Properties

Label 6069.2.a.x
Level $6069$
Weight $2$
Character orbit 6069.a
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,0,6,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.2803712.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{4} + 8x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + \beta_{2} q^{4} + ( - \beta_{4} + \beta_{2} + \beta_1 + 1) q^{5} - \beta_1 q^{6} - q^{7} + (\beta_{5} + \beta_{4} - \beta_1) q^{8} + q^{9} + (\beta_{5} + \beta_{4} - \beta_{3} + \cdots + 1) q^{10}+ \cdots + (\beta_{5} + \beta_{4} - \beta_{3} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} + 6 q^{5} - 6 q^{7} + 6 q^{9} + 8 q^{10} + 2 q^{11} - 2 q^{13} - 6 q^{15} - 8 q^{16} - 10 q^{19} + 16 q^{20} + 6 q^{21} - 8 q^{22} - 10 q^{23} + 8 q^{25} - 12 q^{26} - 6 q^{27} - 4 q^{29}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 6x^{4} + 8x^{2} - 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 5\nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - 5\nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 6\nu^{3} - 7\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} + 5\beta_{2} + 7 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 5\beta_{5} + 6\beta_{4} + 11\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.05288
−1.20864
−0.569973
0.569973
1.20864
2.05288
−2.05288 −1.00000 2.21432 2.57565 2.05288 −1.00000 −0.439973 1.00000 −5.28751
1.2 −1.20864 −1.00000 −0.539189 −2.16204 1.20864 −1.00000 3.06897 1.00000 2.61313
1.3 −0.569973 −1.00000 −1.67513 0.169110 0.569973 −1.00000 2.09473 1.00000 −0.0963880
1.4 0.569973 −1.00000 −1.67513 −1.51937 −0.569973 −1.00000 −2.09473 1.00000 −0.866001
1.5 1.20864 −1.00000 −0.539189 3.08366 −1.20864 −1.00000 −3.06897 1.00000 3.72704
1.6 2.05288 −1.00000 2.21432 3.85299 −2.05288 −1.00000 0.439973 1.00000 7.90972
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6069.2.a.x 6
17.b even 2 1 6069.2.a.y 6
17.d even 8 2 357.2.k.a 12
51.g odd 8 2 1071.2.n.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.k.a 12 17.d even 8 2
1071.2.n.a 12 51.g odd 8 2
6069.2.a.x 6 1.a even 1 1 trivial
6069.2.a.y 6 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6069))\):

\( T_{2}^{6} - 6T_{2}^{4} + 8T_{2}^{2} - 2 \) Copy content Toggle raw display
\( T_{5}^{6} - 6T_{5}^{5} - T_{5}^{4} + 48T_{5}^{3} - 23T_{5}^{2} - 98T_{5} + 17 \) Copy content Toggle raw display
\( T_{11}^{6} - 2T_{11}^{5} - 43T_{11}^{4} + 32T_{11}^{3} + 423T_{11}^{2} + 18T_{11} - 17 \) Copy content Toggle raw display
\( T_{23}^{6} + 10T_{23}^{5} - 7T_{23}^{4} - 124T_{23}^{3} + 119T_{23}^{2} + 234T_{23} - 241 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 6 T^{4} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} - 6 T^{5} + \cdots + 17 \) Copy content Toggle raw display
$7$ \( (T + 1)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 2 T^{5} + \cdots - 17 \) Copy content Toggle raw display
$13$ \( T^{6} + 2 T^{5} + \cdots + 167 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} + 10 T^{5} + \cdots + 151 \) Copy content Toggle raw display
$23$ \( T^{6} + 10 T^{5} + \cdots - 241 \) Copy content Toggle raw display
$29$ \( T^{6} + 4 T^{5} + \cdots + 10300 \) Copy content Toggle raw display
$31$ \( T^{6} - 108 T^{4} + \cdots - 13346 \) Copy content Toggle raw display
$37$ \( T^{6} - 16 T^{5} + \cdots + 26674 \) Copy content Toggle raw display
$41$ \( T^{6} - 18 T^{5} + \cdots + 601 \) Copy content Toggle raw display
$43$ \( T^{6} + 26 T^{5} + \cdots + 112681 \) Copy content Toggle raw display
$47$ \( T^{6} + 16 T^{5} + \cdots - 2558 \) Copy content Toggle raw display
$53$ \( T^{6} - 12 T^{5} + \cdots + 43166 \) Copy content Toggle raw display
$59$ \( T^{6} + 12 T^{5} + \cdots - 765118 \) Copy content Toggle raw display
$61$ \( T^{6} - 20 T^{5} + \cdots + 5134 \) Copy content Toggle raw display
$67$ \( T^{6} + 28 T^{5} + \cdots - 412 \) Copy content Toggle raw display
$71$ \( T^{6} - 20 T^{5} + \cdots + 22172 \) Copy content Toggle raw display
$73$ \( T^{6} - 36 T^{5} + \cdots + 2046400 \) Copy content Toggle raw display
$79$ \( T^{6} + 12 T^{5} + \cdots - 7022 \) Copy content Toggle raw display
$83$ \( T^{6} + 12 T^{5} + \cdots + 6200 \) Copy content Toggle raw display
$89$ \( T^{6} + 32 T^{5} + \cdots + 29824 \) Copy content Toggle raw display
$97$ \( T^{6} - 36 T^{5} + \cdots - 1932808 \) Copy content Toggle raw display
show more
show less