Properties

Label 6069.2.a.be.1.6
Level 60696069
Weight 22
Character 6069.1
Self dual yes
Analytic conductor 48.46148.461
Analytic rank 00
Dimension 1010
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 6069=37172 6069 = 3 \cdot 7 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,4,10,12,-6,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 48.461208986748.4612089867
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10)\mathbb{Q}[x]/(x^{10} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x104x98x8+44x7+5x6144x5+48x4+160x344x264x2 x^{10} - 4x^{9} - 8x^{8} + 44x^{7} + 5x^{6} - 144x^{5} + 48x^{4} + 160x^{3} - 44x^{2} - 64x - 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 357)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 1.237431.23743 of defining polynomial
Character χ\chi == 6069.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.23743q2+1.00000q30.468767q4+1.81608q5+1.23743q61.00000q73.05493q8+1.00000q9+2.24727q10+2.35837q110.468767q12+1.26858q131.23743q14+1.81608q152.84272q16+1.23743q183.42380q190.851318q201.00000q21+2.91832q22+0.898969q233.05493q241.70185q25+1.56978q26+1.00000q27+0.468767q28+0.0242602q29+2.24727q30+6.75476q31+2.59218q32+2.35837q331.81608q350.468767q36+1.19320q374.23672q38+1.26858q395.54799q40+7.09225q411.23743q42+5.21815q431.10553q44+1.81608q45+1.11241q46+8.50780q472.84272q48+1.00000q492.10592q500.594667q521.07752q53+1.23743q54+4.28300q55+3.05493q563.42380q57+0.0300204q58+5.43516q590.851318q60+6.29919q61+8.35855q621.00000q63+8.89309q64+2.30384q65+2.91832q660.516299q67+0.898969q692.24727q70+7.25266q713.05493q7213.3401q73+1.47650q741.70185q75+1.60496q762.35837q77+1.56978q78+10.7677q795.16262q80+1.00000q81+8.77616q827.22647q83+0.468767q84+6.45709q86+0.0242602q877.20466q88+10.2051q89+2.24727q901.26858q910.421407q92+6.75476q93+10.5278q946.21790q95+2.59218q960.205143q97+1.23743q98+2.35837q99+O(q100)q+1.23743 q^{2} +1.00000 q^{3} -0.468767 q^{4} +1.81608 q^{5} +1.23743 q^{6} -1.00000 q^{7} -3.05493 q^{8} +1.00000 q^{9} +2.24727 q^{10} +2.35837 q^{11} -0.468767 q^{12} +1.26858 q^{13} -1.23743 q^{14} +1.81608 q^{15} -2.84272 q^{16} +1.23743 q^{18} -3.42380 q^{19} -0.851318 q^{20} -1.00000 q^{21} +2.91832 q^{22} +0.898969 q^{23} -3.05493 q^{24} -1.70185 q^{25} +1.56978 q^{26} +1.00000 q^{27} +0.468767 q^{28} +0.0242602 q^{29} +2.24727 q^{30} +6.75476 q^{31} +2.59218 q^{32} +2.35837 q^{33} -1.81608 q^{35} -0.468767 q^{36} +1.19320 q^{37} -4.23672 q^{38} +1.26858 q^{39} -5.54799 q^{40} +7.09225 q^{41} -1.23743 q^{42} +5.21815 q^{43} -1.10553 q^{44} +1.81608 q^{45} +1.11241 q^{46} +8.50780 q^{47} -2.84272 q^{48} +1.00000 q^{49} -2.10592 q^{50} -0.594667 q^{52} -1.07752 q^{53} +1.23743 q^{54} +4.28300 q^{55} +3.05493 q^{56} -3.42380 q^{57} +0.0300204 q^{58} +5.43516 q^{59} -0.851318 q^{60} +6.29919 q^{61} +8.35855 q^{62} -1.00000 q^{63} +8.89309 q^{64} +2.30384 q^{65} +2.91832 q^{66} -0.516299 q^{67} +0.898969 q^{69} -2.24727 q^{70} +7.25266 q^{71} -3.05493 q^{72} -13.3401 q^{73} +1.47650 q^{74} -1.70185 q^{75} +1.60496 q^{76} -2.35837 q^{77} +1.56978 q^{78} +10.7677 q^{79} -5.16262 q^{80} +1.00000 q^{81} +8.77616 q^{82} -7.22647 q^{83} +0.468767 q^{84} +6.45709 q^{86} +0.0242602 q^{87} -7.20466 q^{88} +10.2051 q^{89} +2.24727 q^{90} -1.26858 q^{91} -0.421407 q^{92} +6.75476 q^{93} +10.5278 q^{94} -6.21790 q^{95} +2.59218 q^{96} -0.205143 q^{97} +1.23743 q^{98} +2.35837 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+4q2+10q3+12q46q5+4q610q7+12q8+10q92q11+12q12+6q134q146q15+20q16+4q18+6q1916q2010q21+2q99+O(q100) 10 q + 4 q^{2} + 10 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} - 10 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{11} + 12 q^{12} + 6 q^{13} - 4 q^{14} - 6 q^{15} + 20 q^{16} + 4 q^{18} + 6 q^{19} - 16 q^{20} - 10 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.23743 0.874995 0.437498 0.899220i 0.355865π-0.355865\pi
0.437498 + 0.899220i 0.355865π0.355865\pi
33 1.00000 0.577350
44 −0.468767 −0.234383
55 1.81608 0.812176 0.406088 0.913834i 0.366893π-0.366893\pi
0.406088 + 0.913834i 0.366893π0.366893\pi
66 1.23743 0.505179
77 −1.00000 −0.377964
88 −3.05493 −1.08008
99 1.00000 0.333333
1010 2.24727 0.710650
1111 2.35837 0.711076 0.355538 0.934662i 0.384298π-0.384298\pi
0.355538 + 0.934662i 0.384298π0.384298\pi
1212 −0.468767 −0.135321
1313 1.26858 0.351840 0.175920 0.984404i 0.443710π-0.443710\pi
0.175920 + 0.984404i 0.443710π0.443710\pi
1414 −1.23743 −0.330717
1515 1.81608 0.468910
1616 −2.84272 −0.710681
1717 0 0
1818 1.23743 0.291665
1919 −3.42380 −0.785474 −0.392737 0.919651i 0.628472π-0.628472\pi
−0.392737 + 0.919651i 0.628472π0.628472\pi
2020 −0.851318 −0.190361
2121 −1.00000 −0.218218
2222 2.91832 0.622188
2323 0.898969 0.187448 0.0937240 0.995598i 0.470123π-0.470123\pi
0.0937240 + 0.995598i 0.470123π0.470123\pi
2424 −3.05493 −0.623584
2525 −1.70185 −0.340370
2626 1.56978 0.307858
2727 1.00000 0.192450
2828 0.468767 0.0885886
2929 0.0242602 0.00450501 0.00225251 0.999997i 0.499283π-0.499283\pi
0.00225251 + 0.999997i 0.499283π0.499283\pi
3030 2.24727 0.410294
3131 6.75476 1.21319 0.606596 0.795011i 0.292535π-0.292535\pi
0.606596 + 0.795011i 0.292535π0.292535\pi
3232 2.59218 0.458237
3333 2.35837 0.410540
3434 0 0
3535 −1.81608 −0.306974
3636 −0.468767 −0.0781278
3737 1.19320 0.196161 0.0980806 0.995178i 0.468730π-0.468730\pi
0.0980806 + 0.995178i 0.468730π0.468730\pi
3838 −4.23672 −0.687286
3939 1.26858 0.203135
4040 −5.54799 −0.877215
4141 7.09225 1.10762 0.553811 0.832642i 0.313173π-0.313173\pi
0.553811 + 0.832642i 0.313173π0.313173\pi
4242 −1.23743 −0.190940
4343 5.21815 0.795760 0.397880 0.917437i 0.369746π-0.369746\pi
0.397880 + 0.917437i 0.369746π0.369746\pi
4444 −1.10553 −0.166664
4545 1.81608 0.270725
4646 1.11241 0.164016
4747 8.50780 1.24099 0.620495 0.784210i 0.286932π-0.286932\pi
0.620495 + 0.784210i 0.286932π0.286932\pi
4848 −2.84272 −0.410312
4949 1.00000 0.142857
5050 −2.10592 −0.297822
5151 0 0
5252 −0.594667 −0.0824654
5353 −1.07752 −0.148008 −0.0740042 0.997258i 0.523578π-0.523578\pi
−0.0740042 + 0.997258i 0.523578π0.523578\pi
5454 1.23743 0.168393
5555 4.28300 0.577519
5656 3.05493 0.408232
5757 −3.42380 −0.453494
5858 0.0300204 0.00394187
5959 5.43516 0.707597 0.353799 0.935322i 0.384890π-0.384890\pi
0.353799 + 0.935322i 0.384890π0.384890\pi
6060 −0.851318 −0.109905
6161 6.29919 0.806528 0.403264 0.915084i 0.367876π-0.367876\pi
0.403264 + 0.915084i 0.367876π0.367876\pi
6262 8.35855 1.06154
6363 −1.00000 −0.125988
6464 8.89309 1.11164
6565 2.30384 0.285756
6666 2.91832 0.359221
6767 −0.516299 −0.0630759 −0.0315380 0.999503i 0.510041π-0.510041\pi
−0.0315380 + 0.999503i 0.510041π0.510041\pi
6868 0 0
6969 0.898969 0.108223
7070 −2.24727 −0.268601
7171 7.25266 0.860733 0.430366 0.902654i 0.358384π-0.358384\pi
0.430366 + 0.902654i 0.358384π0.358384\pi
7272 −3.05493 −0.360027
7373 −13.3401 −1.56134 −0.780668 0.624946i 0.785121π-0.785121\pi
−0.780668 + 0.624946i 0.785121π0.785121\pi
7474 1.47650 0.171640
7575 −1.70185 −0.196513
7676 1.60496 0.184102
7777 −2.35837 −0.268762
7878 1.56978 0.177742
7979 10.7677 1.21146 0.605728 0.795672i 0.292882π-0.292882\pi
0.605728 + 0.795672i 0.292882π0.292882\pi
8080 −5.16262 −0.577198
8181 1.00000 0.111111
8282 8.77616 0.969165
8383 −7.22647 −0.793208 −0.396604 0.917990i 0.629811π-0.629811\pi
−0.396604 + 0.917990i 0.629811π0.629811\pi
8484 0.468767 0.0511466
8585 0 0
8686 6.45709 0.696286
8787 0.0242602 0.00260097
8888 −7.20466 −0.768019
8989 10.2051 1.08174 0.540872 0.841105i 0.318094π-0.318094\pi
0.540872 + 0.841105i 0.318094π0.318094\pi
9090 2.24727 0.236883
9191 −1.26858 −0.132983
9292 −0.421407 −0.0439347
9393 6.75476 0.700436
9494 10.5278 1.08586
9595 −6.21790 −0.637943
9696 2.59218 0.264563
9797 −0.205143 −0.0208291 −0.0104145 0.999946i 0.503315π-0.503315\pi
−0.0104145 + 0.999946i 0.503315π0.503315\pi
9898 1.23743 0.124999
9999 2.35837 0.237025
100100 0.797770 0.0797770
101101 10.0435 0.999361 0.499680 0.866210i 0.333451π-0.333451\pi
0.499680 + 0.866210i 0.333451π0.333451\pi
102102 0 0
103103 0.982712 0.0968295 0.0484147 0.998827i 0.484583π-0.484583\pi
0.0484147 + 0.998827i 0.484583π0.484583\pi
104104 −3.87541 −0.380015
105105 −1.81608 −0.177231
106106 −1.33335 −0.129507
107107 −13.5270 −1.30771 −0.653854 0.756621i 0.726849π-0.726849\pi
−0.653854 + 0.756621i 0.726849π0.726849\pi
108108 −0.468767 −0.0451071
109109 9.56837 0.916483 0.458242 0.888828i 0.348479π-0.348479\pi
0.458242 + 0.888828i 0.348479π0.348479\pi
110110 5.29991 0.505327
111111 1.19320 0.113254
112112 2.84272 0.268612
113113 11.4380 1.07600 0.537999 0.842946i 0.319181π-0.319181\pi
0.537999 + 0.842946i 0.319181π0.319181\pi
114114 −4.23672 −0.396805
115115 1.63260 0.152241
116116 −0.0113724 −0.00105590
117117 1.26858 0.117280
118118 6.72563 0.619144
119119 0 0
120120 −5.54799 −0.506460
121121 −5.43807 −0.494370
122122 7.79480 0.705708
123123 7.09225 0.639486
124124 −3.16641 −0.284352
125125 −12.1711 −1.08862
126126 −1.23743 −0.110239
127127 −17.4380 −1.54737 −0.773685 0.633570i 0.781589π-0.781589\pi
−0.773685 + 0.633570i 0.781589π0.781589\pi
128128 5.82022 0.514439
129129 5.21815 0.459432
130130 2.85084 0.250035
131131 −2.30473 −0.201365 −0.100682 0.994919i 0.532103π-0.532103\pi
−0.100682 + 0.994919i 0.532103π0.532103\pi
132132 −1.10553 −0.0962238
133133 3.42380 0.296881
134134 −0.638883 −0.0551911
135135 1.81608 0.156303
136136 0 0
137137 −0.591167 −0.0505068 −0.0252534 0.999681i 0.508039π-0.508039\pi
−0.0252534 + 0.999681i 0.508039π0.508039\pi
138138 1.11241 0.0946948
139139 −5.78876 −0.490996 −0.245498 0.969397i 0.578952π-0.578952\pi
−0.245498 + 0.969397i 0.578952π0.578952\pi
140140 0.851318 0.0719495
141141 8.50780 0.716486
142142 8.97467 0.753137
143143 2.99178 0.250185
144144 −2.84272 −0.236894
145145 0.0440586 0.00365886
146146 −16.5074 −1.36616
147147 1.00000 0.0824786
148148 −0.559333 −0.0459769
149149 20.6031 1.68787 0.843936 0.536444i 0.180233π-0.180233\pi
0.843936 + 0.536444i 0.180233π0.180233\pi
150150 −2.10592 −0.171948
151151 14.8292 1.20679 0.603393 0.797444i 0.293815π-0.293815\pi
0.603393 + 0.797444i 0.293815π0.293815\pi
152152 10.4595 0.848374
153153 0 0
154154 −2.91832 −0.235165
155155 12.2672 0.985325
156156 −0.594667 −0.0476114
157157 3.79172 0.302612 0.151306 0.988487i 0.451652π-0.451652\pi
0.151306 + 0.988487i 0.451652π0.451652\pi
158158 13.3242 1.06002
159159 −1.07752 −0.0854527
160160 4.70761 0.372169
161161 −0.898969 −0.0708487
162162 1.23743 0.0972217
163163 −21.6449 −1.69536 −0.847679 0.530509i 0.822001π-0.822001\pi
−0.847679 + 0.530509i 0.822001π0.822001\pi
164164 −3.32461 −0.259608
165165 4.28300 0.333431
166166 −8.94225 −0.694053
167167 −25.4646 −1.97051 −0.985256 0.171089i 0.945272π-0.945272\pi
−0.985256 + 0.171089i 0.945272π0.945272\pi
168168 3.05493 0.235693
169169 −11.3907 −0.876209
170170 0 0
171171 −3.42380 −0.261825
172172 −2.44609 −0.186513
173173 −2.98246 −0.226752 −0.113376 0.993552i 0.536167π-0.536167\pi
−0.113376 + 0.993552i 0.536167π0.536167\pi
174174 0.0300204 0.00227584
175175 1.70185 0.128648
176176 −6.70421 −0.505349
177177 5.43516 0.408532
178178 12.6282 0.946520
179179 7.72272 0.577223 0.288612 0.957446i 0.406806π-0.406806\pi
0.288612 + 0.957446i 0.406806π0.406806\pi
180180 −0.851318 −0.0634535
181181 21.8503 1.62412 0.812058 0.583576i 0.198347π-0.198347\pi
0.812058 + 0.583576i 0.198347π0.198347\pi
182182 −1.56978 −0.116360
183183 6.29919 0.465649
184184 −2.74629 −0.202459
185185 2.16695 0.159317
186186 8.35855 0.612878
187187 0 0
188188 −3.98817 −0.290867
189189 −1.00000 −0.0727393
190190 −7.69422 −0.558197
191191 22.7283 1.64456 0.822282 0.569081i 0.192701π-0.192701\pi
0.822282 + 0.569081i 0.192701π0.192701\pi
192192 8.89309 0.641803
193193 −23.4939 −1.69113 −0.845565 0.533872i 0.820736π-0.820736\pi
−0.845565 + 0.533872i 0.820736π0.820736\pi
194194 −0.253850 −0.0182253
195195 2.30384 0.164981
196196 −0.468767 −0.0334833
197197 −6.79070 −0.483817 −0.241909 0.970299i 0.577773π-0.577773\pi
−0.241909 + 0.970299i 0.577773π0.577773\pi
198198 2.91832 0.207396
199199 −5.04115 −0.357357 −0.178679 0.983907i 0.557182π-0.557182\pi
−0.178679 + 0.983907i 0.557182π0.557182\pi
200200 5.19902 0.367627
201201 −0.516299 −0.0364169
202202 12.4281 0.874436
203203 −0.0242602 −0.00170273
204204 0 0
205205 12.8801 0.899585
206206 1.21604 0.0847253
207207 0.898969 0.0624827
208208 −3.60622 −0.250046
209209 −8.07460 −0.558532
210210 −2.24727 −0.155077
211211 −7.87431 −0.542090 −0.271045 0.962567i 0.587369π-0.587369\pi
−0.271045 + 0.962567i 0.587369π0.587369\pi
212212 0.505104 0.0346907
213213 7.25266 0.496944
214214 −16.7388 −1.14424
215215 9.47658 0.646297
216216 −3.05493 −0.207861
217217 −6.75476 −0.458543
218218 11.8402 0.801918
219219 −13.3401 −0.901438
220220 −2.00773 −0.135361
221221 0 0
222222 1.47650 0.0990964
223223 20.5049 1.37311 0.686556 0.727077i 0.259122π-0.259122\pi
0.686556 + 0.727077i 0.259122π0.259122\pi
224224 −2.59218 −0.173197
225225 −1.70185 −0.113457
226226 14.1537 0.941492
227227 8.83865 0.586642 0.293321 0.956014i 0.405240π-0.405240\pi
0.293321 + 0.956014i 0.405240π0.405240\pi
228228 1.60496 0.106291
229229 −6.26192 −0.413799 −0.206900 0.978362i 0.566337π-0.566337\pi
−0.206900 + 0.978362i 0.566337π0.566337\pi
230230 2.02023 0.133210
231231 −2.35837 −0.155170
232232 −0.0741132 −0.00486577
233233 −22.7169 −1.48823 −0.744116 0.668051i 0.767129π-0.767129\pi
−0.744116 + 0.668051i 0.767129π0.767129\pi
234234 1.56978 0.102619
235235 15.4509 1.00790
236236 −2.54782 −0.165849
237237 10.7677 0.699434
238238 0 0
239239 −5.42712 −0.351052 −0.175526 0.984475i 0.556163π-0.556163\pi
−0.175526 + 0.984475i 0.556163π0.556163\pi
240240 −5.16262 −0.333246
241241 26.9675 1.73713 0.868565 0.495575i 0.165043π-0.165043\pi
0.868565 + 0.495575i 0.165043π0.165043\pi
242242 −6.72924 −0.432572
243243 1.00000 0.0641500
244244 −2.95285 −0.189037
245245 1.81608 0.116025
246246 8.77616 0.559547
247247 −4.34336 −0.276361
248248 −20.6353 −1.31034
249249 −7.22647 −0.457959
250250 −15.0609 −0.952534
251251 11.3447 0.716074 0.358037 0.933707i 0.383446π-0.383446\pi
0.358037 + 0.933707i 0.383446π0.383446\pi
252252 0.468767 0.0295295
253253 2.12011 0.133290
254254 −21.5783 −1.35394
255255 0 0
256256 −10.5841 −0.661504
257257 26.4860 1.65215 0.826077 0.563557i 0.190568π-0.190568\pi
0.826077 + 0.563557i 0.190568π0.190568\pi
258258 6.45709 0.402001
259259 −1.19320 −0.0741419
260260 −1.07996 −0.0669765
261261 0.0242602 0.00150167
262262 −2.85194 −0.176193
263263 0.781732 0.0482036 0.0241018 0.999710i 0.492327π-0.492327\pi
0.0241018 + 0.999710i 0.492327π0.492327\pi
264264 −7.20466 −0.443416
265265 −1.95686 −0.120209
266266 4.23672 0.259770
267267 10.2051 0.624545
268268 0.242024 0.0147839
269269 10.0993 0.615767 0.307884 0.951424i 0.400379π-0.400379\pi
0.307884 + 0.951424i 0.400379π0.400379\pi
270270 2.24727 0.136765
271271 16.8897 1.02597 0.512987 0.858397i 0.328539π-0.328539\pi
0.512987 + 0.858397i 0.328539π0.328539\pi
272272 0 0
273273 −1.26858 −0.0767778
274274 −0.731527 −0.0441932
275275 −4.01360 −0.242029
276276 −0.421407 −0.0253657
277277 −4.31657 −0.259358 −0.129679 0.991556i 0.541395π-0.541395\pi
−0.129679 + 0.991556i 0.541395π0.541395\pi
278278 −7.16319 −0.429620
279279 6.75476 0.404397
280280 5.54799 0.331556
281281 14.7023 0.877067 0.438534 0.898715i 0.355498π-0.355498\pi
0.438534 + 0.898715i 0.355498π0.355498\pi
282282 10.5278 0.626922
283283 −10.3543 −0.615499 −0.307750 0.951467i 0.599576π-0.599576\pi
−0.307750 + 0.951467i 0.599576π0.599576\pi
284284 −3.39981 −0.201741
285285 −6.21790 −0.368317
286286 3.70212 0.218911
287287 −7.09225 −0.418642
288288 2.59218 0.152746
289289 0 0
290290 0.0545194 0.00320149
291291 −0.205143 −0.0120257
292292 6.25338 0.365951
293293 10.9848 0.641741 0.320871 0.947123i 0.396025π-0.396025\pi
0.320871 + 0.947123i 0.396025π0.396025\pi
294294 1.23743 0.0721684
295295 9.87069 0.574694
296296 −3.64514 −0.211870
297297 2.35837 0.136847
298298 25.4949 1.47688
299299 1.14041 0.0659517
300300 0.797770 0.0460593
301301 −5.21815 −0.300769
302302 18.3501 1.05593
303303 10.0435 0.576981
304304 9.73293 0.558222
305305 11.4398 0.655043
306306 0 0
307307 13.8104 0.788203 0.394102 0.919067i 0.371056π-0.371056\pi
0.394102 + 0.919067i 0.371056π0.371056\pi
308308 1.10553 0.0629932
309309 0.982712 0.0559045
310310 15.1798 0.862155
311311 24.2650 1.37594 0.687970 0.725739i 0.258502π-0.258502\pi
0.687970 + 0.725739i 0.258502π0.258502\pi
312312 −3.87541 −0.219402
313313 −16.0803 −0.908914 −0.454457 0.890769i 0.650167π-0.650167\pi
−0.454457 + 0.890769i 0.650167π0.650167\pi
314314 4.69199 0.264784
315315 −1.81608 −0.102325
316316 −5.04752 −0.283945
317317 4.29099 0.241006 0.120503 0.992713i 0.461549π-0.461549\pi
0.120503 + 0.992713i 0.461549π0.461549\pi
318318 −1.33335 −0.0747707
319319 0.0572147 0.00320341
320320 16.1506 0.902844
321321 −13.5270 −0.755006
322322 −1.11241 −0.0619923
323323 0 0
324324 −0.468767 −0.0260426
325325 −2.15893 −0.119756
326326 −26.7840 −1.48343
327327 9.56837 0.529132
328328 −21.6663 −1.19632
329329 −8.50780 −0.469050
330330 5.29991 0.291750
331331 −19.3135 −1.06156 −0.530782 0.847508i 0.678102π-0.678102\pi
−0.530782 + 0.847508i 0.678102π0.678102\pi
332332 3.38753 0.185915
333333 1.19320 0.0653870
334334 −31.5107 −1.72419
335335 −0.937640 −0.0512288
336336 2.84272 0.155083
337337 19.6082 1.06813 0.534063 0.845444i 0.320664π-0.320664\pi
0.534063 + 0.845444i 0.320664π0.320664\pi
338338 −14.0952 −0.766678
339339 11.4380 0.621227
340340 0 0
341341 15.9303 0.862672
342342 −4.23672 −0.229095
343343 −1.00000 −0.0539949
344344 −15.9411 −0.859484
345345 1.63260 0.0878963
346346 −3.69059 −0.198407
347347 2.24091 0.120298 0.0601491 0.998189i 0.480842π-0.480842\pi
0.0601491 + 0.998189i 0.480842π0.480842\pi
348348 −0.0113724 −0.000609624 0
349349 22.3354 1.19559 0.597794 0.801650i 0.296044π-0.296044\pi
0.597794 + 0.801650i 0.296044π0.296044\pi
350350 2.10592 0.112566
351351 1.26858 0.0677116
352352 6.11333 0.325841
353353 7.98083 0.424777 0.212388 0.977185i 0.431876π-0.431876\pi
0.212388 + 0.977185i 0.431876π0.431876\pi
354354 6.72563 0.357463
355355 13.1714 0.699067
356356 −4.78383 −0.253543
357357 0 0
358358 9.55633 0.505068
359359 −21.3945 −1.12916 −0.564579 0.825379i 0.690962π-0.690962\pi
−0.564579 + 0.825379i 0.690962π0.690962\pi
360360 −5.54799 −0.292405
361361 −7.27758 −0.383031
362362 27.0382 1.42109
363363 −5.43807 −0.285425
364364 0.594667 0.0311690
365365 −24.2266 −1.26808
366366 7.79480 0.407441
367367 1.10513 0.0576875 0.0288437 0.999584i 0.490817π-0.490817\pi
0.0288437 + 0.999584i 0.490817π0.490817\pi
368368 −2.55552 −0.133216
369369 7.09225 0.369208
370370 2.68145 0.139402
371371 1.07752 0.0559419
372372 −3.16641 −0.164171
373373 −26.1722 −1.35514 −0.677572 0.735457i 0.736968π-0.736968\pi
−0.677572 + 0.735457i 0.736968π0.736968\pi
374374 0 0
375375 −12.1711 −0.628513
376376 −25.9907 −1.34037
377377 0.0307760 0.00158504
378378 −1.23743 −0.0636465
379379 27.7591 1.42589 0.712944 0.701221i 0.247361π-0.247361\pi
0.712944 + 0.701221i 0.247361π0.247361\pi
380380 2.91475 0.149523
381381 −17.4380 −0.893375
382382 28.1247 1.43899
383383 −17.8180 −0.910459 −0.455230 0.890374i 0.650443π-0.650443\pi
−0.455230 + 0.890374i 0.650443π0.650443\pi
384384 5.82022 0.297012
385385 −4.28300 −0.218282
386386 −29.0721 −1.47973
387387 5.21815 0.265253
388388 0.0961640 0.00488199
389389 −22.5784 −1.14477 −0.572386 0.819984i 0.693982π-0.693982\pi
−0.572386 + 0.819984i 0.693982π0.693982\pi
390390 2.85084 0.144358
391391 0 0
392392 −3.05493 −0.154297
393393 −2.30473 −0.116258
394394 −8.40302 −0.423338
395395 19.5549 0.983915
396396 −1.10553 −0.0555548
397397 −36.0710 −1.81035 −0.905177 0.425036i 0.860262π-0.860262\pi
−0.905177 + 0.425036i 0.860262π0.860262\pi
398398 −6.23807 −0.312686
399399 3.42380 0.171404
400400 4.83789 0.241894
401401 2.71025 0.135343 0.0676716 0.997708i 0.478443π-0.478443\pi
0.0676716 + 0.997708i 0.478443π0.478443\pi
402402 −0.638883 −0.0318646
403403 8.56894 0.426849
404404 −4.70804 −0.234234
405405 1.81608 0.0902418
406406 −0.0300204 −0.00148988
407407 2.81401 0.139486
408408 0 0
409409 −32.7262 −1.61821 −0.809103 0.587667i 0.800047π-0.800047\pi
−0.809103 + 0.587667i 0.800047π0.800047\pi
410410 15.9382 0.787132
411411 −0.591167 −0.0291601
412412 −0.460662 −0.0226952
413413 −5.43516 −0.267447
414414 1.11241 0.0546721
415415 −13.1239 −0.644225
416416 3.28838 0.161226
417417 −5.78876 −0.283477
418418 −9.99176 −0.488713
419419 −0.851837 −0.0416150 −0.0208075 0.999784i 0.506624π-0.506624\pi
−0.0208075 + 0.999784i 0.506624π0.506624\pi
420420 0.851318 0.0415401
421421 −1.46190 −0.0712489 −0.0356244 0.999365i 0.511342π-0.511342\pi
−0.0356244 + 0.999365i 0.511342π0.511342\pi
422422 −9.74391 −0.474326
423423 8.50780 0.413663
424424 3.29174 0.159861
425425 0 0
426426 8.97467 0.434824
427427 −6.29919 −0.304839
428428 6.34102 0.306505
429429 2.99178 0.144444
430430 11.7266 0.565507
431431 21.9280 1.05624 0.528118 0.849171i 0.322898π-0.322898\pi
0.528118 + 0.849171i 0.322898π0.322898\pi
432432 −2.84272 −0.136771
433433 −25.4725 −1.22413 −0.612065 0.790807i 0.709661π-0.709661\pi
−0.612065 + 0.790807i 0.709661π0.709661\pi
434434 −8.35855 −0.401223
435435 0.0440586 0.00211245
436436 −4.48533 −0.214808
437437 −3.07789 −0.147236
438438 −16.5074 −0.788754
439439 −37.2868 −1.77960 −0.889802 0.456348i 0.849157π-0.849157\pi
−0.889802 + 0.456348i 0.849157π0.849157\pi
440440 −13.0842 −0.623767
441441 1.00000 0.0476190
442442 0 0
443443 40.4670 1.92264 0.961321 0.275429i 0.0888199π-0.0888199\pi
0.961321 + 0.275429i 0.0888199π0.0888199\pi
444444 −0.559333 −0.0265448
445445 18.5334 0.878566
446446 25.3734 1.20147
447447 20.6031 0.974493
448448 −8.89309 −0.420159
449449 −9.51925 −0.449241 −0.224621 0.974446i 0.572114π-0.572114\pi
−0.224621 + 0.974446i 0.572114π0.572114\pi
450450 −2.10592 −0.0992740
451451 16.7262 0.787604
452452 −5.36176 −0.252196
453453 14.8292 0.696738
454454 10.9372 0.513309
455455 −2.30384 −0.108006
456456 10.4595 0.489809
457457 8.05510 0.376802 0.188401 0.982092i 0.439670π-0.439670\pi
0.188401 + 0.982092i 0.439670π0.439670\pi
458458 −7.74869 −0.362073
459459 0 0
460460 −0.765309 −0.0356827
461461 −33.2395 −1.54812 −0.774059 0.633113i 0.781777π-0.781777\pi
−0.774059 + 0.633113i 0.781777π0.781777\pi
462462 −2.91832 −0.135773
463463 −18.4862 −0.859125 −0.429563 0.903037i 0.641332π-0.641332\pi
−0.429563 + 0.903037i 0.641332π0.641332\pi
464464 −0.0689652 −0.00320163
465465 12.2672 0.568878
466466 −28.1105 −1.30220
467467 7.79833 0.360864 0.180432 0.983587i 0.442250π-0.442250\pi
0.180432 + 0.983587i 0.442250π0.442250\pi
468468 −0.594667 −0.0274885
469469 0.516299 0.0238405
470470 19.1194 0.881910
471471 3.79172 0.174713
472472 −16.6040 −0.764262
473473 12.3063 0.565846
474474 13.3242 0.612001
475475 5.82680 0.267352
476476 0 0
477477 −1.07752 −0.0493362
478478 −6.71569 −0.307168
479479 −18.1723 −0.830315 −0.415158 0.909750i 0.636274π-0.636274\pi
−0.415158 + 0.909750i 0.636274π0.636274\pi
480480 4.70761 0.214872
481481 1.51367 0.0690173
482482 33.3704 1.51998
483483 −0.898969 −0.0409045
484484 2.54919 0.115872
485485 −0.372555 −0.0169169
486486 1.23743 0.0561310
487487 −4.65708 −0.211033 −0.105516 0.994418i 0.533650π-0.533650\pi
−0.105516 + 0.994418i 0.533650π0.533650\pi
488488 −19.2436 −0.871115
489489 −21.6449 −0.978816
490490 2.24727 0.101521
491491 −41.8043 −1.88660 −0.943300 0.331942i 0.892296π-0.892296\pi
−0.943300 + 0.331942i 0.892296π0.892296\pi
492492 −3.32461 −0.149885
493493 0 0
494494 −5.37460 −0.241815
495495 4.28300 0.192506
496496 −19.2019 −0.862192
497497 −7.25266 −0.325326
498498 −8.94225 −0.400712
499499 −10.5845 −0.473828 −0.236914 0.971531i 0.576136π-0.576136\pi
−0.236914 + 0.971531i 0.576136π0.576136\pi
500500 5.70541 0.255154
501501 −25.4646 −1.13768
502502 14.0383 0.626561
503503 −27.3831 −1.22095 −0.610476 0.792035i 0.709022π-0.709022\pi
−0.610476 + 0.792035i 0.709022π0.709022\pi
504504 3.05493 0.136077
505505 18.2397 0.811657
506506 2.62348 0.116628
507507 −11.3907 −0.505879
508508 8.17435 0.362678
509509 −9.14311 −0.405261 −0.202631 0.979255i 0.564949π-0.564949\pi
−0.202631 + 0.979255i 0.564949π0.564949\pi
510510 0 0
511511 13.3401 0.590130
512512 −24.7375 −1.09325
513513 −3.42380 −0.151165
514514 32.7746 1.44563
515515 1.78468 0.0786426
516516 −2.44609 −0.107683
517517 20.0646 0.882439
518518 −1.47650 −0.0648738
519519 −2.98246 −0.130916
520520 −7.03806 −0.308639
521521 −17.6233 −0.772089 −0.386044 0.922480i 0.626159π-0.626159\pi
−0.386044 + 0.922480i 0.626159π0.626159\pi
522522 0.0300204 0.00131396
523523 −3.52171 −0.153994 −0.0769969 0.997031i 0.524533π-0.524533\pi
−0.0769969 + 0.997031i 0.524533π0.524533\pi
524524 1.08038 0.0471966
525525 1.70185 0.0742748
526526 0.967338 0.0421779
527527 0 0
528528 −6.70421 −0.291763
529529 −22.1919 −0.964863
530530 −2.42148 −0.105182
531531 5.43516 0.235866
532532 −1.60496 −0.0695840
533533 8.99706 0.389706
534534 12.6282 0.546474
535535 −24.5662 −1.06209
536536 1.57725 0.0681270
537537 7.72272 0.333260
538538 12.4972 0.538793
539539 2.35837 0.101582
540540 −0.851318 −0.0366349
541541 −34.7561 −1.49428 −0.747140 0.664667i 0.768574π-0.768574\pi
−0.747140 + 0.664667i 0.768574π0.768574\pi
542542 20.8998 0.897722
543543 21.8503 0.937684
544544 0 0
545545 17.3769 0.744346
546546 −1.56978 −0.0671802
547547 32.8195 1.40326 0.701630 0.712542i 0.252456π-0.252456\pi
0.701630 + 0.712542i 0.252456π0.252456\pi
548548 0.277119 0.0118379
549549 6.29919 0.268843
550550 −4.96655 −0.211774
551551 −0.0830623 −0.00353857
552552 −2.74629 −0.116890
553553 −10.7677 −0.457887
554554 −5.34146 −0.226937
555555 2.16695 0.0919819
556556 2.71358 0.115081
557557 −33.5274 −1.42060 −0.710300 0.703899i 0.751441π-0.751441\pi
−0.710300 + 0.703899i 0.751441π0.751441\pi
558558 8.35855 0.353846
559559 6.61962 0.279980
560560 5.16262 0.218160
561561 0 0
562562 18.1931 0.767430
563563 39.1139 1.64845 0.824226 0.566260i 0.191610π-0.191610\pi
0.824226 + 0.566260i 0.191610π0.191610\pi
564564 −3.98817 −0.167932
565565 20.7723 0.873899
566566 −12.8127 −0.538559
567567 −1.00000 −0.0419961
568568 −22.1564 −0.929660
569569 −18.6068 −0.780037 −0.390018 0.920807i 0.627531π-0.627531\pi
−0.390018 + 0.920807i 0.627531π0.627531\pi
570570 −7.69422 −0.322275
571571 −2.00086 −0.0837335 −0.0418667 0.999123i 0.513330π-0.513330\pi
−0.0418667 + 0.999123i 0.513330π0.513330\pi
572572 −1.40245 −0.0586392
573573 22.7283 0.949489
574574 −8.77616 −0.366310
575575 −1.52991 −0.0638017
576576 8.89309 0.370545
577577 10.9555 0.456083 0.228042 0.973651i 0.426768π-0.426768\pi
0.228042 + 0.973651i 0.426768π0.426768\pi
578578 0 0
579579 −23.4939 −0.976375
580580 −0.0206532 −0.000857577 0
581581 7.22647 0.299805
582582 −0.253850 −0.0105224
583583 −2.54119 −0.105245
584584 40.7529 1.68637
585585 2.30384 0.0952520
586586 13.5930 0.561520
587587 4.27209 0.176328 0.0881640 0.996106i 0.471900π-0.471900\pi
0.0881640 + 0.996106i 0.471900π0.471900\pi
588588 −0.468767 −0.0193316
589589 −23.1270 −0.952930
590590 12.2143 0.502854
591591 −6.79070 −0.279332
592592 −3.39194 −0.139408
593593 −19.2572 −0.790799 −0.395399 0.918509i 0.629394π-0.629394\pi
−0.395399 + 0.918509i 0.629394π0.629394\pi
594594 2.91832 0.119740
595595 0 0
596596 −9.65805 −0.395609
597597 −5.04115 −0.206320
598598 1.41118 0.0577075
599599 −4.47849 −0.182986 −0.0914931 0.995806i 0.529164π-0.529164\pi
−0.0914931 + 0.995806i 0.529164π0.529164\pi
600600 5.19902 0.212249
601601 −34.5940 −1.41112 −0.705559 0.708651i 0.749304π-0.749304\pi
−0.705559 + 0.708651i 0.749304π0.749304\pi
602602 −6.45709 −0.263171
603603 −0.516299 −0.0210253
604604 −6.95145 −0.282851
605605 −9.87598 −0.401516
606606 12.4281 0.504856
607607 −2.65970 −0.107954 −0.0539770 0.998542i 0.517190π-0.517190\pi
−0.0539770 + 0.998542i 0.517190π0.517190\pi
608608 −8.87511 −0.359933
609609 −0.0242602 −0.000983074 0
610610 14.1560 0.573160
611611 10.7928 0.436630
612612 0 0
613613 −8.81178 −0.355905 −0.177952 0.984039i 0.556947π-0.556947\pi
−0.177952 + 0.984039i 0.556947π0.556947\pi
614614 17.0895 0.689674
615615 12.8801 0.519375
616616 7.20466 0.290284
617617 24.8265 0.999478 0.499739 0.866176i 0.333429π-0.333429\pi
0.499739 + 0.866176i 0.333429π0.333429\pi
618618 1.21604 0.0489162
619619 18.8851 0.759055 0.379527 0.925181i 0.376087π-0.376087\pi
0.379527 + 0.925181i 0.376087π0.376087\pi
620620 −5.75045 −0.230944
621621 0.898969 0.0360744
622622 30.0262 1.20394
623623 −10.2051 −0.408861
624624 −3.60622 −0.144364
625625 −13.5945 −0.543778
626626 −19.8983 −0.795295
627627 −8.07460 −0.322469
628628 −1.77743 −0.0709273
629629 0 0
630630 −2.24727 −0.0895335
631631 −33.5614 −1.33606 −0.668030 0.744135i 0.732862π-0.732862\pi
−0.668030 + 0.744135i 0.732862π0.732862\pi
632632 −32.8944 −1.30847
633633 −7.87431 −0.312976
634634 5.30980 0.210879
635635 −31.6688 −1.25674
636636 0.505104 0.0200287
637637 1.26858 0.0502629
638638 0.0707992 0.00280297
639639 7.25266 0.286911
640640 10.5700 0.417815
641641 −18.0566 −0.713191 −0.356596 0.934259i 0.616063π-0.616063\pi
−0.356596 + 0.934259i 0.616063π0.616063\pi
642642 −16.7388 −0.660626
643643 −26.5565 −1.04729 −0.523643 0.851938i 0.675428π-0.675428\pi
−0.523643 + 0.851938i 0.675428π0.675428\pi
644644 0.421407 0.0166058
645645 9.47658 0.373140
646646 0 0
647647 −12.7877 −0.502735 −0.251367 0.967892i 0.580880π-0.580880\pi
−0.251367 + 0.967892i 0.580880π0.580880\pi
648648 −3.05493 −0.120009
649649 12.8181 0.503156
650650 −2.67152 −0.104786
651651 −6.75476 −0.264740
652652 10.1464 0.397364
653653 0.282151 0.0110414 0.00552070 0.999985i 0.498243π-0.498243\pi
0.00552070 + 0.999985i 0.498243π0.498243\pi
654654 11.8402 0.462988
655655 −4.18557 −0.163544
656656 −20.1613 −0.787167
657657 −13.3401 −0.520445
658658 −10.5278 −0.410417
659659 38.5587 1.50203 0.751017 0.660283i 0.229564π-0.229564\pi
0.751017 + 0.660283i 0.229564π0.229564\pi
660660 −2.00773 −0.0781507
661661 19.9752 0.776944 0.388472 0.921461i 0.373003π-0.373003\pi
0.388472 + 0.921461i 0.373003π0.373003\pi
662662 −23.8991 −0.928863
663663 0 0
664664 22.0763 0.856728
665665 6.21790 0.241120
666666 1.47650 0.0572133
667667 0.0218092 0.000844456 0
668668 11.9370 0.461855
669669 20.5049 0.792766
670670 −1.16026 −0.0448249
671671 14.8558 0.573503
672672 −2.59218 −0.0999955
673673 42.3264 1.63156 0.815781 0.578360i 0.196307π-0.196307\pi
0.815781 + 0.578360i 0.196307π0.196307\pi
674674 24.2638 0.934606
675675 −1.70185 −0.0655042
676676 5.33959 0.205369
677677 −41.9506 −1.61229 −0.806146 0.591717i 0.798450π-0.798450\pi
−0.806146 + 0.591717i 0.798450π0.798450\pi
678678 14.1537 0.543571
679679 0.205143 0.00787265
680680 0 0
681681 8.83865 0.338698
682682 19.7126 0.754834
683683 18.6529 0.713734 0.356867 0.934155i 0.383845π-0.383845\pi
0.356867 + 0.934155i 0.383845π0.383845\pi
684684 1.60496 0.0613673
685685 −1.07361 −0.0410204
686686 −1.23743 −0.0472453
687687 −6.26192 −0.238907
688688 −14.8338 −0.565532
689689 −1.36691 −0.0520753
690690 2.02023 0.0769088
691691 −29.8746 −1.13648 −0.568242 0.822862i 0.692376π-0.692376\pi
−0.568242 + 0.822862i 0.692376π0.692376\pi
692692 1.39808 0.0531470
693693 −2.35837 −0.0895872
694694 2.77296 0.105260
695695 −10.5129 −0.398776
696696 −0.0741132 −0.00280926
697697 0 0
698698 27.6385 1.04613
699699 −22.7169 −0.859231
700700 −0.797770 −0.0301529
701701 29.6430 1.11960 0.559800 0.828628i 0.310878π-0.310878\pi
0.559800 + 0.828628i 0.310878π0.310878\pi
702702 1.56978 0.0592474
703703 −4.08529 −0.154079
704704 20.9732 0.790458
705705 15.4509 0.581913
706706 9.87572 0.371677
707707 −10.0435 −0.377723
708708 −2.54782 −0.0957530
709709 48.8404 1.83424 0.917120 0.398612i 0.130508π-0.130508\pi
0.917120 + 0.398612i 0.130508π0.130508\pi
710710 16.2987 0.611680
711711 10.7677 0.403818
712712 −31.1760 −1.16837
713713 6.07233 0.227410
714714 0 0
715715 5.43331 0.203194
716716 −3.62015 −0.135292
717717 −5.42712 −0.202680
718718 −26.4742 −0.988008
719719 −33.8010 −1.26056 −0.630282 0.776366i 0.717061π-0.717061\pi
−0.630282 + 0.776366i 0.717061π0.717061\pi
720720 −5.16262 −0.192399
721721 −0.982712 −0.0365981
722722 −9.00550 −0.335150
723723 26.9675 1.00293
724724 −10.2427 −0.380666
725725 −0.0412873 −0.00153337
726726 −6.72924 −0.249745
727727 12.4398 0.461367 0.230684 0.973029i 0.425904π-0.425904\pi
0.230684 + 0.973029i 0.425904π0.425904\pi
728728 3.87541 0.143632
729729 1.00000 0.0370370
730730 −29.9788 −1.10956
731731 0 0
732732 −2.95285 −0.109140
733733 13.2154 0.488123 0.244061 0.969760i 0.421520π-0.421520\pi
0.244061 + 0.969760i 0.421520π0.421520\pi
734734 1.36752 0.0504763
735735 1.81608 0.0669872
736736 2.33029 0.0858956
737737 −1.21762 −0.0448518
738738 8.77616 0.323055
739739 32.3074 1.18845 0.594223 0.804300i 0.297460π-0.297460\pi
0.594223 + 0.804300i 0.297460π0.297460\pi
740740 −1.01579 −0.0373413
741741 −4.34336 −0.159557
742742 1.33335 0.0489489
743743 45.9378 1.68529 0.842647 0.538466i 0.180996π-0.180996\pi
0.842647 + 0.538466i 0.180996π0.180996\pi
744744 −20.6353 −0.756527
745745 37.4169 1.37085
746746 −32.3862 −1.18574
747747 −7.22647 −0.264403
748748 0 0
749749 13.5270 0.494267
750750 −15.0609 −0.549946
751751 49.4009 1.80266 0.901332 0.433128i 0.142590π-0.142590\pi
0.901332 + 0.433128i 0.142590π0.142590\pi
752752 −24.1853 −0.881948
753753 11.3447 0.413425
754754 0.0380831 0.00138691
755755 26.9311 0.980123
756756 0.468767 0.0170489
757757 44.2730 1.60913 0.804564 0.593866i 0.202399π-0.202399\pi
0.804564 + 0.593866i 0.202399π0.202399\pi
758758 34.3499 1.24765
759759 2.12011 0.0769550
760760 18.9952 0.689029
761761 −5.71316 −0.207102 −0.103551 0.994624i 0.533021π-0.533021\pi
−0.103551 + 0.994624i 0.533021π0.533021\pi
762762 −21.5783 −0.781699
763763 −9.56837 −0.346398
764764 −10.6543 −0.385458
765765 0 0
766766 −22.0486 −0.796648
767767 6.89492 0.248961
768768 −10.5841 −0.381920
769769 −27.7810 −1.00181 −0.500904 0.865503i 0.666999π-0.666999\pi
−0.500904 + 0.865503i 0.666999π0.666999\pi
770770 −5.29991 −0.190996
771771 26.4860 0.953872
772772 11.0132 0.396373
773773 −14.0849 −0.506600 −0.253300 0.967388i 0.581516π-0.581516\pi
−0.253300 + 0.967388i 0.581516π0.581516\pi
774774 6.45709 0.232095
775775 −11.4956 −0.412934
776776 0.626695 0.0224971
777777 −1.19320 −0.0428059
778778 −27.9392 −1.00167
779779 −24.2824 −0.870009
780780 −1.07996 −0.0386689
781781 17.1045 0.612047
782782 0 0
783783 0.0242602 0.000866990 0
784784 −2.84272 −0.101526
785785 6.88607 0.245774
786786 −2.85194 −0.101725
787787 −17.4731 −0.622850 −0.311425 0.950271i 0.600806π-0.600806\pi
−0.311425 + 0.950271i 0.600806π0.600806\pi
788788 3.18325 0.113399
789789 0.781732 0.0278304
790790 24.1979 0.860921
791791 −11.4380 −0.406689
792792 −7.20466 −0.256006
793793 7.99101 0.283769
794794 −44.6354 −1.58405
795795 −1.95686 −0.0694027
796796 2.36312 0.0837586
797797 −16.4792 −0.583724 −0.291862 0.956460i 0.594275π-0.594275\pi
−0.291862 + 0.956460i 0.594275π0.594275\pi
798798 4.23672 0.149978
799799 0 0
800800 −4.41150 −0.155970
801801 10.2051 0.360581
802802 3.35374 0.118425
803803 −31.4608 −1.11023
804804 0.242024 0.00853551
805805 −1.63260 −0.0575416
806806 10.6035 0.373491
807807 10.0993 0.355513
808808 −30.6820 −1.07939
809809 −31.4247 −1.10483 −0.552417 0.833568i 0.686294π-0.686294\pi
−0.552417 + 0.833568i 0.686294π0.686294\pi
810810 2.24727 0.0789611
811811 21.9386 0.770367 0.385183 0.922840i 0.374138π-0.374138\pi
0.385183 + 0.922840i 0.374138π0.374138\pi
812812 0.0113724 0.000399093 0
813813 16.8897 0.592346
814814 3.48215 0.122049
815815 −39.3089 −1.37693
816816 0 0
817817 −17.8659 −0.625049
818818 −40.4964 −1.41592
819819 −1.26858 −0.0443277
820820 −6.03776 −0.210848
821821 −21.5124 −0.750789 −0.375395 0.926865i 0.622493π-0.622493\pi
−0.375395 + 0.926865i 0.622493π0.622493\pi
822822 −0.731527 −0.0255149
823823 −43.1249 −1.50324 −0.751620 0.659597i 0.770727π-0.770727\pi
−0.751620 + 0.659597i 0.770727π0.770727\pi
824824 −3.00211 −0.104584
825825 −4.01360 −0.139735
826826 −6.72563 −0.234015
827827 −26.4330 −0.919164 −0.459582 0.888135i 0.652001π-0.652001\pi
−0.459582 + 0.888135i 0.652001π0.652001\pi
828828 −0.421407 −0.0146449
829829 4.62524 0.160641 0.0803205 0.996769i 0.474406π-0.474406\pi
0.0803205 + 0.996769i 0.474406π0.474406\pi
830830 −16.2399 −0.563694
831831 −4.31657 −0.149740
832832 11.2816 0.391118
833833 0 0
834834 −7.16319 −0.248041
835835 −46.2458 −1.60040
836836 3.78511 0.130911
837837 6.75476 0.233479
838838 −1.05409 −0.0364129
839839 31.6127 1.09139 0.545695 0.837984i 0.316266π-0.316266\pi
0.545695 + 0.837984i 0.316266π0.316266\pi
840840 5.54799 0.191424
841841 −28.9994 −0.999980
842842 −1.80900 −0.0623424
843843 14.7023 0.506375
844844 3.69121 0.127057
845845 −20.6865 −0.711636
846846 10.5278 0.361953
847847 5.43807 0.186854
848848 3.06309 0.105187
849849 −10.3543 −0.355359
850850 0 0
851851 1.07265 0.0367700
852852 −3.39981 −0.116475
853853 5.05011 0.172912 0.0864562 0.996256i 0.472446π-0.472446\pi
0.0864562 + 0.996256i 0.472446π0.472446\pi
854854 −7.79480 −0.266733
855855 −6.21790 −0.212648
856856 41.3241 1.41243
857857 11.7212 0.400388 0.200194 0.979756i 0.435843π-0.435843\pi
0.200194 + 0.979756i 0.435843π0.435843\pi
858858 3.70212 0.126388
859859 −48.5065 −1.65502 −0.827510 0.561450i 0.810244π-0.810244\pi
−0.827510 + 0.561450i 0.810244π0.810244\pi
860860 −4.44230 −0.151481
861861 −7.09225 −0.241703
862862 27.1344 0.924201
863863 13.5157 0.460081 0.230041 0.973181i 0.426114π-0.426114\pi
0.230041 + 0.973181i 0.426114π0.426114\pi
864864 2.59218 0.0881877
865865 −5.41639 −0.184163
866866 −31.5204 −1.07111
867867 0 0
868868 3.16641 0.107475
869869 25.3941 0.861437
870870 0.0545194 0.00184838
871871 −0.654965 −0.0221926
872872 −29.2307 −0.989875
873873 −0.205143 −0.00694302
874874 −3.80868 −0.128830
875875 12.1711 0.411458
876876 6.25338 0.211282
877877 40.1461 1.35564 0.677820 0.735228i 0.262925π-0.262925\pi
0.677820 + 0.735228i 0.262925π0.262925\pi
878878 −46.1398 −1.55714
879879 10.9848 0.370509
880880 −12.1754 −0.410432
881881 −26.3597 −0.888082 −0.444041 0.896006i 0.646456π-0.646456\pi
−0.444041 + 0.896006i 0.646456π0.646456\pi
882882 1.23743 0.0416664
883883 50.3856 1.69561 0.847805 0.530308i 0.177924π-0.177924\pi
0.847805 + 0.530308i 0.177924π0.177924\pi
884884 0 0
885885 9.87069 0.331800
886886 50.0750 1.68230
887887 20.6679 0.693959 0.346980 0.937873i 0.387207π-0.387207\pi
0.346980 + 0.937873i 0.387207π0.387207\pi
888888 −3.64514 −0.122323
889889 17.4380 0.584851
890890 22.9338 0.768741
891891 2.35837 0.0790085
892892 −9.61203 −0.321834
893893 −29.1290 −0.974765
894894 25.4949 0.852677
895895 14.0251 0.468807
896896 −5.82022 −0.194440
897897 1.14041 0.0380773
898898 −11.7794 −0.393084
899899 0.163872 0.00546544
900900 0.797770 0.0265923
901901 0 0
902902 20.6975 0.689150
903903 −5.21815 −0.173649
904904 −34.9423 −1.16216
905905 39.6818 1.31907
906906 18.3501 0.609643
907907 −3.68850 −0.122475 −0.0612373 0.998123i 0.519505π-0.519505\pi
−0.0612373 + 0.998123i 0.519505π0.519505\pi
908908 −4.14327 −0.137499
909909 10.0435 0.333120
910910 −2.85084 −0.0945044
911911 −5.69091 −0.188548 −0.0942741 0.995546i 0.530053π-0.530053\pi
−0.0942741 + 0.995546i 0.530053π0.530053\pi
912912 9.73293 0.322289
913913 −17.0427 −0.564032
914914 9.96762 0.329700
915915 11.4398 0.378189
916916 2.93538 0.0969877
917917 2.30473 0.0761088
918918 0 0
919919 14.4789 0.477614 0.238807 0.971067i 0.423244π-0.423244\pi
0.238807 + 0.971067i 0.423244π0.423244\pi
920920 −4.98748 −0.164432
921921 13.8104 0.455069
922922 −41.1316 −1.35460
923923 9.20056 0.302840
924924 1.10553 0.0363692
925925 −2.03065 −0.0667673
926926 −22.8754 −0.751731
927927 0.982712 0.0322765
928928 0.0628869 0.00206436
929929 −10.2976 −0.337853 −0.168926 0.985629i 0.554030π-0.554030\pi
−0.168926 + 0.985629i 0.554030π0.554030\pi
930930 15.1798 0.497765
931931 −3.42380 −0.112211
932932 10.6489 0.348817
933933 24.2650 0.794399
934934 9.64989 0.315754
935935 0 0
936936 −3.87541 −0.126672
937937 32.4551 1.06026 0.530132 0.847915i 0.322142π-0.322142\pi
0.530132 + 0.847915i 0.322142π0.322142\pi
938938 0.638883 0.0208603
939939 −16.0803 −0.524762
940940 −7.24285 −0.236236
941941 −14.6166 −0.476489 −0.238244 0.971205i 0.576572π-0.576572\pi
−0.238244 + 0.971205i 0.576572π0.576572\pi
942942 4.69199 0.152873
943943 6.37571 0.207622
944944 −15.4507 −0.502876
945945 −1.81608 −0.0590771
946946 15.2282 0.495113
947947 −0.695796 −0.0226103 −0.0113052 0.999936i 0.503599π-0.503599\pi
−0.0113052 + 0.999936i 0.503599π0.503599\pi
948948 −5.04752 −0.163936
949949 −16.9229 −0.549341
950950 7.21025 0.233931
951951 4.29099 0.139145
952952 0 0
953953 −36.8109 −1.19242 −0.596210 0.802828i 0.703328π-0.703328\pi
−0.596210 + 0.802828i 0.703328π0.703328\pi
954954 −1.33335 −0.0431689
955955 41.2765 1.33568
956956 2.54406 0.0822806
957957 0.0572147 0.00184949
958958 −22.4870 −0.726522
959959 0.591167 0.0190898
960960 16.1506 0.521258
961961 14.6268 0.471833
962962 1.87306 0.0603898
963963 −13.5270 −0.435903
964964 −12.6415 −0.407154
965965 −42.6669 −1.37350
966966 −1.11241 −0.0357913
967967 −3.34730 −0.107642 −0.0538210 0.998551i 0.517140π-0.517140\pi
−0.0538210 + 0.998551i 0.517140π0.517140\pi
968968 16.6129 0.533959
969969 0 0
970970 −0.461011 −0.0148022
971971 5.99767 0.192474 0.0962372 0.995358i 0.469319π-0.469319\pi
0.0962372 + 0.995358i 0.469319π0.469319\pi
972972 −0.468767 −0.0150357
973973 5.78876 0.185579
974974 −5.76281 −0.184652
975975 −2.15893 −0.0691410
976976 −17.9069 −0.573184
977977 −30.5729 −0.978115 −0.489058 0.872252i 0.662659π-0.662659\pi
−0.489058 + 0.872252i 0.662659π0.662659\pi
978978 −26.7840 −0.856459
979979 24.0675 0.769202
980980 −0.851318 −0.0271944
981981 9.56837 0.305494
982982 −51.7298 −1.65077
983983 1.11337 0.0355111 0.0177555 0.999842i 0.494348π-0.494348\pi
0.0177555 + 0.999842i 0.494348π0.494348\pi
984984 −21.6663 −0.690696
985985 −12.3325 −0.392945
986986 0 0
987987 −8.50780 −0.270806
988988 2.03602 0.0647745
989989 4.69096 0.149164
990990 5.29991 0.168442
991991 40.7818 1.29548 0.647738 0.761863i 0.275715π-0.275715\pi
0.647738 + 0.761863i 0.275715π0.275715\pi
992992 17.5096 0.555929
993993 −19.3135 −0.612894
994994 −8.97467 −0.284659
995995 −9.15513 −0.290237
996996 3.38753 0.107338
997997 −25.1182 −0.795502 −0.397751 0.917493i 0.630209π-0.630209\pi
−0.397751 + 0.917493i 0.630209π0.630209\pi
998998 −13.0976 −0.414597
999999 1.19320 0.0377512
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.be.1.6 10
17.2 even 8 357.2.k.b.106.6 yes 20
17.9 even 8 357.2.k.b.64.5 20
17.16 even 2 6069.2.a.bd.1.6 10
51.2 odd 8 1071.2.n.b.820.5 20
51.26 odd 8 1071.2.n.b.64.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.5 20 17.9 even 8
357.2.k.b.106.6 yes 20 17.2 even 8
1071.2.n.b.64.6 20 51.26 odd 8
1071.2.n.b.820.5 20 51.2 odd 8
6069.2.a.bd.1.6 10 17.16 even 2
6069.2.a.be.1.6 10 1.1 even 1 trivial