) −19.0766 −0.605989 −0.302995 0.952992i \(-0.597986\pi\)
−0.302995 + 0.952992i \(0.597986\pi\)
\(992\) 1.10160 0.0349757
\(993\) −12.2824 −0.389769
\(994\) −0.863758 −0.0273967
\(995\) −1.11878 −0.0354677
\(996\) 8.83992 0.280104
\(997\) −2.30146 −0.0728878 −0.0364439 0.999336i \(-0.511603\pi\)
−0.0364439 + 0.999336i \(0.511603\pi\)
\(998\) 15.3122 0.484698
\(999\) −0.719966 −0.0227787
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.z.1.5 9
17.16 even 2 6069.2.a.bc.1.5 yes 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
6069.2.a.z.1.5 9 1.1 even 1 trivial
6069.2.a.bc.1.5 yes 9 17.16 even 2