Properties

Label 6069.2.a.be.1.8
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,4,10,12,-6,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} - 8x^{8} + 44x^{7} + 5x^{6} - 144x^{5} + 48x^{4} + 160x^{3} - 44x^{2} - 64x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.71520\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.71520 q^{2} +1.00000 q^{3} +0.941909 q^{4} +3.54799 q^{5} +1.71520 q^{6} -1.00000 q^{7} -1.81484 q^{8} +1.00000 q^{9} +6.08552 q^{10} -2.56590 q^{11} +0.941909 q^{12} -3.70620 q^{13} -1.71520 q^{14} +3.54799 q^{15} -4.99663 q^{16} +1.71520 q^{18} +6.90985 q^{19} +3.34189 q^{20} -1.00000 q^{21} -4.40103 q^{22} +7.63588 q^{23} -1.81484 q^{24} +7.58826 q^{25} -6.35687 q^{26} +1.00000 q^{27} -0.941909 q^{28} +9.71633 q^{29} +6.08552 q^{30} +1.15815 q^{31} -4.94054 q^{32} -2.56590 q^{33} -3.54799 q^{35} +0.941909 q^{36} +9.09331 q^{37} +11.8518 q^{38} -3.70620 q^{39} -6.43903 q^{40} -8.53056 q^{41} -1.71520 q^{42} -1.71992 q^{43} -2.41685 q^{44} +3.54799 q^{45} +13.0971 q^{46} +0.699863 q^{47} -4.99663 q^{48} +1.00000 q^{49} +13.0154 q^{50} -3.49090 q^{52} +3.38235 q^{53} +1.71520 q^{54} -9.10380 q^{55} +1.81484 q^{56} +6.90985 q^{57} +16.6654 q^{58} +10.9220 q^{59} +3.34189 q^{60} +5.12696 q^{61} +1.98646 q^{62} -1.00000 q^{63} +1.51925 q^{64} -13.1496 q^{65} -4.40103 q^{66} -2.86834 q^{67} +7.63588 q^{69} -6.08552 q^{70} -12.9174 q^{71} -1.81484 q^{72} +1.42420 q^{73} +15.5968 q^{74} +7.58826 q^{75} +6.50846 q^{76} +2.56590 q^{77} -6.35687 q^{78} +11.0332 q^{79} -17.7280 q^{80} +1.00000 q^{81} -14.6316 q^{82} +8.11587 q^{83} -0.941909 q^{84} -2.95001 q^{86} +9.71633 q^{87} +4.65669 q^{88} +11.1085 q^{89} +6.08552 q^{90} +3.70620 q^{91} +7.19230 q^{92} +1.15815 q^{93} +1.20040 q^{94} +24.5161 q^{95} -4.94054 q^{96} +1.77067 q^{97} +1.71520 q^{98} -2.56590 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} + 10 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} - 10 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{11} + 12 q^{12} + 6 q^{13} - 4 q^{14} - 6 q^{15} + 20 q^{16} + 4 q^{18} + 6 q^{19} - 16 q^{20} - 10 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71520 1.21283 0.606415 0.795149i \(-0.292607\pi\)
0.606415 + 0.795149i \(0.292607\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.941909 0.470955
\(5\) 3.54799 1.58671 0.793356 0.608758i \(-0.208332\pi\)
0.793356 + 0.608758i \(0.208332\pi\)
\(6\) 1.71520 0.700227
\(7\) −1.00000 −0.377964
\(8\) −1.81484 −0.641642
\(9\) 1.00000 0.333333
\(10\) 6.08552 1.92441
\(11\) −2.56590 −0.773648 −0.386824 0.922153i \(-0.626428\pi\)
−0.386824 + 0.922153i \(0.626428\pi\)
\(12\) 0.941909 0.271906
\(13\) −3.70620 −1.02791 −0.513957 0.857816i \(-0.671821\pi\)
−0.513957 + 0.857816i \(0.671821\pi\)
\(14\) −1.71520 −0.458406
\(15\) 3.54799 0.916088
\(16\) −4.99663 −1.24916
\(17\) 0 0
\(18\) 1.71520 0.404276
\(19\) 6.90985 1.58523 0.792615 0.609723i \(-0.208719\pi\)
0.792615 + 0.609723i \(0.208719\pi\)
\(20\) 3.34189 0.747269
\(21\) −1.00000 −0.218218
\(22\) −4.40103 −0.938303
\(23\) 7.63588 1.59219 0.796095 0.605171i \(-0.206895\pi\)
0.796095 + 0.605171i \(0.206895\pi\)
\(24\) −1.81484 −0.370452
\(25\) 7.58826 1.51765
\(26\) −6.35687 −1.24668
\(27\) 1.00000 0.192450
\(28\) −0.941909 −0.178004
\(29\) 9.71633 1.80428 0.902139 0.431446i \(-0.141997\pi\)
0.902139 + 0.431446i \(0.141997\pi\)
\(30\) 6.08552 1.11106
\(31\) 1.15815 0.208010 0.104005 0.994577i \(-0.466834\pi\)
0.104005 + 0.994577i \(0.466834\pi\)
\(32\) −4.94054 −0.873372
\(33\) −2.56590 −0.446666
\(34\) 0 0
\(35\) −3.54799 −0.599721
\(36\) 0.941909 0.156985
\(37\) 9.09331 1.49493 0.747466 0.664300i \(-0.231270\pi\)
0.747466 + 0.664300i \(0.231270\pi\)
\(38\) 11.8518 1.92261
\(39\) −3.70620 −0.593466
\(40\) −6.43903 −1.01810
\(41\) −8.53056 −1.33225 −0.666125 0.745841i \(-0.732048\pi\)
−0.666125 + 0.745841i \(0.732048\pi\)
\(42\) −1.71520 −0.264661
\(43\) −1.71992 −0.262286 −0.131143 0.991363i \(-0.541865\pi\)
−0.131143 + 0.991363i \(0.541865\pi\)
\(44\) −2.41685 −0.364353
\(45\) 3.54799 0.528904
\(46\) 13.0971 1.93106
\(47\) 0.699863 0.102086 0.0510428 0.998696i \(-0.483746\pi\)
0.0510428 + 0.998696i \(0.483746\pi\)
\(48\) −4.99663 −0.721201
\(49\) 1.00000 0.142857
\(50\) 13.0154 1.84065
\(51\) 0 0
\(52\) −3.49090 −0.484101
\(53\) 3.38235 0.464602 0.232301 0.972644i \(-0.425375\pi\)
0.232301 + 0.972644i \(0.425375\pi\)
\(54\) 1.71520 0.233409
\(55\) −9.10380 −1.22756
\(56\) 1.81484 0.242518
\(57\) 6.90985 0.915233
\(58\) 16.6654 2.18828
\(59\) 10.9220 1.42193 0.710965 0.703228i \(-0.248259\pi\)
0.710965 + 0.703228i \(0.248259\pi\)
\(60\) 3.34189 0.431436
\(61\) 5.12696 0.656440 0.328220 0.944601i \(-0.393551\pi\)
0.328220 + 0.944601i \(0.393551\pi\)
\(62\) 1.98646 0.252281
\(63\) −1.00000 −0.125988
\(64\) 1.51925 0.189906
\(65\) −13.1496 −1.63100
\(66\) −4.40103 −0.541730
\(67\) −2.86834 −0.350423 −0.175212 0.984531i \(-0.556061\pi\)
−0.175212 + 0.984531i \(0.556061\pi\)
\(68\) 0 0
\(69\) 7.63588 0.919252
\(70\) −6.08552 −0.727359
\(71\) −12.9174 −1.53302 −0.766509 0.642233i \(-0.778008\pi\)
−0.766509 + 0.642233i \(0.778008\pi\)
\(72\) −1.81484 −0.213881
\(73\) 1.42420 0.166690 0.0833448 0.996521i \(-0.473440\pi\)
0.0833448 + 0.996521i \(0.473440\pi\)
\(74\) 15.5968 1.81310
\(75\) 7.58826 0.876217
\(76\) 6.50846 0.746571
\(77\) 2.56590 0.292412
\(78\) −6.35687 −0.719773
\(79\) 11.0332 1.24133 0.620664 0.784077i \(-0.286863\pi\)
0.620664 + 0.784077i \(0.286863\pi\)
\(80\) −17.7280 −1.98205
\(81\) 1.00000 0.111111
\(82\) −14.6316 −1.61579
\(83\) 8.11587 0.890832 0.445416 0.895324i \(-0.353056\pi\)
0.445416 + 0.895324i \(0.353056\pi\)
\(84\) −0.941909 −0.102771
\(85\) 0 0
\(86\) −2.95001 −0.318108
\(87\) 9.71633 1.04170
\(88\) 4.65669 0.496405
\(89\) 11.1085 1.17750 0.588752 0.808314i \(-0.299619\pi\)
0.588752 + 0.808314i \(0.299619\pi\)
\(90\) 6.08552 0.641470
\(91\) 3.70620 0.388515
\(92\) 7.19230 0.749849
\(93\) 1.15815 0.120095
\(94\) 1.20040 0.123812
\(95\) 24.5161 2.51530
\(96\) −4.94054 −0.504241
\(97\) 1.77067 0.179785 0.0898923 0.995951i \(-0.471348\pi\)
0.0898923 + 0.995951i \(0.471348\pi\)
\(98\) 1.71520 0.173261
\(99\) −2.56590 −0.257883
\(100\) 7.14746 0.714746
\(101\) 9.90253 0.985339 0.492669 0.870217i \(-0.336021\pi\)
0.492669 + 0.870217i \(0.336021\pi\)
\(102\) 0 0
\(103\) −5.57897 −0.549712 −0.274856 0.961485i \(-0.588630\pi\)
−0.274856 + 0.961485i \(0.588630\pi\)
\(104\) 6.72614 0.659552
\(105\) −3.54799 −0.346249
\(106\) 5.80141 0.563483
\(107\) −5.62786 −0.544066 −0.272033 0.962288i \(-0.587696\pi\)
−0.272033 + 0.962288i \(0.587696\pi\)
\(108\) 0.941909 0.0906353
\(109\) −16.2122 −1.55285 −0.776425 0.630209i \(-0.782969\pi\)
−0.776425 + 0.630209i \(0.782969\pi\)
\(110\) −15.6148 −1.48882
\(111\) 9.09331 0.863099
\(112\) 4.99663 0.472137
\(113\) −9.68119 −0.910729 −0.455365 0.890305i \(-0.650491\pi\)
−0.455365 + 0.890305i \(0.650491\pi\)
\(114\) 11.8518 1.11002
\(115\) 27.0920 2.52635
\(116\) 9.15190 0.849733
\(117\) −3.70620 −0.342638
\(118\) 18.7335 1.72456
\(119\) 0 0
\(120\) −6.43903 −0.587800
\(121\) −4.41615 −0.401468
\(122\) 8.79376 0.796150
\(123\) −8.53056 −0.769174
\(124\) 1.09087 0.0979634
\(125\) 9.18315 0.821366
\(126\) −1.71520 −0.152802
\(127\) −1.97182 −0.174971 −0.0874855 0.996166i \(-0.527883\pi\)
−0.0874855 + 0.996166i \(0.527883\pi\)
\(128\) 12.4869 1.10369
\(129\) −1.71992 −0.151431
\(130\) −22.5541 −1.97813
\(131\) −8.55799 −0.747715 −0.373857 0.927486i \(-0.621965\pi\)
−0.373857 + 0.927486i \(0.621965\pi\)
\(132\) −2.41685 −0.210360
\(133\) −6.90985 −0.599160
\(134\) −4.91977 −0.425004
\(135\) 3.54799 0.305363
\(136\) 0 0
\(137\) −18.7573 −1.60254 −0.801270 0.598303i \(-0.795842\pi\)
−0.801270 + 0.598303i \(0.795842\pi\)
\(138\) 13.0971 1.11490
\(139\) 6.45433 0.547450 0.273725 0.961808i \(-0.411744\pi\)
0.273725 + 0.961808i \(0.411744\pi\)
\(140\) −3.34189 −0.282441
\(141\) 0.699863 0.0589391
\(142\) −22.1560 −1.85929
\(143\) 9.50973 0.795244
\(144\) −4.99663 −0.416385
\(145\) 34.4735 2.86287
\(146\) 2.44278 0.202166
\(147\) 1.00000 0.0824786
\(148\) 8.56508 0.704045
\(149\) 15.4004 1.26165 0.630824 0.775926i \(-0.282717\pi\)
0.630824 + 0.775926i \(0.282717\pi\)
\(150\) 13.0154 1.06270
\(151\) −10.0010 −0.813872 −0.406936 0.913457i \(-0.633403\pi\)
−0.406936 + 0.913457i \(0.633403\pi\)
\(152\) −12.5403 −1.01715
\(153\) 0 0
\(154\) 4.40103 0.354645
\(155\) 4.10912 0.330052
\(156\) −3.49090 −0.279496
\(157\) 7.69824 0.614387 0.307193 0.951647i \(-0.400610\pi\)
0.307193 + 0.951647i \(0.400610\pi\)
\(158\) 18.9241 1.50552
\(159\) 3.38235 0.268238
\(160\) −17.5290 −1.38579
\(161\) −7.63588 −0.601791
\(162\) 1.71520 0.134759
\(163\) 5.90357 0.462404 0.231202 0.972906i \(-0.425734\pi\)
0.231202 + 0.972906i \(0.425734\pi\)
\(164\) −8.03501 −0.627429
\(165\) −9.10380 −0.708730
\(166\) 13.9203 1.08043
\(167\) 3.22712 0.249722 0.124861 0.992174i \(-0.460152\pi\)
0.124861 + 0.992174i \(0.460152\pi\)
\(168\) 1.81484 0.140018
\(169\) 0.735888 0.0566068
\(170\) 0 0
\(171\) 6.90985 0.528410
\(172\) −1.62001 −0.123525
\(173\) −22.3933 −1.70253 −0.851265 0.524736i \(-0.824164\pi\)
−0.851265 + 0.524736i \(0.824164\pi\)
\(174\) 16.6654 1.26340
\(175\) −7.58826 −0.573619
\(176\) 12.8208 0.966408
\(177\) 10.9220 0.820951
\(178\) 19.0534 1.42811
\(179\) 14.0892 1.05308 0.526538 0.850152i \(-0.323490\pi\)
0.526538 + 0.850152i \(0.323490\pi\)
\(180\) 3.34189 0.249090
\(181\) −20.8864 −1.55247 −0.776235 0.630443i \(-0.782873\pi\)
−0.776235 + 0.630443i \(0.782873\pi\)
\(182\) 6.35687 0.471202
\(183\) 5.12696 0.378996
\(184\) −13.8579 −1.02162
\(185\) 32.2630 2.37202
\(186\) 1.98646 0.145654
\(187\) 0 0
\(188\) 0.659207 0.0480776
\(189\) −1.00000 −0.0727393
\(190\) 42.0500 3.05063
\(191\) −4.70406 −0.340373 −0.170187 0.985412i \(-0.554437\pi\)
−0.170187 + 0.985412i \(0.554437\pi\)
\(192\) 1.51925 0.109642
\(193\) −5.10354 −0.367361 −0.183680 0.982986i \(-0.558801\pi\)
−0.183680 + 0.982986i \(0.558801\pi\)
\(194\) 3.03706 0.218048
\(195\) −13.1496 −0.941660
\(196\) 0.941909 0.0672792
\(197\) −13.4842 −0.960708 −0.480354 0.877075i \(-0.659492\pi\)
−0.480354 + 0.877075i \(0.659492\pi\)
\(198\) −4.40103 −0.312768
\(199\) −4.19363 −0.297279 −0.148639 0.988891i \(-0.547489\pi\)
−0.148639 + 0.988891i \(0.547489\pi\)
\(200\) −13.7715 −0.973789
\(201\) −2.86834 −0.202317
\(202\) 16.9848 1.19505
\(203\) −9.71633 −0.681953
\(204\) 0 0
\(205\) −30.2664 −2.11389
\(206\) −9.56904 −0.666707
\(207\) 7.63588 0.530730
\(208\) 18.5185 1.28403
\(209\) −17.7300 −1.22641
\(210\) −6.08552 −0.419941
\(211\) −17.8725 −1.23040 −0.615198 0.788372i \(-0.710924\pi\)
−0.615198 + 0.788372i \(0.710924\pi\)
\(212\) 3.18587 0.218807
\(213\) −12.9174 −0.885089
\(214\) −9.65291 −0.659859
\(215\) −6.10228 −0.416172
\(216\) −1.81484 −0.123484
\(217\) −1.15815 −0.0786205
\(218\) −27.8072 −1.88334
\(219\) 1.42420 0.0962382
\(220\) −8.57496 −0.578124
\(221\) 0 0
\(222\) 15.5968 1.04679
\(223\) 1.60272 0.107326 0.0536632 0.998559i \(-0.482910\pi\)
0.0536632 + 0.998559i \(0.482910\pi\)
\(224\) 4.94054 0.330103
\(225\) 7.58826 0.505884
\(226\) −16.6052 −1.10456
\(227\) −11.7490 −0.779807 −0.389904 0.920856i \(-0.627492\pi\)
−0.389904 + 0.920856i \(0.627492\pi\)
\(228\) 6.50846 0.431033
\(229\) −1.47791 −0.0976633 −0.0488317 0.998807i \(-0.515550\pi\)
−0.0488317 + 0.998807i \(0.515550\pi\)
\(230\) 46.4683 3.06403
\(231\) 2.56590 0.168824
\(232\) −17.6336 −1.15770
\(233\) −13.7652 −0.901788 −0.450894 0.892578i \(-0.648895\pi\)
−0.450894 + 0.892578i \(0.648895\pi\)
\(234\) −6.35687 −0.415561
\(235\) 2.48311 0.161980
\(236\) 10.2876 0.669664
\(237\) 11.0332 0.716681
\(238\) 0 0
\(239\) 13.6486 0.882852 0.441426 0.897298i \(-0.354473\pi\)
0.441426 + 0.897298i \(0.354473\pi\)
\(240\) −17.7280 −1.14434
\(241\) −17.3323 −1.11647 −0.558236 0.829682i \(-0.688522\pi\)
−0.558236 + 0.829682i \(0.688522\pi\)
\(242\) −7.57458 −0.486912
\(243\) 1.00000 0.0641500
\(244\) 4.82913 0.309153
\(245\) 3.54799 0.226673
\(246\) −14.6316 −0.932877
\(247\) −25.6093 −1.62948
\(248\) −2.10186 −0.133468
\(249\) 8.11587 0.514322
\(250\) 15.7509 0.996176
\(251\) −16.8092 −1.06099 −0.530493 0.847690i \(-0.677993\pi\)
−0.530493 + 0.847690i \(0.677993\pi\)
\(252\) −0.941909 −0.0593347
\(253\) −19.5929 −1.23180
\(254\) −3.38207 −0.212210
\(255\) 0 0
\(256\) 18.3790 1.14869
\(257\) −6.87575 −0.428897 −0.214449 0.976735i \(-0.568795\pi\)
−0.214449 + 0.976735i \(0.568795\pi\)
\(258\) −2.95001 −0.183660
\(259\) −9.09331 −0.565031
\(260\) −12.3857 −0.768128
\(261\) 9.71633 0.601426
\(262\) −14.6787 −0.906850
\(263\) 0.998666 0.0615804 0.0307902 0.999526i \(-0.490198\pi\)
0.0307902 + 0.999526i \(0.490198\pi\)
\(264\) 4.65669 0.286600
\(265\) 12.0006 0.737189
\(266\) −11.8518 −0.726679
\(267\) 11.1085 0.679832
\(268\) −2.70172 −0.165034
\(269\) 2.43642 0.148551 0.0742755 0.997238i \(-0.476336\pi\)
0.0742755 + 0.997238i \(0.476336\pi\)
\(270\) 6.08552 0.370353
\(271\) 11.8042 0.717056 0.358528 0.933519i \(-0.383279\pi\)
0.358528 + 0.933519i \(0.383279\pi\)
\(272\) 0 0
\(273\) 3.70620 0.224309
\(274\) −32.1724 −1.94361
\(275\) −19.4707 −1.17413
\(276\) 7.19230 0.432926
\(277\) −12.8645 −0.772953 −0.386476 0.922299i \(-0.626308\pi\)
−0.386476 + 0.922299i \(0.626308\pi\)
\(278\) 11.0705 0.663963
\(279\) 1.15815 0.0693368
\(280\) 6.43903 0.384806
\(281\) −17.9398 −1.07020 −0.535098 0.844790i \(-0.679725\pi\)
−0.535098 + 0.844790i \(0.679725\pi\)
\(282\) 1.20040 0.0714831
\(283\) −19.0719 −1.13371 −0.566853 0.823819i \(-0.691839\pi\)
−0.566853 + 0.823819i \(0.691839\pi\)
\(284\) −12.1671 −0.721982
\(285\) 24.5161 1.45221
\(286\) 16.3111 0.964495
\(287\) 8.53056 0.503543
\(288\) −4.94054 −0.291124
\(289\) 0 0
\(290\) 59.1289 3.47217
\(291\) 1.77067 0.103799
\(292\) 1.34146 0.0785032
\(293\) −16.9285 −0.988974 −0.494487 0.869185i \(-0.664644\pi\)
−0.494487 + 0.869185i \(0.664644\pi\)
\(294\) 1.71520 0.100032
\(295\) 38.7514 2.25619
\(296\) −16.5029 −0.959210
\(297\) −2.56590 −0.148889
\(298\) 26.4147 1.53016
\(299\) −28.3001 −1.63663
\(300\) 7.14746 0.412659
\(301\) 1.71992 0.0991348
\(302\) −17.1537 −0.987087
\(303\) 9.90253 0.568886
\(304\) −34.5260 −1.98020
\(305\) 18.1904 1.04158
\(306\) 0 0
\(307\) −21.9034 −1.25010 −0.625048 0.780587i \(-0.714921\pi\)
−0.625048 + 0.780587i \(0.714921\pi\)
\(308\) 2.41685 0.137713
\(309\) −5.57897 −0.317376
\(310\) 7.04796 0.400297
\(311\) 27.2225 1.54365 0.771823 0.635837i \(-0.219345\pi\)
0.771823 + 0.635837i \(0.219345\pi\)
\(312\) 6.72614 0.380793
\(313\) 7.20038 0.406990 0.203495 0.979076i \(-0.434770\pi\)
0.203495 + 0.979076i \(0.434770\pi\)
\(314\) 13.2040 0.745146
\(315\) −3.54799 −0.199907
\(316\) 10.3922 0.584609
\(317\) 18.5681 1.04289 0.521445 0.853285i \(-0.325393\pi\)
0.521445 + 0.853285i \(0.325393\pi\)
\(318\) 5.80141 0.325327
\(319\) −24.9311 −1.39588
\(320\) 5.39027 0.301326
\(321\) −5.62786 −0.314117
\(322\) −13.0971 −0.729870
\(323\) 0 0
\(324\) 0.941909 0.0523283
\(325\) −28.1236 −1.56002
\(326\) 10.1258 0.560816
\(327\) −16.2122 −0.896539
\(328\) 15.4816 0.854826
\(329\) −0.699863 −0.0385847
\(330\) −15.6148 −0.859569
\(331\) −8.06322 −0.443194 −0.221597 0.975138i \(-0.571127\pi\)
−0.221597 + 0.975138i \(0.571127\pi\)
\(332\) 7.64441 0.419542
\(333\) 9.09331 0.498310
\(334\) 5.53515 0.302870
\(335\) −10.1769 −0.556021
\(336\) 4.99663 0.272588
\(337\) 26.5965 1.44881 0.724403 0.689377i \(-0.242116\pi\)
0.724403 + 0.689377i \(0.242116\pi\)
\(338\) 1.26220 0.0686544
\(339\) −9.68119 −0.525810
\(340\) 0 0
\(341\) −2.97171 −0.160927
\(342\) 11.8518 0.640871
\(343\) −1.00000 −0.0539949
\(344\) 3.12138 0.168294
\(345\) 27.0920 1.45859
\(346\) −38.4090 −2.06488
\(347\) 19.8429 1.06522 0.532611 0.846360i \(-0.321211\pi\)
0.532611 + 0.846360i \(0.321211\pi\)
\(348\) 9.15190 0.490593
\(349\) −10.8244 −0.579418 −0.289709 0.957115i \(-0.593559\pi\)
−0.289709 + 0.957115i \(0.593559\pi\)
\(350\) −13.0154 −0.695702
\(351\) −3.70620 −0.197822
\(352\) 12.6769 0.675683
\(353\) 25.1471 1.33845 0.669224 0.743061i \(-0.266627\pi\)
0.669224 + 0.743061i \(0.266627\pi\)
\(354\) 18.7335 0.995674
\(355\) −45.8310 −2.43246
\(356\) 10.4632 0.554551
\(357\) 0 0
\(358\) 24.1658 1.27720
\(359\) 20.1240 1.06210 0.531051 0.847340i \(-0.321797\pi\)
0.531051 + 0.847340i \(0.321797\pi\)
\(360\) −6.43903 −0.339367
\(361\) 28.7461 1.51295
\(362\) −35.8243 −1.88288
\(363\) −4.41615 −0.231788
\(364\) 3.49090 0.182973
\(365\) 5.05304 0.264488
\(366\) 8.79376 0.459657
\(367\) 27.4219 1.43141 0.715706 0.698402i \(-0.246105\pi\)
0.715706 + 0.698402i \(0.246105\pi\)
\(368\) −38.1536 −1.98889
\(369\) −8.53056 −0.444083
\(370\) 55.3375 2.87686
\(371\) −3.38235 −0.175603
\(372\) 1.09087 0.0565592
\(373\) 9.01770 0.466919 0.233460 0.972367i \(-0.424995\pi\)
0.233460 + 0.972367i \(0.424995\pi\)
\(374\) 0 0
\(375\) 9.18315 0.474216
\(376\) −1.27014 −0.0655023
\(377\) −36.0106 −1.85464
\(378\) −1.71520 −0.0882203
\(379\) −4.01505 −0.206239 −0.103120 0.994669i \(-0.532882\pi\)
−0.103120 + 0.994669i \(0.532882\pi\)
\(380\) 23.0920 1.18459
\(381\) −1.97182 −0.101020
\(382\) −8.06839 −0.412815
\(383\) 7.39041 0.377632 0.188816 0.982012i \(-0.439535\pi\)
0.188816 + 0.982012i \(0.439535\pi\)
\(384\) 12.4869 0.637219
\(385\) 9.10380 0.463973
\(386\) −8.75358 −0.445546
\(387\) −1.71992 −0.0874287
\(388\) 1.66781 0.0846704
\(389\) 16.1413 0.818397 0.409199 0.912445i \(-0.365808\pi\)
0.409199 + 0.912445i \(0.365808\pi\)
\(390\) −22.5541 −1.14207
\(391\) 0 0
\(392\) −1.81484 −0.0916631
\(393\) −8.55799 −0.431693
\(394\) −23.1281 −1.16517
\(395\) 39.1456 1.96963
\(396\) −2.41685 −0.121451
\(397\) −6.71255 −0.336893 −0.168447 0.985711i \(-0.553875\pi\)
−0.168447 + 0.985711i \(0.553875\pi\)
\(398\) −7.19291 −0.360548
\(399\) −6.90985 −0.345925
\(400\) −37.9157 −1.89579
\(401\) 1.98200 0.0989763 0.0494882 0.998775i \(-0.484241\pi\)
0.0494882 + 0.998775i \(0.484241\pi\)
\(402\) −4.91977 −0.245376
\(403\) −4.29234 −0.213817
\(404\) 9.32729 0.464050
\(405\) 3.54799 0.176301
\(406\) −16.6654 −0.827092
\(407\) −23.3325 −1.15655
\(408\) 0 0
\(409\) −15.3390 −0.758464 −0.379232 0.925302i \(-0.623812\pi\)
−0.379232 + 0.925302i \(0.623812\pi\)
\(410\) −51.9129 −2.56379
\(411\) −18.7573 −0.925227
\(412\) −5.25488 −0.258889
\(413\) −10.9220 −0.537439
\(414\) 13.0971 0.643685
\(415\) 28.7951 1.41349
\(416\) 18.3106 0.897751
\(417\) 6.45433 0.316070
\(418\) −30.4105 −1.48743
\(419\) 0.267102 0.0130488 0.00652440 0.999979i \(-0.497923\pi\)
0.00652440 + 0.999979i \(0.497923\pi\)
\(420\) −3.34189 −0.163067
\(421\) −16.4415 −0.801309 −0.400655 0.916229i \(-0.631217\pi\)
−0.400655 + 0.916229i \(0.631217\pi\)
\(422\) −30.6550 −1.49226
\(423\) 0.699863 0.0340285
\(424\) −6.13842 −0.298108
\(425\) 0 0
\(426\) −22.1560 −1.07346
\(427\) −5.12696 −0.248111
\(428\) −5.30094 −0.256231
\(429\) 9.50973 0.459134
\(430\) −10.4666 −0.504746
\(431\) 2.16358 0.104216 0.0521079 0.998641i \(-0.483406\pi\)
0.0521079 + 0.998641i \(0.483406\pi\)
\(432\) −4.99663 −0.240400
\(433\) −5.65283 −0.271658 −0.135829 0.990732i \(-0.543370\pi\)
−0.135829 + 0.990732i \(0.543370\pi\)
\(434\) −1.98646 −0.0953532
\(435\) 34.4735 1.65288
\(436\) −15.2705 −0.731322
\(437\) 52.7628 2.52399
\(438\) 2.44278 0.116721
\(439\) −1.91768 −0.0915257 −0.0457628 0.998952i \(-0.514572\pi\)
−0.0457628 + 0.998952i \(0.514572\pi\)
\(440\) 16.5219 0.787652
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 28.4710 1.35270 0.676348 0.736582i \(-0.263562\pi\)
0.676348 + 0.736582i \(0.263562\pi\)
\(444\) 8.56508 0.406480
\(445\) 39.4131 1.86836
\(446\) 2.74899 0.130169
\(447\) 15.4004 0.728413
\(448\) −1.51925 −0.0717776
\(449\) 13.0555 0.616128 0.308064 0.951366i \(-0.400319\pi\)
0.308064 + 0.951366i \(0.400319\pi\)
\(450\) 13.0154 0.613551
\(451\) 21.8886 1.03069
\(452\) −9.11880 −0.428912
\(453\) −10.0010 −0.469889
\(454\) −20.1518 −0.945773
\(455\) 13.1496 0.616461
\(456\) −12.5403 −0.587251
\(457\) −8.80710 −0.411979 −0.205989 0.978554i \(-0.566041\pi\)
−0.205989 + 0.978554i \(0.566041\pi\)
\(458\) −2.53492 −0.118449
\(459\) 0 0
\(460\) 25.5183 1.18979
\(461\) 8.14899 0.379536 0.189768 0.981829i \(-0.439226\pi\)
0.189768 + 0.981829i \(0.439226\pi\)
\(462\) 4.40103 0.204755
\(463\) −0.328011 −0.0152440 −0.00762199 0.999971i \(-0.502426\pi\)
−0.00762199 + 0.999971i \(0.502426\pi\)
\(464\) −48.5489 −2.25382
\(465\) 4.10912 0.190556
\(466\) −23.6101 −1.09371
\(467\) −23.0220 −1.06533 −0.532666 0.846326i \(-0.678810\pi\)
−0.532666 + 0.846326i \(0.678810\pi\)
\(468\) −3.49090 −0.161367
\(469\) 2.86834 0.132448
\(470\) 4.25903 0.196454
\(471\) 7.69824 0.354716
\(472\) −19.8217 −0.912369
\(473\) 4.41316 0.202917
\(474\) 18.9241 0.869211
\(475\) 52.4338 2.40583
\(476\) 0 0
\(477\) 3.38235 0.154867
\(478\) 23.4100 1.07075
\(479\) 27.6393 1.26287 0.631437 0.775427i \(-0.282466\pi\)
0.631437 + 0.775427i \(0.282466\pi\)
\(480\) −17.5290 −0.800085
\(481\) −33.7016 −1.53666
\(482\) −29.7284 −1.35409
\(483\) −7.63588 −0.347444
\(484\) −4.15961 −0.189073
\(485\) 6.28234 0.285266
\(486\) 1.71520 0.0778030
\(487\) 2.19186 0.0993229 0.0496614 0.998766i \(-0.484186\pi\)
0.0496614 + 0.998766i \(0.484186\pi\)
\(488\) −9.30459 −0.421199
\(489\) 5.90357 0.266969
\(490\) 6.08552 0.274916
\(491\) −8.04025 −0.362851 −0.181426 0.983405i \(-0.558071\pi\)
−0.181426 + 0.983405i \(0.558071\pi\)
\(492\) −8.03501 −0.362246
\(493\) 0 0
\(494\) −43.9250 −1.97628
\(495\) −9.10380 −0.409186
\(496\) −5.78685 −0.259837
\(497\) 12.9174 0.579427
\(498\) 13.9203 0.623785
\(499\) −11.4393 −0.512094 −0.256047 0.966664i \(-0.582420\pi\)
−0.256047 + 0.966664i \(0.582420\pi\)
\(500\) 8.64969 0.386826
\(501\) 3.22712 0.144177
\(502\) −28.8311 −1.28679
\(503\) 7.94657 0.354320 0.177160 0.984182i \(-0.443309\pi\)
0.177160 + 0.984182i \(0.443309\pi\)
\(504\) 1.81484 0.0808392
\(505\) 35.1341 1.56345
\(506\) −33.6057 −1.49396
\(507\) 0.735888 0.0326819
\(508\) −1.85728 −0.0824034
\(509\) 23.7079 1.05083 0.525417 0.850845i \(-0.323909\pi\)
0.525417 + 0.850845i \(0.323909\pi\)
\(510\) 0 0
\(511\) −1.42420 −0.0630027
\(512\) 6.54989 0.289467
\(513\) 6.90985 0.305078
\(514\) −11.7933 −0.520179
\(515\) −19.7941 −0.872234
\(516\) −1.62001 −0.0713171
\(517\) −1.79578 −0.0789783
\(518\) −15.5968 −0.685286
\(519\) −22.3933 −0.982956
\(520\) 23.8643 1.04652
\(521\) 7.85281 0.344038 0.172019 0.985094i \(-0.444971\pi\)
0.172019 + 0.985094i \(0.444971\pi\)
\(522\) 16.6654 0.729427
\(523\) 7.79018 0.340641 0.170320 0.985389i \(-0.445520\pi\)
0.170320 + 0.985389i \(0.445520\pi\)
\(524\) −8.06085 −0.352140
\(525\) −7.58826 −0.331179
\(526\) 1.71291 0.0746865
\(527\) 0 0
\(528\) 12.8208 0.557956
\(529\) 35.3066 1.53507
\(530\) 20.5834 0.894085
\(531\) 10.9220 0.473977
\(532\) −6.50846 −0.282177
\(533\) 31.6159 1.36944
\(534\) 19.0534 0.824520
\(535\) −19.9676 −0.863276
\(536\) 5.20557 0.224846
\(537\) 14.0892 0.607994
\(538\) 4.17894 0.180167
\(539\) −2.56590 −0.110521
\(540\) 3.34189 0.143812
\(541\) −13.7305 −0.590321 −0.295160 0.955448i \(-0.595373\pi\)
−0.295160 + 0.955448i \(0.595373\pi\)
\(542\) 20.2466 0.869666
\(543\) −20.8864 −0.896319
\(544\) 0 0
\(545\) −57.5209 −2.46393
\(546\) 6.35687 0.272049
\(547\) −21.0362 −0.899443 −0.449722 0.893169i \(-0.648477\pi\)
−0.449722 + 0.893169i \(0.648477\pi\)
\(548\) −17.6676 −0.754724
\(549\) 5.12696 0.218813
\(550\) −33.3962 −1.42402
\(551\) 67.1384 2.86019
\(552\) −13.8579 −0.589830
\(553\) −11.0332 −0.469178
\(554\) −22.0652 −0.937460
\(555\) 32.2630 1.36949
\(556\) 6.07940 0.257824
\(557\) 18.9903 0.804645 0.402323 0.915498i \(-0.368203\pi\)
0.402323 + 0.915498i \(0.368203\pi\)
\(558\) 1.98646 0.0840937
\(559\) 6.37438 0.269607
\(560\) 17.7280 0.749145
\(561\) 0 0
\(562\) −30.7703 −1.29797
\(563\) −17.8871 −0.753851 −0.376925 0.926244i \(-0.623019\pi\)
−0.376925 + 0.926244i \(0.623019\pi\)
\(564\) 0.659207 0.0277576
\(565\) −34.3488 −1.44506
\(566\) −32.7121 −1.37499
\(567\) −1.00000 −0.0419961
\(568\) 23.4431 0.983649
\(569\) 17.6081 0.738170 0.369085 0.929396i \(-0.379671\pi\)
0.369085 + 0.929396i \(0.379671\pi\)
\(570\) 42.0500 1.76128
\(571\) −16.2996 −0.682115 −0.341058 0.940042i \(-0.610785\pi\)
−0.341058 + 0.940042i \(0.610785\pi\)
\(572\) 8.95731 0.374524
\(573\) −4.70406 −0.196515
\(574\) 14.6316 0.610711
\(575\) 57.9431 2.41639
\(576\) 1.51925 0.0633019
\(577\) 18.0748 0.752464 0.376232 0.926526i \(-0.377220\pi\)
0.376232 + 0.926526i \(0.377220\pi\)
\(578\) 0 0
\(579\) −5.10354 −0.212096
\(580\) 32.4709 1.34828
\(581\) −8.11587 −0.336703
\(582\) 3.03706 0.125890
\(583\) −8.67879 −0.359439
\(584\) −2.58468 −0.106955
\(585\) −13.1496 −0.543667
\(586\) −29.0358 −1.19946
\(587\) −5.40978 −0.223286 −0.111643 0.993748i \(-0.535611\pi\)
−0.111643 + 0.993748i \(0.535611\pi\)
\(588\) 0.941909 0.0388437
\(589\) 8.00266 0.329744
\(590\) 66.4663 2.73638
\(591\) −13.4842 −0.554665
\(592\) −45.4359 −1.86740
\(593\) 8.20619 0.336988 0.168494 0.985703i \(-0.446110\pi\)
0.168494 + 0.985703i \(0.446110\pi\)
\(594\) −4.40103 −0.180577
\(595\) 0 0
\(596\) 14.5058 0.594179
\(597\) −4.19363 −0.171634
\(598\) −48.5402 −1.98496
\(599\) 16.5369 0.675681 0.337840 0.941203i \(-0.390304\pi\)
0.337840 + 0.941203i \(0.390304\pi\)
\(600\) −13.7715 −0.562217
\(601\) −30.9489 −1.26243 −0.631215 0.775608i \(-0.717444\pi\)
−0.631215 + 0.775608i \(0.717444\pi\)
\(602\) 2.95001 0.120234
\(603\) −2.86834 −0.116808
\(604\) −9.42006 −0.383297
\(605\) −15.6685 −0.637014
\(606\) 16.9848 0.689961
\(607\) −9.74513 −0.395542 −0.197771 0.980248i \(-0.563370\pi\)
−0.197771 + 0.980248i \(0.563370\pi\)
\(608\) −34.1384 −1.38449
\(609\) −9.71633 −0.393726
\(610\) 31.2002 1.26326
\(611\) −2.59383 −0.104935
\(612\) 0 0
\(613\) 41.7672 1.68696 0.843480 0.537160i \(-0.180503\pi\)
0.843480 + 0.537160i \(0.180503\pi\)
\(614\) −37.5688 −1.51615
\(615\) −30.2664 −1.22046
\(616\) −4.65669 −0.187623
\(617\) 38.7721 1.56091 0.780453 0.625215i \(-0.214989\pi\)
0.780453 + 0.625215i \(0.214989\pi\)
\(618\) −9.56904 −0.384923
\(619\) −44.5425 −1.79031 −0.895156 0.445752i \(-0.852936\pi\)
−0.895156 + 0.445752i \(0.852936\pi\)
\(620\) 3.87042 0.155440
\(621\) 7.63588 0.306417
\(622\) 46.6920 1.87218
\(623\) −11.1085 −0.445055
\(624\) 18.5185 0.741332
\(625\) −5.35957 −0.214383
\(626\) 12.3501 0.493609
\(627\) −17.7300 −0.708068
\(628\) 7.25105 0.289348
\(629\) 0 0
\(630\) −6.08552 −0.242453
\(631\) 7.99744 0.318373 0.159186 0.987249i \(-0.449113\pi\)
0.159186 + 0.987249i \(0.449113\pi\)
\(632\) −20.0234 −0.796487
\(633\) −17.8725 −0.710370
\(634\) 31.8481 1.26485
\(635\) −6.99602 −0.277628
\(636\) 3.18587 0.126328
\(637\) −3.70620 −0.146845
\(638\) −42.7619 −1.69296
\(639\) −12.9174 −0.511006
\(640\) 44.3034 1.75125
\(641\) −39.0209 −1.54123 −0.770616 0.637299i \(-0.780051\pi\)
−0.770616 + 0.637299i \(0.780051\pi\)
\(642\) −9.65291 −0.380970
\(643\) 5.89337 0.232412 0.116206 0.993225i \(-0.462927\pi\)
0.116206 + 0.993225i \(0.462927\pi\)
\(644\) −7.19230 −0.283416
\(645\) −6.10228 −0.240277
\(646\) 0 0
\(647\) −27.4242 −1.07816 −0.539079 0.842255i \(-0.681228\pi\)
−0.539079 + 0.842255i \(0.681228\pi\)
\(648\) −1.81484 −0.0712935
\(649\) −28.0249 −1.10007
\(650\) −48.2376 −1.89203
\(651\) −1.15815 −0.0453916
\(652\) 5.56063 0.217771
\(653\) −21.4263 −0.838474 −0.419237 0.907877i \(-0.637702\pi\)
−0.419237 + 0.907877i \(0.637702\pi\)
\(654\) −27.8072 −1.08735
\(655\) −30.3637 −1.18641
\(656\) 42.6240 1.66419
\(657\) 1.42420 0.0555632
\(658\) −1.20040 −0.0467966
\(659\) −10.2775 −0.400356 −0.200178 0.979760i \(-0.564152\pi\)
−0.200178 + 0.979760i \(0.564152\pi\)
\(660\) −8.57496 −0.333780
\(661\) 5.90247 0.229580 0.114790 0.993390i \(-0.463381\pi\)
0.114790 + 0.993390i \(0.463381\pi\)
\(662\) −13.8300 −0.537519
\(663\) 0 0
\(664\) −14.7290 −0.571595
\(665\) −24.5161 −0.950695
\(666\) 15.5968 0.604365
\(667\) 74.1927 2.87275
\(668\) 3.03965 0.117608
\(669\) 1.60272 0.0619649
\(670\) −17.4553 −0.674358
\(671\) −13.1553 −0.507854
\(672\) 4.94054 0.190585
\(673\) 3.75945 0.144916 0.0724580 0.997371i \(-0.476916\pi\)
0.0724580 + 0.997371i \(0.476916\pi\)
\(674\) 45.6184 1.75715
\(675\) 7.58826 0.292072
\(676\) 0.693140 0.0266592
\(677\) −19.0565 −0.732401 −0.366200 0.930536i \(-0.619341\pi\)
−0.366200 + 0.930536i \(0.619341\pi\)
\(678\) −16.6052 −0.637718
\(679\) −1.77067 −0.0679522
\(680\) 0 0
\(681\) −11.7490 −0.450222
\(682\) −5.09707 −0.195177
\(683\) −38.9918 −1.49198 −0.745989 0.665958i \(-0.768023\pi\)
−0.745989 + 0.665958i \(0.768023\pi\)
\(684\) 6.50846 0.248857
\(685\) −66.5506 −2.54277
\(686\) −1.71520 −0.0654866
\(687\) −1.47791 −0.0563860
\(688\) 8.59382 0.327636
\(689\) −12.5357 −0.477571
\(690\) 46.4683 1.76902
\(691\) 15.1384 0.575894 0.287947 0.957646i \(-0.407027\pi\)
0.287947 + 0.957646i \(0.407027\pi\)
\(692\) −21.0924 −0.801815
\(693\) 2.56590 0.0974705
\(694\) 34.0345 1.29193
\(695\) 22.8999 0.868644
\(696\) −17.6336 −0.668398
\(697\) 0 0
\(698\) −18.5660 −0.702735
\(699\) −13.7652 −0.520647
\(700\) −7.14746 −0.270148
\(701\) 4.53361 0.171232 0.0856160 0.996328i \(-0.472714\pi\)
0.0856160 + 0.996328i \(0.472714\pi\)
\(702\) −6.35687 −0.239924
\(703\) 62.8335 2.36981
\(704\) −3.89823 −0.146920
\(705\) 2.48311 0.0935193
\(706\) 43.1324 1.62331
\(707\) −9.90253 −0.372423
\(708\) 10.2876 0.386631
\(709\) 40.4319 1.51845 0.759226 0.650827i \(-0.225578\pi\)
0.759226 + 0.650827i \(0.225578\pi\)
\(710\) −78.6093 −2.95016
\(711\) 11.0332 0.413776
\(712\) −20.1602 −0.755535
\(713\) 8.84351 0.331192
\(714\) 0 0
\(715\) 33.7405 1.26182
\(716\) 13.2707 0.495951
\(717\) 13.6486 0.509715
\(718\) 34.5166 1.28815
\(719\) 47.5309 1.77260 0.886302 0.463107i \(-0.153265\pi\)
0.886302 + 0.463107i \(0.153265\pi\)
\(720\) −17.7280 −0.660684
\(721\) 5.57897 0.207772
\(722\) 49.3053 1.83495
\(723\) −17.3323 −0.644596
\(724\) −19.6731 −0.731143
\(725\) 73.7301 2.73827
\(726\) −7.57458 −0.281119
\(727\) 12.1751 0.451549 0.225774 0.974180i \(-0.427509\pi\)
0.225774 + 0.974180i \(0.427509\pi\)
\(728\) −6.72614 −0.249287
\(729\) 1.00000 0.0370370
\(730\) 8.66697 0.320779
\(731\) 0 0
\(732\) 4.82913 0.178490
\(733\) 16.4228 0.606589 0.303294 0.952897i \(-0.401913\pi\)
0.303294 + 0.952897i \(0.401913\pi\)
\(734\) 47.0340 1.73606
\(735\) 3.54799 0.130870
\(736\) −37.7253 −1.39057
\(737\) 7.35988 0.271105
\(738\) −14.6316 −0.538597
\(739\) −14.0884 −0.518249 −0.259125 0.965844i \(-0.583434\pi\)
−0.259125 + 0.965844i \(0.583434\pi\)
\(740\) 30.3888 1.11712
\(741\) −25.6093 −0.940780
\(742\) −5.80141 −0.212977
\(743\) −52.3998 −1.92236 −0.961180 0.275921i \(-0.911017\pi\)
−0.961180 + 0.275921i \(0.911017\pi\)
\(744\) −2.10186 −0.0770578
\(745\) 54.6405 2.00187
\(746\) 15.4672 0.566293
\(747\) 8.11587 0.296944
\(748\) 0 0
\(749\) 5.62786 0.205638
\(750\) 15.7509 0.575143
\(751\) 19.2295 0.701696 0.350848 0.936432i \(-0.385893\pi\)
0.350848 + 0.936432i \(0.385893\pi\)
\(752\) −3.49695 −0.127521
\(753\) −16.8092 −0.612560
\(754\) −61.7654 −2.24936
\(755\) −35.4836 −1.29138
\(756\) −0.941909 −0.0342569
\(757\) −28.7663 −1.04553 −0.522764 0.852477i \(-0.675099\pi\)
−0.522764 + 0.852477i \(0.675099\pi\)
\(758\) −6.88661 −0.250133
\(759\) −19.5929 −0.711178
\(760\) −44.4928 −1.61392
\(761\) −39.8043 −1.44291 −0.721453 0.692463i \(-0.756525\pi\)
−0.721453 + 0.692463i \(0.756525\pi\)
\(762\) −3.38207 −0.122519
\(763\) 16.2122 0.586922
\(764\) −4.43079 −0.160300
\(765\) 0 0
\(766\) 12.6760 0.458004
\(767\) −40.4793 −1.46162
\(768\) 18.3790 0.663195
\(769\) 1.97929 0.0713750 0.0356875 0.999363i \(-0.488638\pi\)
0.0356875 + 0.999363i \(0.488638\pi\)
\(770\) 15.6148 0.562720
\(771\) −6.87575 −0.247624
\(772\) −4.80707 −0.173010
\(773\) −30.2810 −1.08913 −0.544565 0.838718i \(-0.683305\pi\)
−0.544565 + 0.838718i \(0.683305\pi\)
\(774\) −2.95001 −0.106036
\(775\) 8.78837 0.315687
\(776\) −3.21348 −0.115357
\(777\) −9.09331 −0.326221
\(778\) 27.6856 0.992576
\(779\) −58.9449 −2.11192
\(780\) −12.3857 −0.443479
\(781\) 33.1449 1.18602
\(782\) 0 0
\(783\) 9.71633 0.347233
\(784\) −4.99663 −0.178451
\(785\) 27.3133 0.974854
\(786\) −14.6787 −0.523570
\(787\) 53.2070 1.89663 0.948313 0.317337i \(-0.102789\pi\)
0.948313 + 0.317337i \(0.102789\pi\)
\(788\) −12.7009 −0.452450
\(789\) 0.998666 0.0355534
\(790\) 67.1425 2.38882
\(791\) 9.68119 0.344223
\(792\) 4.65669 0.165468
\(793\) −19.0015 −0.674764
\(794\) −11.5134 −0.408594
\(795\) 12.0006 0.425616
\(796\) −3.95002 −0.140005
\(797\) −39.2847 −1.39154 −0.695768 0.718266i \(-0.744936\pi\)
−0.695768 + 0.718266i \(0.744936\pi\)
\(798\) −11.8518 −0.419548
\(799\) 0 0
\(800\) −37.4901 −1.32547
\(801\) 11.1085 0.392501
\(802\) 3.39952 0.120041
\(803\) −3.65435 −0.128959
\(804\) −2.70172 −0.0952822
\(805\) −27.0920 −0.954869
\(806\) −7.36222 −0.259323
\(807\) 2.43642 0.0857660
\(808\) −17.9715 −0.632234
\(809\) 46.3440 1.62937 0.814684 0.579905i \(-0.196910\pi\)
0.814684 + 0.579905i \(0.196910\pi\)
\(810\) 6.08552 0.213823
\(811\) 45.9210 1.61250 0.806252 0.591572i \(-0.201492\pi\)
0.806252 + 0.591572i \(0.201492\pi\)
\(812\) −9.15190 −0.321169
\(813\) 11.8042 0.413992
\(814\) −40.0200 −1.40270
\(815\) 20.9458 0.733701
\(816\) 0 0
\(817\) −11.8844 −0.415784
\(818\) −26.3094 −0.919887
\(819\) 3.70620 0.129505
\(820\) −28.5082 −0.995549
\(821\) −35.4875 −1.23852 −0.619262 0.785185i \(-0.712568\pi\)
−0.619262 + 0.785185i \(0.712568\pi\)
\(822\) −32.1724 −1.12214
\(823\) −10.5388 −0.367359 −0.183680 0.982986i \(-0.558801\pi\)
−0.183680 + 0.982986i \(0.558801\pi\)
\(824\) 10.1249 0.352718
\(825\) −19.4707 −0.677884
\(826\) −18.7335 −0.651822
\(827\) 55.2114 1.91989 0.959944 0.280194i \(-0.0903986\pi\)
0.959944 + 0.280194i \(0.0903986\pi\)
\(828\) 7.19230 0.249950
\(829\) −37.2823 −1.29487 −0.647435 0.762121i \(-0.724158\pi\)
−0.647435 + 0.762121i \(0.724158\pi\)
\(830\) 49.3893 1.71433
\(831\) −12.8645 −0.446264
\(832\) −5.63062 −0.195207
\(833\) 0 0
\(834\) 11.0705 0.383339
\(835\) 11.4498 0.396237
\(836\) −16.7001 −0.577584
\(837\) 1.15815 0.0400316
\(838\) 0.458134 0.0158260
\(839\) −23.2421 −0.802407 −0.401203 0.915989i \(-0.631408\pi\)
−0.401203 + 0.915989i \(0.631408\pi\)
\(840\) 6.43903 0.222168
\(841\) 65.4071 2.25542
\(842\) −28.2004 −0.971851
\(843\) −17.9398 −0.617878
\(844\) −16.8343 −0.579461
\(845\) 2.61093 0.0898186
\(846\) 1.20040 0.0412708
\(847\) 4.41615 0.151741
\(848\) −16.9004 −0.580361
\(849\) −19.0719 −0.654546
\(850\) 0 0
\(851\) 69.4354 2.38022
\(852\) −12.1671 −0.416837
\(853\) 14.1046 0.482932 0.241466 0.970409i \(-0.422372\pi\)
0.241466 + 0.970409i \(0.422372\pi\)
\(854\) −8.79376 −0.300916
\(855\) 24.5161 0.838434
\(856\) 10.2137 0.349096
\(857\) −36.2404 −1.23795 −0.618975 0.785411i \(-0.712452\pi\)
−0.618975 + 0.785411i \(0.712452\pi\)
\(858\) 16.3111 0.556851
\(859\) 35.1436 1.19908 0.599542 0.800343i \(-0.295349\pi\)
0.599542 + 0.800343i \(0.295349\pi\)
\(860\) −5.74780 −0.195998
\(861\) 8.53056 0.290721
\(862\) 3.71096 0.126396
\(863\) −18.5693 −0.632106 −0.316053 0.948742i \(-0.602358\pi\)
−0.316053 + 0.948742i \(0.602358\pi\)
\(864\) −4.94054 −0.168080
\(865\) −79.4513 −2.70142
\(866\) −9.69573 −0.329474
\(867\) 0 0
\(868\) −1.09087 −0.0370267
\(869\) −28.3100 −0.960351
\(870\) 59.1289 2.00466
\(871\) 10.6306 0.360205
\(872\) 29.4226 0.996374
\(873\) 1.77067 0.0599282
\(874\) 90.4987 3.06117
\(875\) −9.18315 −0.310447
\(876\) 1.34146 0.0453239
\(877\) −17.9724 −0.606886 −0.303443 0.952850i \(-0.598136\pi\)
−0.303443 + 0.952850i \(0.598136\pi\)
\(878\) −3.28920 −0.111005
\(879\) −16.9285 −0.570984
\(880\) 45.4883 1.53341
\(881\) −34.5997 −1.16569 −0.582846 0.812583i \(-0.698061\pi\)
−0.582846 + 0.812583i \(0.698061\pi\)
\(882\) 1.71520 0.0577538
\(883\) 20.3212 0.683863 0.341931 0.939725i \(-0.388919\pi\)
0.341931 + 0.939725i \(0.388919\pi\)
\(884\) 0 0
\(885\) 38.7514 1.30261
\(886\) 48.8334 1.64059
\(887\) −19.1066 −0.641536 −0.320768 0.947158i \(-0.603941\pi\)
−0.320768 + 0.947158i \(0.603941\pi\)
\(888\) −16.5029 −0.553800
\(889\) 1.97182 0.0661328
\(890\) 67.6013 2.26600
\(891\) −2.56590 −0.0859609
\(892\) 1.50962 0.0505459
\(893\) 4.83595 0.161829
\(894\) 26.4147 0.883440
\(895\) 49.9884 1.67093
\(896\) −12.4869 −0.417157
\(897\) −28.3001 −0.944911
\(898\) 22.3928 0.747259
\(899\) 11.2530 0.375308
\(900\) 7.14746 0.238249
\(901\) 0 0
\(902\) 37.5433 1.25005
\(903\) 1.71992 0.0572355
\(904\) 17.5698 0.584362
\(905\) −74.1047 −2.46332
\(906\) −17.1537 −0.569895
\(907\) 58.2318 1.93356 0.966778 0.255617i \(-0.0822785\pi\)
0.966778 + 0.255617i \(0.0822785\pi\)
\(908\) −11.0665 −0.367254
\(909\) 9.90253 0.328446
\(910\) 22.5541 0.747662
\(911\) 2.34627 0.0777355 0.0388678 0.999244i \(-0.487625\pi\)
0.0388678 + 0.999244i \(0.487625\pi\)
\(912\) −34.5260 −1.14327
\(913\) −20.8245 −0.689191
\(914\) −15.1059 −0.499660
\(915\) 18.1904 0.601357
\(916\) −1.39206 −0.0459950
\(917\) 8.55799 0.282610
\(918\) 0 0
\(919\) −0.903634 −0.0298081 −0.0149041 0.999889i \(-0.504744\pi\)
−0.0149041 + 0.999889i \(0.504744\pi\)
\(920\) −49.1676 −1.62101
\(921\) −21.9034 −0.721743
\(922\) 13.9771 0.460313
\(923\) 47.8746 1.57581
\(924\) 2.41685 0.0795084
\(925\) 69.0025 2.26879
\(926\) −0.562605 −0.0184883
\(927\) −5.57897 −0.183237
\(928\) −48.0039 −1.57580
\(929\) −27.9197 −0.916016 −0.458008 0.888948i \(-0.651437\pi\)
−0.458008 + 0.888948i \(0.651437\pi\)
\(930\) 7.04796 0.231112
\(931\) 6.90985 0.226461
\(932\) −12.9656 −0.424701
\(933\) 27.2225 0.891225
\(934\) −39.4873 −1.29206
\(935\) 0 0
\(936\) 6.72614 0.219851
\(937\) 36.6825 1.19836 0.599182 0.800613i \(-0.295493\pi\)
0.599182 + 0.800613i \(0.295493\pi\)
\(938\) 4.91977 0.160636
\(939\) 7.20038 0.234976
\(940\) 2.33886 0.0762853
\(941\) 33.3450 1.08702 0.543508 0.839404i \(-0.317096\pi\)
0.543508 + 0.839404i \(0.317096\pi\)
\(942\) 13.2040 0.430210
\(943\) −65.1383 −2.12119
\(944\) −54.5734 −1.77621
\(945\) −3.54799 −0.115416
\(946\) 7.56945 0.246104
\(947\) −19.7611 −0.642149 −0.321074 0.947054i \(-0.604044\pi\)
−0.321074 + 0.947054i \(0.604044\pi\)
\(948\) 10.3922 0.337524
\(949\) −5.27835 −0.171342
\(950\) 89.9344 2.91786
\(951\) 18.5681 0.602113
\(952\) 0 0
\(953\) 36.5884 1.18521 0.592607 0.805491i \(-0.298099\pi\)
0.592607 + 0.805491i \(0.298099\pi\)
\(954\) 5.80141 0.187828
\(955\) −16.6900 −0.540074
\(956\) 12.8557 0.415783
\(957\) −24.9311 −0.805910
\(958\) 47.4070 1.53165
\(959\) 18.7573 0.605703
\(960\) 5.39027 0.173970
\(961\) −29.6587 −0.956732
\(962\) −57.8050 −1.86371
\(963\) −5.62786 −0.181355
\(964\) −16.3255 −0.525808
\(965\) −18.1073 −0.582895
\(966\) −13.0971 −0.421391
\(967\) −29.3184 −0.942815 −0.471408 0.881915i \(-0.656254\pi\)
−0.471408 + 0.881915i \(0.656254\pi\)
\(968\) 8.01459 0.257599
\(969\) 0 0
\(970\) 10.7755 0.345979
\(971\) 30.8608 0.990370 0.495185 0.868788i \(-0.335100\pi\)
0.495185 + 0.868788i \(0.335100\pi\)
\(972\) 0.941909 0.0302118
\(973\) −6.45433 −0.206916
\(974\) 3.75948 0.120462
\(975\) −28.1236 −0.900676
\(976\) −25.6175 −0.819996
\(977\) −54.9490 −1.75797 −0.878987 0.476847i \(-0.841780\pi\)
−0.878987 + 0.476847i \(0.841780\pi\)
\(978\) 10.1258 0.323788
\(979\) −28.5034 −0.910974
\(980\) 3.34189 0.106753
\(981\) −16.2122 −0.517617
\(982\) −13.7906 −0.440077
\(983\) 12.6067 0.402091 0.201046 0.979582i \(-0.435566\pi\)
0.201046 + 0.979582i \(0.435566\pi\)
\(984\) 15.4816 0.493534
\(985\) −47.8418 −1.52437
\(986\) 0 0
\(987\) −0.699863 −0.0222769
\(988\) −24.1216 −0.767411
\(989\) −13.1331 −0.417609
\(990\) −15.6148 −0.496272
\(991\) 9.52255 0.302494 0.151247 0.988496i \(-0.451671\pi\)
0.151247 + 0.988496i \(0.451671\pi\)
\(992\) −5.72189 −0.181670
\(993\) −8.06322 −0.255878
\(994\) 22.1560 0.702746
\(995\) −14.8790 −0.471695
\(996\) 7.64441 0.242223
\(997\) −56.5013 −1.78941 −0.894707 0.446654i \(-0.852615\pi\)
−0.894707 + 0.446654i \(0.852615\pi\)
\(998\) −19.6207 −0.621082
\(999\) 9.09331 0.287700
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.be.1.8 10
17.8 even 8 357.2.k.b.64.3 20
17.15 even 8 357.2.k.b.106.8 yes 20
17.16 even 2 6069.2.a.bd.1.8 10
51.8 odd 8 1071.2.n.b.64.8 20
51.32 odd 8 1071.2.n.b.820.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.3 20 17.8 even 8
357.2.k.b.106.8 yes 20 17.15 even 8
1071.2.n.b.64.8 20 51.8 odd 8
1071.2.n.b.820.3 20 51.32 odd 8
6069.2.a.bd.1.8 10 17.16 even 2
6069.2.a.be.1.8 10 1.1 even 1 trivial