Properties

Label 6069.2.a.m.1.3
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,3,2,-3,-2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.17009\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17009 q^{2} +1.00000 q^{3} -0.630898 q^{4} -0.460811 q^{5} +1.17009 q^{6} +1.00000 q^{7} -3.07838 q^{8} +1.00000 q^{9} -0.539189 q^{10} -0.709275 q^{11} -0.630898 q^{12} +3.87936 q^{13} +1.17009 q^{14} -0.460811 q^{15} -2.34017 q^{16} +1.17009 q^{18} -4.17009 q^{19} +0.290725 q^{20} +1.00000 q^{21} -0.829914 q^{22} -7.34017 q^{23} -3.07838 q^{24} -4.78765 q^{25} +4.53919 q^{26} +1.00000 q^{27} -0.630898 q^{28} +1.70928 q^{29} -0.539189 q^{30} +4.87936 q^{31} +3.41855 q^{32} -0.709275 q^{33} -0.460811 q^{35} -0.630898 q^{36} -1.90829 q^{37} -4.87936 q^{38} +3.87936 q^{39} +1.41855 q^{40} -4.17009 q^{41} +1.17009 q^{42} -8.75872 q^{43} +0.447480 q^{44} -0.460811 q^{45} -8.58864 q^{46} +6.72261 q^{47} -2.34017 q^{48} +1.00000 q^{49} -5.60197 q^{50} -2.44748 q^{52} -4.58864 q^{53} +1.17009 q^{54} +0.326842 q^{55} -3.07838 q^{56} -4.17009 q^{57} +2.00000 q^{58} +3.21953 q^{59} +0.290725 q^{60} +8.48133 q^{61} +5.70928 q^{62} +1.00000 q^{63} +8.68035 q^{64} -1.78765 q^{65} -0.829914 q^{66} -6.81432 q^{67} -7.34017 q^{69} -0.539189 q^{70} -10.7298 q^{71} -3.07838 q^{72} -5.23513 q^{73} -2.23287 q^{74} -4.78765 q^{75} +2.63090 q^{76} -0.709275 q^{77} +4.53919 q^{78} -14.1639 q^{79} +1.07838 q^{80} +1.00000 q^{81} -4.87936 q^{82} +0.496928 q^{83} -0.630898 q^{84} -10.2485 q^{86} +1.70928 q^{87} +2.18342 q^{88} +3.60197 q^{89} -0.539189 q^{90} +3.87936 q^{91} +4.63090 q^{92} +4.87936 q^{93} +7.86603 q^{94} +1.92162 q^{95} +3.41855 q^{96} -11.0784 q^{97} +1.17009 q^{98} -0.709275 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 3 q^{3} + 2 q^{4} - 3 q^{5} - 2 q^{6} + 3 q^{7} - 6 q^{8} + 3 q^{9} + 5 q^{11} + 2 q^{12} - q^{13} - 2 q^{14} - 3 q^{15} + 4 q^{16} - 2 q^{18} - 7 q^{19} + 8 q^{20} + 3 q^{21} - 8 q^{22}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.17009 0.827376 0.413688 0.910419i \(-0.364240\pi\)
0.413688 + 0.910419i \(0.364240\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.630898 −0.315449
\(5\) −0.460811 −0.206081 −0.103041 0.994677i \(-0.532857\pi\)
−0.103041 + 0.994677i \(0.532857\pi\)
\(6\) 1.17009 0.477686
\(7\) 1.00000 0.377964
\(8\) −3.07838 −1.08837
\(9\) 1.00000 0.333333
\(10\) −0.539189 −0.170506
\(11\) −0.709275 −0.213855 −0.106927 0.994267i \(-0.534101\pi\)
−0.106927 + 0.994267i \(0.534101\pi\)
\(12\) −0.630898 −0.182124
\(13\) 3.87936 1.07594 0.537971 0.842964i \(-0.319191\pi\)
0.537971 + 0.842964i \(0.319191\pi\)
\(14\) 1.17009 0.312719
\(15\) −0.460811 −0.118981
\(16\) −2.34017 −0.585043
\(17\) 0 0
\(18\) 1.17009 0.275792
\(19\) −4.17009 −0.956683 −0.478342 0.878174i \(-0.658762\pi\)
−0.478342 + 0.878174i \(0.658762\pi\)
\(20\) 0.290725 0.0650080
\(21\) 1.00000 0.218218
\(22\) −0.829914 −0.176938
\(23\) −7.34017 −1.53053 −0.765266 0.643714i \(-0.777393\pi\)
−0.765266 + 0.643714i \(0.777393\pi\)
\(24\) −3.07838 −0.628371
\(25\) −4.78765 −0.957531
\(26\) 4.53919 0.890208
\(27\) 1.00000 0.192450
\(28\) −0.630898 −0.119228
\(29\) 1.70928 0.317404 0.158702 0.987326i \(-0.449269\pi\)
0.158702 + 0.987326i \(0.449269\pi\)
\(30\) −0.539189 −0.0984420
\(31\) 4.87936 0.876359 0.438180 0.898887i \(-0.355623\pi\)
0.438180 + 0.898887i \(0.355623\pi\)
\(32\) 3.41855 0.604320
\(33\) −0.709275 −0.123469
\(34\) 0 0
\(35\) −0.460811 −0.0778913
\(36\) −0.630898 −0.105150
\(37\) −1.90829 −0.313721 −0.156861 0.987621i \(-0.550137\pi\)
−0.156861 + 0.987621i \(0.550137\pi\)
\(38\) −4.87936 −0.791537
\(39\) 3.87936 0.621195
\(40\) 1.41855 0.224293
\(41\) −4.17009 −0.651258 −0.325629 0.945498i \(-0.605576\pi\)
−0.325629 + 0.945498i \(0.605576\pi\)
\(42\) 1.17009 0.180548
\(43\) −8.75872 −1.33569 −0.667846 0.744299i \(-0.732784\pi\)
−0.667846 + 0.744299i \(0.732784\pi\)
\(44\) 0.447480 0.0674602
\(45\) −0.460811 −0.0686937
\(46\) −8.58864 −1.26633
\(47\) 6.72261 0.980593 0.490296 0.871556i \(-0.336889\pi\)
0.490296 + 0.871556i \(0.336889\pi\)
\(48\) −2.34017 −0.337775
\(49\) 1.00000 0.142857
\(50\) −5.60197 −0.792238
\(51\) 0 0
\(52\) −2.44748 −0.339404
\(53\) −4.58864 −0.630298 −0.315149 0.949042i \(-0.602054\pi\)
−0.315149 + 0.949042i \(0.602054\pi\)
\(54\) 1.17009 0.159229
\(55\) 0.326842 0.0440714
\(56\) −3.07838 −0.411366
\(57\) −4.17009 −0.552341
\(58\) 2.00000 0.262613
\(59\) 3.21953 0.419148 0.209574 0.977793i \(-0.432792\pi\)
0.209574 + 0.977793i \(0.432792\pi\)
\(60\) 0.290725 0.0375324
\(61\) 8.48133 1.08592 0.542962 0.839758i \(-0.317303\pi\)
0.542962 + 0.839758i \(0.317303\pi\)
\(62\) 5.70928 0.725079
\(63\) 1.00000 0.125988
\(64\) 8.68035 1.08504
\(65\) −1.78765 −0.221731
\(66\) −0.829914 −0.102155
\(67\) −6.81432 −0.832501 −0.416251 0.909250i \(-0.636656\pi\)
−0.416251 + 0.909250i \(0.636656\pi\)
\(68\) 0 0
\(69\) −7.34017 −0.883653
\(70\) −0.539189 −0.0644454
\(71\) −10.7298 −1.27339 −0.636696 0.771115i \(-0.719699\pi\)
−0.636696 + 0.771115i \(0.719699\pi\)
\(72\) −3.07838 −0.362790
\(73\) −5.23513 −0.612726 −0.306363 0.951915i \(-0.599112\pi\)
−0.306363 + 0.951915i \(0.599112\pi\)
\(74\) −2.23287 −0.259565
\(75\) −4.78765 −0.552831
\(76\) 2.63090 0.301785
\(77\) −0.709275 −0.0808294
\(78\) 4.53919 0.513962
\(79\) −14.1639 −1.59357 −0.796784 0.604264i \(-0.793467\pi\)
−0.796784 + 0.604264i \(0.793467\pi\)
\(80\) 1.07838 0.120566
\(81\) 1.00000 0.111111
\(82\) −4.87936 −0.538835
\(83\) 0.496928 0.0545450 0.0272725 0.999628i \(-0.491318\pi\)
0.0272725 + 0.999628i \(0.491318\pi\)
\(84\) −0.630898 −0.0688366
\(85\) 0 0
\(86\) −10.2485 −1.10512
\(87\) 1.70928 0.183254
\(88\) 2.18342 0.232753
\(89\) 3.60197 0.381808 0.190904 0.981609i \(-0.438858\pi\)
0.190904 + 0.981609i \(0.438858\pi\)
\(90\) −0.539189 −0.0568355
\(91\) 3.87936 0.406668
\(92\) 4.63090 0.482804
\(93\) 4.87936 0.505966
\(94\) 7.86603 0.811319
\(95\) 1.92162 0.197154
\(96\) 3.41855 0.348904
\(97\) −11.0784 −1.12484 −0.562419 0.826852i \(-0.690129\pi\)
−0.562419 + 0.826852i \(0.690129\pi\)
\(98\) 1.17009 0.118197
\(99\) −0.709275 −0.0712849
\(100\) 3.02052 0.302052
\(101\) −14.0566 −1.39869 −0.699344 0.714785i \(-0.746524\pi\)
−0.699344 + 0.714785i \(0.746524\pi\)
\(102\) 0 0
\(103\) −17.0566 −1.68064 −0.840320 0.542090i \(-0.817633\pi\)
−0.840320 + 0.542090i \(0.817633\pi\)
\(104\) −11.9421 −1.17102
\(105\) −0.460811 −0.0449706
\(106\) −5.36910 −0.521493
\(107\) 0.973338 0.0940961 0.0470481 0.998893i \(-0.485019\pi\)
0.0470481 + 0.998893i \(0.485019\pi\)
\(108\) −0.630898 −0.0607082
\(109\) 2.40522 0.230378 0.115189 0.993344i \(-0.463253\pi\)
0.115189 + 0.993344i \(0.463253\pi\)
\(110\) 0.382433 0.0364636
\(111\) −1.90829 −0.181127
\(112\) −2.34017 −0.221126
\(113\) 16.9916 1.59843 0.799217 0.601042i \(-0.205248\pi\)
0.799217 + 0.601042i \(0.205248\pi\)
\(114\) −4.87936 −0.456994
\(115\) 3.38243 0.315414
\(116\) −1.07838 −0.100125
\(117\) 3.87936 0.358647
\(118\) 3.76713 0.346793
\(119\) 0 0
\(120\) 1.41855 0.129495
\(121\) −10.4969 −0.954266
\(122\) 9.92389 0.898467
\(123\) −4.17009 −0.376004
\(124\) −3.07838 −0.276446
\(125\) 4.51026 0.403410
\(126\) 1.17009 0.104240
\(127\) −4.21235 −0.373785 −0.186893 0.982380i \(-0.559842\pi\)
−0.186893 + 0.982380i \(0.559842\pi\)
\(128\) 3.31965 0.293419
\(129\) −8.75872 −0.771163
\(130\) −2.09171 −0.183455
\(131\) 16.0361 1.40108 0.700541 0.713612i \(-0.252942\pi\)
0.700541 + 0.713612i \(0.252942\pi\)
\(132\) 0.447480 0.0389481
\(133\) −4.17009 −0.361592
\(134\) −7.97334 −0.688791
\(135\) −0.460811 −0.0396603
\(136\) 0 0
\(137\) −6.43188 −0.549513 −0.274756 0.961514i \(-0.588597\pi\)
−0.274756 + 0.961514i \(0.588597\pi\)
\(138\) −8.58864 −0.731113
\(139\) 12.4391 1.05507 0.527534 0.849534i \(-0.323117\pi\)
0.527534 + 0.849534i \(0.323117\pi\)
\(140\) 0.290725 0.0245707
\(141\) 6.72261 0.566146
\(142\) −12.5548 −1.05357
\(143\) −2.75154 −0.230095
\(144\) −2.34017 −0.195014
\(145\) −0.787653 −0.0654110
\(146\) −6.12556 −0.506955
\(147\) 1.00000 0.0824786
\(148\) 1.20394 0.0989630
\(149\) 14.1256 1.15721 0.578605 0.815608i \(-0.303597\pi\)
0.578605 + 0.815608i \(0.303597\pi\)
\(150\) −5.60197 −0.457399
\(151\) −16.2907 −1.32572 −0.662860 0.748743i \(-0.730658\pi\)
−0.662860 + 0.748743i \(0.730658\pi\)
\(152\) 12.8371 1.04123
\(153\) 0 0
\(154\) −0.829914 −0.0668763
\(155\) −2.24846 −0.180601
\(156\) −2.44748 −0.195955
\(157\) −19.7721 −1.57798 −0.788991 0.614405i \(-0.789396\pi\)
−0.788991 + 0.614405i \(0.789396\pi\)
\(158\) −16.5730 −1.31848
\(159\) −4.58864 −0.363903
\(160\) −1.57531 −0.124539
\(161\) −7.34017 −0.578487
\(162\) 1.17009 0.0919307
\(163\) 5.10504 0.399858 0.199929 0.979810i \(-0.435929\pi\)
0.199929 + 0.979810i \(0.435929\pi\)
\(164\) 2.63090 0.205439
\(165\) 0.326842 0.0254446
\(166\) 0.581449 0.0451292
\(167\) −1.64650 −0.127410 −0.0637048 0.997969i \(-0.520292\pi\)
−0.0637048 + 0.997969i \(0.520292\pi\)
\(168\) −3.07838 −0.237502
\(169\) 2.04945 0.157650
\(170\) 0 0
\(171\) −4.17009 −0.318894
\(172\) 5.52586 0.421343
\(173\) 16.7165 1.27093 0.635465 0.772130i \(-0.280809\pi\)
0.635465 + 0.772130i \(0.280809\pi\)
\(174\) 2.00000 0.151620
\(175\) −4.78765 −0.361913
\(176\) 1.65983 0.125114
\(177\) 3.21953 0.241995
\(178\) 4.21461 0.315899
\(179\) −24.0144 −1.79492 −0.897459 0.441097i \(-0.854589\pi\)
−0.897459 + 0.441097i \(0.854589\pi\)
\(180\) 0.290725 0.0216693
\(181\) −19.5174 −1.45072 −0.725360 0.688369i \(-0.758327\pi\)
−0.725360 + 0.688369i \(0.758327\pi\)
\(182\) 4.53919 0.336467
\(183\) 8.48133 0.626958
\(184\) 22.5958 1.66579
\(185\) 0.879362 0.0646520
\(186\) 5.70928 0.418624
\(187\) 0 0
\(188\) −4.24128 −0.309327
\(189\) 1.00000 0.0727393
\(190\) 2.24846 0.163121
\(191\) −10.8371 −0.784145 −0.392073 0.919934i \(-0.628242\pi\)
−0.392073 + 0.919934i \(0.628242\pi\)
\(192\) 8.68035 0.626450
\(193\) 7.72487 0.556049 0.278024 0.960574i \(-0.410320\pi\)
0.278024 + 0.960574i \(0.410320\pi\)
\(194\) −12.9627 −0.930665
\(195\) −1.78765 −0.128016
\(196\) −0.630898 −0.0450641
\(197\) 13.2062 0.940903 0.470452 0.882426i \(-0.344091\pi\)
0.470452 + 0.882426i \(0.344091\pi\)
\(198\) −0.829914 −0.0589794
\(199\) 17.5597 1.24477 0.622387 0.782709i \(-0.286163\pi\)
0.622387 + 0.782709i \(0.286163\pi\)
\(200\) 14.7382 1.04215
\(201\) −6.81432 −0.480645
\(202\) −16.4475 −1.15724
\(203\) 1.70928 0.119968
\(204\) 0 0
\(205\) 1.92162 0.134212
\(206\) −19.9577 −1.39052
\(207\) −7.34017 −0.510177
\(208\) −9.07838 −0.629472
\(209\) 2.95774 0.204591
\(210\) −0.539189 −0.0372076
\(211\) −4.14957 −0.285668 −0.142834 0.989747i \(-0.545622\pi\)
−0.142834 + 0.989747i \(0.545622\pi\)
\(212\) 2.89496 0.198827
\(213\) −10.7298 −0.735193
\(214\) 1.13889 0.0778529
\(215\) 4.03612 0.275261
\(216\) −3.07838 −0.209457
\(217\) 4.87936 0.331233
\(218\) 2.81432 0.190609
\(219\) −5.23513 −0.353758
\(220\) −0.206204 −0.0139023
\(221\) 0 0
\(222\) −2.23287 −0.149860
\(223\) 3.69594 0.247499 0.123749 0.992314i \(-0.460508\pi\)
0.123749 + 0.992314i \(0.460508\pi\)
\(224\) 3.41855 0.228412
\(225\) −4.78765 −0.319177
\(226\) 19.8816 1.32251
\(227\) 11.2751 0.748356 0.374178 0.927357i \(-0.377925\pi\)
0.374178 + 0.927357i \(0.377925\pi\)
\(228\) 2.63090 0.174235
\(229\) 9.96493 0.658501 0.329250 0.944243i \(-0.393204\pi\)
0.329250 + 0.944243i \(0.393204\pi\)
\(230\) 3.95774 0.260966
\(231\) −0.709275 −0.0466669
\(232\) −5.26180 −0.345454
\(233\) −25.9093 −1.69738 −0.848689 0.528893i \(-0.822607\pi\)
−0.848689 + 0.528893i \(0.822607\pi\)
\(234\) 4.53919 0.296736
\(235\) −3.09785 −0.202082
\(236\) −2.03120 −0.132220
\(237\) −14.1639 −0.920047
\(238\) 0 0
\(239\) −19.4524 −1.25827 −0.629136 0.777296i \(-0.716591\pi\)
−0.629136 + 0.777296i \(0.716591\pi\)
\(240\) 1.07838 0.0696090
\(241\) −21.9421 −1.41342 −0.706709 0.707505i \(-0.749821\pi\)
−0.706709 + 0.707505i \(0.749821\pi\)
\(242\) −12.2823 −0.789537
\(243\) 1.00000 0.0641500
\(244\) −5.35085 −0.342553
\(245\) −0.460811 −0.0294401
\(246\) −4.87936 −0.311097
\(247\) −16.1773 −1.02934
\(248\) −15.0205 −0.953804
\(249\) 0.496928 0.0314916
\(250\) 5.27739 0.333772
\(251\) 7.00946 0.442433 0.221216 0.975225i \(-0.428997\pi\)
0.221216 + 0.975225i \(0.428997\pi\)
\(252\) −0.630898 −0.0397428
\(253\) 5.20620 0.327311
\(254\) −4.92881 −0.309261
\(255\) 0 0
\(256\) −13.4764 −0.842276
\(257\) 9.71646 0.606096 0.303048 0.952975i \(-0.401996\pi\)
0.303048 + 0.952975i \(0.401996\pi\)
\(258\) −10.2485 −0.638042
\(259\) −1.90829 −0.118575
\(260\) 1.12783 0.0699448
\(261\) 1.70928 0.105801
\(262\) 18.7636 1.15922
\(263\) −5.17727 −0.319244 −0.159622 0.987178i \(-0.551028\pi\)
−0.159622 + 0.987178i \(0.551028\pi\)
\(264\) 2.18342 0.134380
\(265\) 2.11450 0.129892
\(266\) −4.87936 −0.299173
\(267\) 3.60197 0.220437
\(268\) 4.29914 0.262611
\(269\) 1.58864 0.0968609 0.0484305 0.998827i \(-0.484578\pi\)
0.0484305 + 0.998827i \(0.484578\pi\)
\(270\) −0.539189 −0.0328140
\(271\) −19.9867 −1.21410 −0.607052 0.794662i \(-0.707648\pi\)
−0.607052 + 0.794662i \(0.707648\pi\)
\(272\) 0 0
\(273\) 3.87936 0.234790
\(274\) −7.52586 −0.454654
\(275\) 3.39576 0.204772
\(276\) 4.63090 0.278747
\(277\) −18.6947 −1.12326 −0.561628 0.827390i \(-0.689825\pi\)
−0.561628 + 0.827390i \(0.689825\pi\)
\(278\) 14.5548 0.872938
\(279\) 4.87936 0.292120
\(280\) 1.41855 0.0847746
\(281\) 22.4969 1.34205 0.671027 0.741433i \(-0.265853\pi\)
0.671027 + 0.741433i \(0.265853\pi\)
\(282\) 7.86603 0.468415
\(283\) −2.06892 −0.122985 −0.0614923 0.998108i \(-0.519586\pi\)
−0.0614923 + 0.998108i \(0.519586\pi\)
\(284\) 6.76940 0.401690
\(285\) 1.92162 0.113827
\(286\) −3.21953 −0.190375
\(287\) −4.17009 −0.246152
\(288\) 3.41855 0.201440
\(289\) 0 0
\(290\) −0.921622 −0.0541195
\(291\) −11.0784 −0.649426
\(292\) 3.30283 0.193284
\(293\) −29.6020 −1.72937 −0.864683 0.502318i \(-0.832481\pi\)
−0.864683 + 0.502318i \(0.832481\pi\)
\(294\) 1.17009 0.0682408
\(295\) −1.48360 −0.0863784
\(296\) 5.87444 0.341445
\(297\) −0.709275 −0.0411563
\(298\) 16.5281 0.957449
\(299\) −28.4752 −1.64676
\(300\) 3.02052 0.174390
\(301\) −8.75872 −0.504844
\(302\) −19.0616 −1.09687
\(303\) −14.0566 −0.807533
\(304\) 9.75872 0.559701
\(305\) −3.90829 −0.223788
\(306\) 0 0
\(307\) −3.28846 −0.187682 −0.0938411 0.995587i \(-0.529915\pi\)
−0.0938411 + 0.995587i \(0.529915\pi\)
\(308\) 0.447480 0.0254975
\(309\) −17.0566 −0.970318
\(310\) −2.63090 −0.149425
\(311\) −19.2351 −1.09072 −0.545362 0.838201i \(-0.683608\pi\)
−0.545362 + 0.838201i \(0.683608\pi\)
\(312\) −11.9421 −0.676091
\(313\) −8.74927 −0.494538 −0.247269 0.968947i \(-0.579533\pi\)
−0.247269 + 0.968947i \(0.579533\pi\)
\(314\) −23.1350 −1.30558
\(315\) −0.460811 −0.0259638
\(316\) 8.93600 0.502689
\(317\) 18.2823 1.02684 0.513419 0.858138i \(-0.328379\pi\)
0.513419 + 0.858138i \(0.328379\pi\)
\(318\) −5.36910 −0.301084
\(319\) −1.21235 −0.0678784
\(320\) −4.00000 −0.223607
\(321\) 0.973338 0.0543264
\(322\) −8.58864 −0.478626
\(323\) 0 0
\(324\) −0.630898 −0.0350499
\(325\) −18.5730 −1.03025
\(326\) 5.97334 0.330833
\(327\) 2.40522 0.133009
\(328\) 12.8371 0.708810
\(329\) 6.72261 0.370629
\(330\) 0.382433 0.0210523
\(331\) −27.7298 −1.52417 −0.762084 0.647479i \(-0.775824\pi\)
−0.762084 + 0.647479i \(0.775824\pi\)
\(332\) −0.313511 −0.0172062
\(333\) −1.90829 −0.104574
\(334\) −1.92654 −0.105416
\(335\) 3.14011 0.171563
\(336\) −2.34017 −0.127667
\(337\) 22.6297 1.23272 0.616358 0.787466i \(-0.288607\pi\)
0.616358 + 0.787466i \(0.288607\pi\)
\(338\) 2.39803 0.130436
\(339\) 16.9916 0.922856
\(340\) 0 0
\(341\) −3.46081 −0.187413
\(342\) −4.87936 −0.263846
\(343\) 1.00000 0.0539949
\(344\) 26.9627 1.45373
\(345\) 3.38243 0.182104
\(346\) 19.5597 1.05154
\(347\) 1.00227 0.0538045 0.0269023 0.999638i \(-0.491436\pi\)
0.0269023 + 0.999638i \(0.491436\pi\)
\(348\) −1.07838 −0.0578071
\(349\) 10.4569 0.559747 0.279873 0.960037i \(-0.409707\pi\)
0.279873 + 0.960037i \(0.409707\pi\)
\(350\) −5.60197 −0.299438
\(351\) 3.87936 0.207065
\(352\) −2.42469 −0.129237
\(353\) 19.1617 1.01987 0.509937 0.860212i \(-0.329669\pi\)
0.509937 + 0.860212i \(0.329669\pi\)
\(354\) 3.76713 0.200221
\(355\) 4.94441 0.262422
\(356\) −2.27247 −0.120441
\(357\) 0 0
\(358\) −28.0989 −1.48507
\(359\) −4.67316 −0.246640 −0.123320 0.992367i \(-0.539354\pi\)
−0.123320 + 0.992367i \(0.539354\pi\)
\(360\) 1.41855 0.0747642
\(361\) −1.61038 −0.0847568
\(362\) −22.8371 −1.20029
\(363\) −10.4969 −0.550946
\(364\) −2.44748 −0.128283
\(365\) 2.41241 0.126271
\(366\) 9.92389 0.518730
\(367\) 33.1917 1.73259 0.866295 0.499533i \(-0.166495\pi\)
0.866295 + 0.499533i \(0.166495\pi\)
\(368\) 17.1773 0.895427
\(369\) −4.17009 −0.217086
\(370\) 1.02893 0.0534915
\(371\) −4.58864 −0.238230
\(372\) −3.07838 −0.159606
\(373\) −5.02893 −0.260388 −0.130194 0.991489i \(-0.541560\pi\)
−0.130194 + 0.991489i \(0.541560\pi\)
\(374\) 0 0
\(375\) 4.51026 0.232909
\(376\) −20.6947 −1.06725
\(377\) 6.63090 0.341509
\(378\) 1.17009 0.0601828
\(379\) 31.6742 1.62699 0.813497 0.581569i \(-0.197561\pi\)
0.813497 + 0.581569i \(0.197561\pi\)
\(380\) −1.21235 −0.0621921
\(381\) −4.21235 −0.215805
\(382\) −12.6803 −0.648783
\(383\) 7.93108 0.405259 0.202630 0.979255i \(-0.435051\pi\)
0.202630 + 0.979255i \(0.435051\pi\)
\(384\) 3.31965 0.169405
\(385\) 0.326842 0.0166574
\(386\) 9.03877 0.460061
\(387\) −8.75872 −0.445231
\(388\) 6.98932 0.354829
\(389\) −16.5503 −0.839131 −0.419566 0.907725i \(-0.637818\pi\)
−0.419566 + 0.907725i \(0.637818\pi\)
\(390\) −2.09171 −0.105918
\(391\) 0 0
\(392\) −3.07838 −0.155482
\(393\) 16.0361 0.808915
\(394\) 15.4524 0.778481
\(395\) 6.52690 0.328404
\(396\) 0.447480 0.0224867
\(397\) 26.3701 1.32348 0.661740 0.749734i \(-0.269818\pi\)
0.661740 + 0.749734i \(0.269818\pi\)
\(398\) 20.5464 1.02990
\(399\) −4.17009 −0.208765
\(400\) 11.2039 0.560197
\(401\) −26.2534 −1.31103 −0.655516 0.755182i \(-0.727549\pi\)
−0.655516 + 0.755182i \(0.727549\pi\)
\(402\) −7.97334 −0.397674
\(403\) 18.9288 0.942911
\(404\) 8.86830 0.441214
\(405\) −0.460811 −0.0228979
\(406\) 2.00000 0.0992583
\(407\) 1.35350 0.0670907
\(408\) 0 0
\(409\) 15.2713 0.755115 0.377557 0.925986i \(-0.376764\pi\)
0.377557 + 0.925986i \(0.376764\pi\)
\(410\) 2.24846 0.111044
\(411\) −6.43188 −0.317261
\(412\) 10.7610 0.530156
\(413\) 3.21953 0.158423
\(414\) −8.58864 −0.422108
\(415\) −0.228990 −0.0112407
\(416\) 13.2618 0.650213
\(417\) 12.4391 0.609144
\(418\) 3.46081 0.169274
\(419\) 9.57918 0.467974 0.233987 0.972240i \(-0.424823\pi\)
0.233987 + 0.972240i \(0.424823\pi\)
\(420\) 0.290725 0.0141859
\(421\) 33.6453 1.63977 0.819885 0.572528i \(-0.194037\pi\)
0.819885 + 0.572528i \(0.194037\pi\)
\(422\) −4.85535 −0.236355
\(423\) 6.72261 0.326864
\(424\) 14.1256 0.685998
\(425\) 0 0
\(426\) −12.5548 −0.608281
\(427\) 8.48133 0.410440
\(428\) −0.614077 −0.0296825
\(429\) −2.75154 −0.132845
\(430\) 4.72261 0.227744
\(431\) 15.6332 0.753023 0.376512 0.926412i \(-0.377124\pi\)
0.376512 + 0.926412i \(0.377124\pi\)
\(432\) −2.34017 −0.112592
\(433\) 10.4524 0.502310 0.251155 0.967947i \(-0.419190\pi\)
0.251155 + 0.967947i \(0.419190\pi\)
\(434\) 5.70928 0.274054
\(435\) −0.787653 −0.0377651
\(436\) −1.51745 −0.0726725
\(437\) 30.6092 1.46423
\(438\) −6.12556 −0.292691
\(439\) −13.6586 −0.651890 −0.325945 0.945389i \(-0.605682\pi\)
−0.325945 + 0.945389i \(0.605682\pi\)
\(440\) −1.00614 −0.0479660
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 15.4836 0.735648 0.367824 0.929895i \(-0.380103\pi\)
0.367824 + 0.929895i \(0.380103\pi\)
\(444\) 1.20394 0.0571363
\(445\) −1.65983 −0.0786833
\(446\) 4.32457 0.204775
\(447\) 14.1256 0.668116
\(448\) 8.68035 0.410108
\(449\) 16.9132 0.798184 0.399092 0.916911i \(-0.369325\pi\)
0.399092 + 0.916911i \(0.369325\pi\)
\(450\) −5.60197 −0.264079
\(451\) 2.95774 0.139275
\(452\) −10.7200 −0.504224
\(453\) −16.2907 −0.765405
\(454\) 13.1929 0.619172
\(455\) −1.78765 −0.0838065
\(456\) 12.8371 0.601152
\(457\) −7.98545 −0.373543 −0.186772 0.982403i \(-0.559802\pi\)
−0.186772 + 0.982403i \(0.559802\pi\)
\(458\) 11.6598 0.544828
\(459\) 0 0
\(460\) −2.13397 −0.0994968
\(461\) 28.4235 1.32381 0.661907 0.749586i \(-0.269748\pi\)
0.661907 + 0.749586i \(0.269748\pi\)
\(462\) −0.829914 −0.0386111
\(463\) 2.89884 0.134720 0.0673602 0.997729i \(-0.478542\pi\)
0.0673602 + 0.997729i \(0.478542\pi\)
\(464\) −4.00000 −0.185695
\(465\) −2.24846 −0.104270
\(466\) −30.3162 −1.40437
\(467\) 0.993857 0.0459902 0.0229951 0.999736i \(-0.492680\pi\)
0.0229951 + 0.999736i \(0.492680\pi\)
\(468\) −2.44748 −0.113135
\(469\) −6.81432 −0.314656
\(470\) −3.62475 −0.167197
\(471\) −19.7721 −0.911048
\(472\) −9.91094 −0.456188
\(473\) 6.21235 0.285644
\(474\) −16.5730 −0.761225
\(475\) 19.9649 0.916054
\(476\) 0 0
\(477\) −4.58864 −0.210099
\(478\) −22.7610 −1.04106
\(479\) −17.9288 −0.819188 −0.409594 0.912268i \(-0.634330\pi\)
−0.409594 + 0.912268i \(0.634330\pi\)
\(480\) −1.57531 −0.0719026
\(481\) −7.40295 −0.337546
\(482\) −25.6742 −1.16943
\(483\) −7.34017 −0.333989
\(484\) 6.62249 0.301022
\(485\) 5.10504 0.231808
\(486\) 1.17009 0.0530762
\(487\) −12.0410 −0.545632 −0.272816 0.962066i \(-0.587955\pi\)
−0.272816 + 0.962066i \(0.587955\pi\)
\(488\) −26.1087 −1.18189
\(489\) 5.10504 0.230858
\(490\) −0.539189 −0.0243581
\(491\) −19.5753 −0.883421 −0.441711 0.897158i \(-0.645628\pi\)
−0.441711 + 0.897158i \(0.645628\pi\)
\(492\) 2.63090 0.118610
\(493\) 0 0
\(494\) −18.9288 −0.851647
\(495\) 0.326842 0.0146905
\(496\) −11.4186 −0.512708
\(497\) −10.7298 −0.481297
\(498\) 0.581449 0.0260554
\(499\) −29.9493 −1.34072 −0.670358 0.742038i \(-0.733859\pi\)
−0.670358 + 0.742038i \(0.733859\pi\)
\(500\) −2.84551 −0.127255
\(501\) −1.64650 −0.0735600
\(502\) 8.20167 0.366058
\(503\) −13.9204 −0.620680 −0.310340 0.950626i \(-0.600443\pi\)
−0.310340 + 0.950626i \(0.600443\pi\)
\(504\) −3.07838 −0.137122
\(505\) 6.47745 0.288243
\(506\) 6.09171 0.270809
\(507\) 2.04945 0.0910192
\(508\) 2.65756 0.117910
\(509\) 24.5380 1.08763 0.543813 0.839206i \(-0.316980\pi\)
0.543813 + 0.839206i \(0.316980\pi\)
\(510\) 0 0
\(511\) −5.23513 −0.231589
\(512\) −22.4079 −0.990297
\(513\) −4.17009 −0.184114
\(514\) 11.3691 0.501470
\(515\) 7.85989 0.346348
\(516\) 5.52586 0.243262
\(517\) −4.76818 −0.209704
\(518\) −2.23287 −0.0981065
\(519\) 16.7165 0.733771
\(520\) 5.50307 0.241326
\(521\) 14.9350 0.654312 0.327156 0.944970i \(-0.393910\pi\)
0.327156 + 0.944970i \(0.393910\pi\)
\(522\) 2.00000 0.0875376
\(523\) 2.21008 0.0966400 0.0483200 0.998832i \(-0.484613\pi\)
0.0483200 + 0.998832i \(0.484613\pi\)
\(524\) −10.1171 −0.441970
\(525\) −4.78765 −0.208950
\(526\) −6.05786 −0.264135
\(527\) 0 0
\(528\) 1.65983 0.0722347
\(529\) 30.8781 1.34253
\(530\) 2.47414 0.107470
\(531\) 3.21953 0.139716
\(532\) 2.63090 0.114064
\(533\) −16.1773 −0.700716
\(534\) 4.21461 0.182384
\(535\) −0.448525 −0.0193914
\(536\) 20.9770 0.906070
\(537\) −24.0144 −1.03630
\(538\) 1.85884 0.0801404
\(539\) −0.709275 −0.0305507
\(540\) 0.290725 0.0125108
\(541\) −9.75872 −0.419560 −0.209780 0.977749i \(-0.567275\pi\)
−0.209780 + 0.977749i \(0.567275\pi\)
\(542\) −23.3861 −1.00452
\(543\) −19.5174 −0.837574
\(544\) 0 0
\(545\) −1.10835 −0.0474766
\(546\) 4.53919 0.194259
\(547\) −4.61530 −0.197336 −0.0986680 0.995120i \(-0.531458\pi\)
−0.0986680 + 0.995120i \(0.531458\pi\)
\(548\) 4.05786 0.173343
\(549\) 8.48133 0.361974
\(550\) 3.97334 0.169424
\(551\) −7.12783 −0.303656
\(552\) 22.5958 0.961742
\(553\) −14.1639 −0.602312
\(554\) −21.8744 −0.929356
\(555\) 0.879362 0.0373268
\(556\) −7.84778 −0.332820
\(557\) −13.4836 −0.571318 −0.285659 0.958331i \(-0.592213\pi\)
−0.285659 + 0.958331i \(0.592213\pi\)
\(558\) 5.70928 0.241693
\(559\) −33.9783 −1.43713
\(560\) 1.07838 0.0455698
\(561\) 0 0
\(562\) 26.3234 1.11038
\(563\) 0.779243 0.0328412 0.0164206 0.999865i \(-0.494773\pi\)
0.0164206 + 0.999865i \(0.494773\pi\)
\(564\) −4.24128 −0.178590
\(565\) −7.82991 −0.329407
\(566\) −2.42082 −0.101755
\(567\) 1.00000 0.0419961
\(568\) 33.0304 1.38592
\(569\) 18.8638 0.790810 0.395405 0.918507i \(-0.370604\pi\)
0.395405 + 0.918507i \(0.370604\pi\)
\(570\) 2.24846 0.0941778
\(571\) 39.6697 1.66012 0.830062 0.557671i \(-0.188305\pi\)
0.830062 + 0.557671i \(0.188305\pi\)
\(572\) 1.73594 0.0725832
\(573\) −10.8371 −0.452726
\(574\) −4.87936 −0.203661
\(575\) 35.1422 1.46553
\(576\) 8.68035 0.361681
\(577\) 34.2072 1.42407 0.712033 0.702146i \(-0.247775\pi\)
0.712033 + 0.702146i \(0.247775\pi\)
\(578\) 0 0
\(579\) 7.72487 0.321035
\(580\) 0.496928 0.0206338
\(581\) 0.496928 0.0206161
\(582\) −12.9627 −0.537320
\(583\) 3.25461 0.134792
\(584\) 16.1157 0.666873
\(585\) −1.78765 −0.0739104
\(586\) −34.6369 −1.43084
\(587\) −26.1990 −1.08135 −0.540675 0.841232i \(-0.681831\pi\)
−0.540675 + 0.841232i \(0.681831\pi\)
\(588\) −0.630898 −0.0260178
\(589\) −20.3474 −0.838398
\(590\) −1.73594 −0.0714674
\(591\) 13.2062 0.543231
\(592\) 4.46573 0.183540
\(593\) 0.749268 0.0307688 0.0153844 0.999882i \(-0.495103\pi\)
0.0153844 + 0.999882i \(0.495103\pi\)
\(594\) −0.829914 −0.0340518
\(595\) 0 0
\(596\) −8.91178 −0.365041
\(597\) 17.5597 0.718671
\(598\) −33.3184 −1.36249
\(599\) 5.67420 0.231842 0.115921 0.993258i \(-0.463018\pi\)
0.115921 + 0.993258i \(0.463018\pi\)
\(600\) 14.7382 0.601685
\(601\) 2.97826 0.121486 0.0607428 0.998153i \(-0.480653\pi\)
0.0607428 + 0.998153i \(0.480653\pi\)
\(602\) −10.2485 −0.417696
\(603\) −6.81432 −0.277500
\(604\) 10.2778 0.418197
\(605\) 4.83710 0.196656
\(606\) −16.4475 −0.668133
\(607\) −33.3328 −1.35294 −0.676468 0.736472i \(-0.736490\pi\)
−0.676468 + 0.736472i \(0.736490\pi\)
\(608\) −14.2557 −0.578143
\(609\) 1.70928 0.0692633
\(610\) −4.57304 −0.185157
\(611\) 26.0794 1.05506
\(612\) 0 0
\(613\) 9.65368 0.389909 0.194954 0.980812i \(-0.437544\pi\)
0.194954 + 0.980812i \(0.437544\pi\)
\(614\) −3.84778 −0.155284
\(615\) 1.92162 0.0774873
\(616\) 2.18342 0.0879724
\(617\) −15.7815 −0.635340 −0.317670 0.948201i \(-0.602900\pi\)
−0.317670 + 0.948201i \(0.602900\pi\)
\(618\) −19.9577 −0.802818
\(619\) −22.0566 −0.886531 −0.443266 0.896390i \(-0.646180\pi\)
−0.443266 + 0.896390i \(0.646180\pi\)
\(620\) 1.41855 0.0569704
\(621\) −7.34017 −0.294551
\(622\) −22.5068 −0.902439
\(623\) 3.60197 0.144310
\(624\) −9.07838 −0.363426
\(625\) 21.8599 0.874396
\(626\) −10.2374 −0.409169
\(627\) 2.95774 0.118121
\(628\) 12.4741 0.497772
\(629\) 0 0
\(630\) −0.539189 −0.0214818
\(631\) 39.4801 1.57168 0.785839 0.618431i \(-0.212231\pi\)
0.785839 + 0.618431i \(0.212231\pi\)
\(632\) 43.6020 1.73439
\(633\) −4.14957 −0.164931
\(634\) 21.3919 0.849580
\(635\) 1.94110 0.0770301
\(636\) 2.89496 0.114793
\(637\) 3.87936 0.153706
\(638\) −1.41855 −0.0561610
\(639\) −10.7298 −0.424464
\(640\) −1.52973 −0.0604680
\(641\) 45.2122 1.78577 0.892887 0.450281i \(-0.148676\pi\)
0.892887 + 0.450281i \(0.148676\pi\)
\(642\) 1.13889 0.0449484
\(643\) 30.3090 1.19527 0.597635 0.801769i \(-0.296107\pi\)
0.597635 + 0.801769i \(0.296107\pi\)
\(644\) 4.63090 0.182483
\(645\) 4.03612 0.158922
\(646\) 0 0
\(647\) 35.8576 1.40971 0.704854 0.709352i \(-0.251012\pi\)
0.704854 + 0.709352i \(0.251012\pi\)
\(648\) −3.07838 −0.120930
\(649\) −2.28354 −0.0896367
\(650\) −21.7321 −0.852402
\(651\) 4.87936 0.191237
\(652\) −3.22076 −0.126135
\(653\) 38.4452 1.50448 0.752239 0.658891i \(-0.228974\pi\)
0.752239 + 0.658891i \(0.228974\pi\)
\(654\) 2.81432 0.110048
\(655\) −7.38962 −0.288736
\(656\) 9.75872 0.381014
\(657\) −5.23513 −0.204242
\(658\) 7.86603 0.306650
\(659\) −25.7392 −1.00266 −0.501329 0.865257i \(-0.667156\pi\)
−0.501329 + 0.865257i \(0.667156\pi\)
\(660\) −0.206204 −0.00802647
\(661\) −16.0589 −0.624619 −0.312309 0.949980i \(-0.601103\pi\)
−0.312309 + 0.949980i \(0.601103\pi\)
\(662\) −32.4463 −1.26106
\(663\) 0 0
\(664\) −1.52973 −0.0593652
\(665\) 1.92162 0.0745173
\(666\) −2.23287 −0.0865218
\(667\) −12.5464 −0.485798
\(668\) 1.03877 0.0401912
\(669\) 3.69594 0.142893
\(670\) 3.67420 0.141947
\(671\) −6.01560 −0.232230
\(672\) 3.41855 0.131873
\(673\) 32.2388 1.24272 0.621358 0.783527i \(-0.286581\pi\)
0.621358 + 0.783527i \(0.286581\pi\)
\(674\) 26.4787 1.01992
\(675\) −4.78765 −0.184277
\(676\) −1.29299 −0.0497305
\(677\) −35.5718 −1.36714 −0.683568 0.729887i \(-0.739573\pi\)
−0.683568 + 0.729887i \(0.739573\pi\)
\(678\) 19.8816 0.763549
\(679\) −11.0784 −0.425149
\(680\) 0 0
\(681\) 11.2751 0.432064
\(682\) −4.04945 −0.155061
\(683\) −9.67647 −0.370260 −0.185130 0.982714i \(-0.559271\pi\)
−0.185130 + 0.982714i \(0.559271\pi\)
\(684\) 2.63090 0.100595
\(685\) 2.96388 0.113244
\(686\) 1.17009 0.0446741
\(687\) 9.96493 0.380186
\(688\) 20.4969 0.781438
\(689\) −17.8010 −0.678163
\(690\) 3.95774 0.150669
\(691\) −29.7887 −1.13322 −0.566608 0.823988i \(-0.691745\pi\)
−0.566608 + 0.823988i \(0.691745\pi\)
\(692\) −10.5464 −0.400913
\(693\) −0.709275 −0.0269431
\(694\) 1.17274 0.0445166
\(695\) −5.73206 −0.217429
\(696\) −5.26180 −0.199448
\(697\) 0 0
\(698\) 12.2355 0.463121
\(699\) −25.9093 −0.979981
\(700\) 3.02052 0.114165
\(701\) −4.39803 −0.166111 −0.0830557 0.996545i \(-0.526468\pi\)
−0.0830557 + 0.996545i \(0.526468\pi\)
\(702\) 4.53919 0.171321
\(703\) 7.95774 0.300132
\(704\) −6.15676 −0.232041
\(705\) −3.09785 −0.116672
\(706\) 22.4208 0.843819
\(707\) −14.0566 −0.528654
\(708\) −2.03120 −0.0763371
\(709\) −17.3607 −0.651994 −0.325997 0.945371i \(-0.605700\pi\)
−0.325997 + 0.945371i \(0.605700\pi\)
\(710\) 5.78539 0.217122
\(711\) −14.1639 −0.531189
\(712\) −11.0882 −0.415549
\(713\) −35.8154 −1.34130
\(714\) 0 0
\(715\) 1.26794 0.0474182
\(716\) 15.1506 0.566205
\(717\) −19.4524 −0.726463
\(718\) −5.46800 −0.204064
\(719\) −24.9265 −0.929603 −0.464802 0.885415i \(-0.653874\pi\)
−0.464802 + 0.885415i \(0.653874\pi\)
\(720\) 1.07838 0.0401888
\(721\) −17.0566 −0.635222
\(722\) −1.88428 −0.0701257
\(723\) −21.9421 −0.816037
\(724\) 12.3135 0.457628
\(725\) −8.18342 −0.303924
\(726\) −12.2823 −0.455839
\(727\) −20.7115 −0.768149 −0.384074 0.923302i \(-0.625479\pi\)
−0.384074 + 0.923302i \(0.625479\pi\)
\(728\) −11.9421 −0.442605
\(729\) 1.00000 0.0370370
\(730\) 2.82273 0.104474
\(731\) 0 0
\(732\) −5.35085 −0.197773
\(733\) 2.81044 0.103806 0.0519030 0.998652i \(-0.483471\pi\)
0.0519030 + 0.998652i \(0.483471\pi\)
\(734\) 38.8371 1.43350
\(735\) −0.460811 −0.0169973
\(736\) −25.0928 −0.924931
\(737\) 4.83323 0.178034
\(738\) −4.87936 −0.179612
\(739\) 41.2388 1.51699 0.758497 0.651676i \(-0.225934\pi\)
0.758497 + 0.651676i \(0.225934\pi\)
\(740\) −0.554787 −0.0203944
\(741\) −16.1773 −0.594287
\(742\) −5.36910 −0.197106
\(743\) 52.1750 1.91412 0.957058 0.289898i \(-0.0936212\pi\)
0.957058 + 0.289898i \(0.0936212\pi\)
\(744\) −15.0205 −0.550679
\(745\) −6.50921 −0.238479
\(746\) −5.88428 −0.215439
\(747\) 0.496928 0.0181817
\(748\) 0 0
\(749\) 0.973338 0.0355650
\(750\) 5.27739 0.192703
\(751\) 53.0544 1.93598 0.967991 0.250986i \(-0.0807548\pi\)
0.967991 + 0.250986i \(0.0807548\pi\)
\(752\) −15.7321 −0.573689
\(753\) 7.00946 0.255439
\(754\) 7.75872 0.282556
\(755\) 7.50695 0.273206
\(756\) −0.630898 −0.0229455
\(757\) −34.7548 −1.26319 −0.631593 0.775300i \(-0.717599\pi\)
−0.631593 + 0.775300i \(0.717599\pi\)
\(758\) 37.0616 1.34614
\(759\) 5.20620 0.188973
\(760\) −5.91548 −0.214577
\(761\) 1.60650 0.0582357 0.0291178 0.999576i \(-0.490730\pi\)
0.0291178 + 0.999576i \(0.490730\pi\)
\(762\) −4.92881 −0.178552
\(763\) 2.40522 0.0870748
\(764\) 6.83710 0.247358
\(765\) 0 0
\(766\) 9.28005 0.335302
\(767\) 12.4897 0.450978
\(768\) −13.4764 −0.486288
\(769\) 40.9676 1.47733 0.738664 0.674073i \(-0.235457\pi\)
0.738664 + 0.674073i \(0.235457\pi\)
\(770\) 0.382433 0.0137819
\(771\) 9.71646 0.349930
\(772\) −4.87360 −0.175405
\(773\) 6.66475 0.239714 0.119857 0.992791i \(-0.461756\pi\)
0.119857 + 0.992791i \(0.461756\pi\)
\(774\) −10.2485 −0.368373
\(775\) −23.3607 −0.839141
\(776\) 34.1034 1.22424
\(777\) −1.90829 −0.0684596
\(778\) −19.3652 −0.694277
\(779\) 17.3896 0.623048
\(780\) 1.12783 0.0403827
\(781\) 7.61038 0.272321
\(782\) 0 0
\(783\) 1.70928 0.0610845
\(784\) −2.34017 −0.0835776
\(785\) 9.11118 0.325192
\(786\) 18.7636 0.669277
\(787\) −12.5080 −0.445862 −0.222931 0.974834i \(-0.571562\pi\)
−0.222931 + 0.974834i \(0.571562\pi\)
\(788\) −8.33176 −0.296807
\(789\) −5.17727 −0.184316
\(790\) 7.63704 0.271714
\(791\) 16.9916 0.604151
\(792\) 2.18342 0.0775844
\(793\) 32.9021 1.16839
\(794\) 30.8554 1.09502
\(795\) 2.11450 0.0749934
\(796\) −11.0784 −0.392663
\(797\) −0.707008 −0.0250435 −0.0125218 0.999922i \(-0.503986\pi\)
−0.0125218 + 0.999922i \(0.503986\pi\)
\(798\) −4.87936 −0.172728
\(799\) 0 0
\(800\) −16.3668 −0.578655
\(801\) 3.60197 0.127269
\(802\) −30.7187 −1.08472
\(803\) 3.71315 0.131034
\(804\) 4.29914 0.151619
\(805\) 3.38243 0.119215
\(806\) 22.1483 0.780142
\(807\) 1.58864 0.0559227
\(808\) 43.2716 1.52229
\(809\) 8.20006 0.288299 0.144149 0.989556i \(-0.453955\pi\)
0.144149 + 0.989556i \(0.453955\pi\)
\(810\) −0.539189 −0.0189452
\(811\) −49.6697 −1.74414 −0.872069 0.489383i \(-0.837222\pi\)
−0.872069 + 0.489383i \(0.837222\pi\)
\(812\) −1.07838 −0.0378436
\(813\) −19.9867 −0.700963
\(814\) 1.58372 0.0555092
\(815\) −2.35246 −0.0824030
\(816\) 0 0
\(817\) 36.5246 1.27784
\(818\) 17.8687 0.624764
\(819\) 3.87936 0.135556
\(820\) −1.21235 −0.0423370
\(821\) −3.29914 −0.115141 −0.0575703 0.998341i \(-0.518335\pi\)
−0.0575703 + 0.998341i \(0.518335\pi\)
\(822\) −7.52586 −0.262494
\(823\) −6.60092 −0.230094 −0.115047 0.993360i \(-0.536702\pi\)
−0.115047 + 0.993360i \(0.536702\pi\)
\(824\) 52.5068 1.82916
\(825\) 3.39576 0.118225
\(826\) 3.76713 0.131075
\(827\) 36.9383 1.28447 0.642235 0.766508i \(-0.278007\pi\)
0.642235 + 0.766508i \(0.278007\pi\)
\(828\) 4.63090 0.160935
\(829\) −38.0288 −1.32079 −0.660397 0.750917i \(-0.729612\pi\)
−0.660397 + 0.750917i \(0.729612\pi\)
\(830\) −0.267938 −0.00930027
\(831\) −18.6947 −0.648513
\(832\) 33.6742 1.16744
\(833\) 0 0
\(834\) 14.5548 0.503991
\(835\) 0.758724 0.0262567
\(836\) −1.86603 −0.0645380
\(837\) 4.87936 0.168655
\(838\) 11.2085 0.387190
\(839\) 51.0893 1.76380 0.881899 0.471439i \(-0.156265\pi\)
0.881899 + 0.471439i \(0.156265\pi\)
\(840\) 1.41855 0.0489446
\(841\) −26.0784 −0.899254
\(842\) 39.3679 1.35671
\(843\) 22.4969 0.774835
\(844\) 2.61795 0.0901136
\(845\) −0.944409 −0.0324886
\(846\) 7.86603 0.270440
\(847\) −10.4969 −0.360679
\(848\) 10.7382 0.368751
\(849\) −2.06892 −0.0710052
\(850\) 0 0
\(851\) 14.0072 0.480160
\(852\) 6.76940 0.231916
\(853\) 56.9081 1.94850 0.974248 0.225478i \(-0.0723943\pi\)
0.974248 + 0.225478i \(0.0723943\pi\)
\(854\) 9.92389 0.339589
\(855\) 1.92162 0.0657181
\(856\) −2.99630 −0.102411
\(857\) 11.7731 0.402161 0.201081 0.979575i \(-0.435555\pi\)
0.201081 + 0.979575i \(0.435555\pi\)
\(858\) −3.21953 −0.109913
\(859\) 19.0349 0.649462 0.324731 0.945806i \(-0.394726\pi\)
0.324731 + 0.945806i \(0.394726\pi\)
\(860\) −2.54638 −0.0868307
\(861\) −4.17009 −0.142116
\(862\) 18.2922 0.623033
\(863\) −11.2858 −0.384173 −0.192087 0.981378i \(-0.561525\pi\)
−0.192087 + 0.981378i \(0.561525\pi\)
\(864\) 3.41855 0.116301
\(865\) −7.70313 −0.261914
\(866\) 12.2302 0.415600
\(867\) 0 0
\(868\) −3.07838 −0.104487
\(869\) 10.0461 0.340792
\(870\) −0.921622 −0.0312459
\(871\) −26.4352 −0.895722
\(872\) −7.40417 −0.250737
\(873\) −11.0784 −0.374946
\(874\) 35.8154 1.21147
\(875\) 4.51026 0.152475
\(876\) 3.30283 0.111592
\(877\) −15.4257 −0.520890 −0.260445 0.965489i \(-0.583869\pi\)
−0.260445 + 0.965489i \(0.583869\pi\)
\(878\) −15.9817 −0.539358
\(879\) −29.6020 −0.998450
\(880\) −0.764867 −0.0257837
\(881\) 30.1301 1.01511 0.507554 0.861620i \(-0.330550\pi\)
0.507554 + 0.861620i \(0.330550\pi\)
\(882\) 1.17009 0.0393989
\(883\) −37.1217 −1.24924 −0.624622 0.780927i \(-0.714747\pi\)
−0.624622 + 0.780927i \(0.714747\pi\)
\(884\) 0 0
\(885\) −1.48360 −0.0498706
\(886\) 18.1171 0.608657
\(887\) −17.8033 −0.597775 −0.298887 0.954288i \(-0.596615\pi\)
−0.298887 + 0.954288i \(0.596615\pi\)
\(888\) 5.87444 0.197133
\(889\) −4.21235 −0.141278
\(890\) −1.94214 −0.0651007
\(891\) −0.709275 −0.0237616
\(892\) −2.33176 −0.0780732
\(893\) −28.0338 −0.938117
\(894\) 16.5281 0.552783
\(895\) 11.0661 0.369899
\(896\) 3.31965 0.110902
\(897\) −28.4752 −0.950759
\(898\) 19.7899 0.660398
\(899\) 8.34017 0.278160
\(900\) 3.02052 0.100684
\(901\) 0 0
\(902\) 3.46081 0.115232
\(903\) −8.75872 −0.291472
\(904\) −52.3065 −1.73969
\(905\) 8.99386 0.298966
\(906\) −19.0616 −0.633278
\(907\) −19.8576 −0.659361 −0.329681 0.944092i \(-0.606941\pi\)
−0.329681 + 0.944092i \(0.606941\pi\)
\(908\) −7.11345 −0.236068
\(909\) −14.0566 −0.466229
\(910\) −2.09171 −0.0693395
\(911\) 37.1483 1.23078 0.615390 0.788223i \(-0.288999\pi\)
0.615390 + 0.788223i \(0.288999\pi\)
\(912\) 9.75872 0.323144
\(913\) −0.352459 −0.0116647
\(914\) −9.34366 −0.309061
\(915\) −3.90829 −0.129204
\(916\) −6.28685 −0.207723
\(917\) 16.0361 0.529559
\(918\) 0 0
\(919\) −29.4268 −0.970700 −0.485350 0.874320i \(-0.661308\pi\)
−0.485350 + 0.874320i \(0.661308\pi\)
\(920\) −10.4124 −0.343287
\(921\) −3.28846 −0.108358
\(922\) 33.2579 1.09529
\(923\) −41.6248 −1.37010
\(924\) 0.447480 0.0147210
\(925\) 9.13624 0.300398
\(926\) 3.39189 0.111464
\(927\) −17.0566 −0.560213
\(928\) 5.84324 0.191814
\(929\) −37.7864 −1.23973 −0.619866 0.784707i \(-0.712813\pi\)
−0.619866 + 0.784707i \(0.712813\pi\)
\(930\) −2.63090 −0.0862705
\(931\) −4.17009 −0.136669
\(932\) 16.3461 0.535436
\(933\) −19.2351 −0.629730
\(934\) 1.16290 0.0380512
\(935\) 0 0
\(936\) −11.9421 −0.390341
\(937\) 37.5981 1.22828 0.614138 0.789199i \(-0.289504\pi\)
0.614138 + 0.789199i \(0.289504\pi\)
\(938\) −7.97334 −0.260339
\(939\) −8.74927 −0.285522
\(940\) 1.95443 0.0637464
\(941\) 8.49239 0.276844 0.138422 0.990373i \(-0.455797\pi\)
0.138422 + 0.990373i \(0.455797\pi\)
\(942\) −23.1350 −0.753779
\(943\) 30.6092 0.996771
\(944\) −7.53427 −0.245220
\(945\) −0.460811 −0.0149902
\(946\) 7.26898 0.236335
\(947\) 29.0166 0.942914 0.471457 0.881889i \(-0.343728\pi\)
0.471457 + 0.881889i \(0.343728\pi\)
\(948\) 8.93600 0.290228
\(949\) −20.3090 −0.659257
\(950\) 23.3607 0.757921
\(951\) 18.2823 0.592845
\(952\) 0 0
\(953\) 52.5574 1.70250 0.851251 0.524758i \(-0.175844\pi\)
0.851251 + 0.524758i \(0.175844\pi\)
\(954\) −5.36910 −0.173831
\(955\) 4.99386 0.161597
\(956\) 12.2725 0.396920
\(957\) −1.21235 −0.0391896
\(958\) −20.9783 −0.677777
\(959\) −6.43188 −0.207696
\(960\) −4.00000 −0.129099
\(961\) −7.19183 −0.231994
\(962\) −8.66209 −0.279277
\(963\) 0.973338 0.0313654
\(964\) 13.8432 0.445861
\(965\) −3.55971 −0.114591
\(966\) −8.58864 −0.276335
\(967\) 11.1795 0.359510 0.179755 0.983711i \(-0.442470\pi\)
0.179755 + 0.983711i \(0.442470\pi\)
\(968\) 32.3135 1.03860
\(969\) 0 0
\(970\) 5.97334 0.191792
\(971\) 15.7275 0.504720 0.252360 0.967633i \(-0.418793\pi\)
0.252360 + 0.967633i \(0.418793\pi\)
\(972\) −0.630898 −0.0202361
\(973\) 12.4391 0.398778
\(974\) −14.0891 −0.451442
\(975\) −18.5730 −0.594813
\(976\) −19.8478 −0.635312
\(977\) −45.9688 −1.47067 −0.735336 0.677703i \(-0.762976\pi\)
−0.735336 + 0.677703i \(0.762976\pi\)
\(978\) 5.97334 0.191006
\(979\) −2.55479 −0.0816514
\(980\) 0.290725 0.00928686
\(981\) 2.40522 0.0767928
\(982\) −22.9048 −0.730922
\(983\) −14.6670 −0.467805 −0.233903 0.972260i \(-0.575150\pi\)
−0.233903 + 0.972260i \(0.575150\pi\)
\(984\) 12.8371 0.409232
\(985\) −6.08557 −0.193902
\(986\) 0 0
\(987\) 6.72261 0.213983
\(988\) 10.2062 0.324703
\(989\) 64.2905 2.04432
\(990\) 0.382433 0.0121545
\(991\) 17.5343 0.556994 0.278497 0.960437i \(-0.410164\pi\)
0.278497 + 0.960437i \(0.410164\pi\)
\(992\) 16.6803 0.529602
\(993\) −27.7298 −0.879978
\(994\) −12.5548 −0.398214
\(995\) −8.09171 −0.256524
\(996\) −0.313511 −0.00993398
\(997\) −57.1506 −1.80998 −0.904989 0.425435i \(-0.860121\pi\)
−0.904989 + 0.425435i \(0.860121\pi\)
\(998\) −35.0433 −1.10928
\(999\) −1.90829 −0.0603757
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.m.1.3 3
17.4 even 4 357.2.f.a.169.1 6
17.13 even 4 357.2.f.a.169.2 yes 6
17.16 even 2 6069.2.a.k.1.3 3
51.38 odd 4 1071.2.f.a.883.5 6
51.47 odd 4 1071.2.f.a.883.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.f.a.169.1 6 17.4 even 4
357.2.f.a.169.2 yes 6 17.13 even 4
1071.2.f.a.883.5 6 51.38 odd 4
1071.2.f.a.883.6 6 51.47 odd 4
6069.2.a.k.1.3 3 17.16 even 2
6069.2.a.m.1.3 3 1.1 even 1 trivial