Properties

Label 6069.2.a.be.1.5
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,4,10,12,-6,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} - 8x^{8} + 44x^{7} + 5x^{6} - 144x^{5} + 48x^{4} + 160x^{3} - 44x^{2} - 64x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.0320370\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0320370 q^{2} +1.00000 q^{3} -1.99897 q^{4} -2.49420 q^{5} -0.0320370 q^{6} -1.00000 q^{7} +0.128115 q^{8} +1.00000 q^{9} +0.0799067 q^{10} +1.19691 q^{11} -1.99897 q^{12} +6.07047 q^{13} +0.0320370 q^{14} -2.49420 q^{15} +3.99384 q^{16} -0.0320370 q^{18} +8.11633 q^{19} +4.98584 q^{20} -1.00000 q^{21} -0.0383453 q^{22} -7.69432 q^{23} +0.128115 q^{24} +1.22105 q^{25} -0.194479 q^{26} +1.00000 q^{27} +1.99897 q^{28} -5.27739 q^{29} +0.0799067 q^{30} -0.675631 q^{31} -0.384181 q^{32} +1.19691 q^{33} +2.49420 q^{35} -1.99897 q^{36} +1.44837 q^{37} -0.260023 q^{38} +6.07047 q^{39} -0.319545 q^{40} -7.34574 q^{41} +0.0320370 q^{42} -1.76514 q^{43} -2.39259 q^{44} -2.49420 q^{45} +0.246503 q^{46} -5.15344 q^{47} +3.99384 q^{48} +1.00000 q^{49} -0.0391186 q^{50} -12.1347 q^{52} -4.55283 q^{53} -0.0320370 q^{54} -2.98533 q^{55} -0.128115 q^{56} +8.11633 q^{57} +0.169072 q^{58} +6.26447 q^{59} +4.98584 q^{60} +7.26118 q^{61} +0.0216452 q^{62} -1.00000 q^{63} -7.97538 q^{64} -15.1410 q^{65} -0.0383453 q^{66} +3.54409 q^{67} -7.69432 q^{69} -0.0799067 q^{70} -3.75607 q^{71} +0.128115 q^{72} +15.9665 q^{73} -0.0464015 q^{74} +1.22105 q^{75} -16.2243 q^{76} -1.19691 q^{77} -0.194479 q^{78} +0.616782 q^{79} -9.96145 q^{80} +1.00000 q^{81} +0.235335 q^{82} -0.959545 q^{83} +1.99897 q^{84} +0.0565497 q^{86} -5.27739 q^{87} +0.153342 q^{88} +17.8863 q^{89} +0.0799067 q^{90} -6.07047 q^{91} +15.3807 q^{92} -0.675631 q^{93} +0.165101 q^{94} -20.2438 q^{95} -0.384181 q^{96} -7.68879 q^{97} -0.0320370 q^{98} +1.19691 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} + 10 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} - 10 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{11} + 12 q^{12} + 6 q^{13} - 4 q^{14} - 6 q^{15} + 20 q^{16} + 4 q^{18} + 6 q^{19} - 16 q^{20} - 10 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0320370 −0.0226536 −0.0113268 0.999936i \(-0.503606\pi\)
−0.0113268 + 0.999936i \(0.503606\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.99897 −0.999487
\(5\) −2.49420 −1.11544 −0.557721 0.830029i \(-0.688324\pi\)
−0.557721 + 0.830029i \(0.688324\pi\)
\(6\) −0.0320370 −0.0130790
\(7\) −1.00000 −0.377964
\(8\) 0.128115 0.0452955
\(9\) 1.00000 0.333333
\(10\) 0.0799067 0.0252687
\(11\) 1.19691 0.360881 0.180441 0.983586i \(-0.442248\pi\)
0.180441 + 0.983586i \(0.442248\pi\)
\(12\) −1.99897 −0.577054
\(13\) 6.07047 1.68364 0.841822 0.539754i \(-0.181483\pi\)
0.841822 + 0.539754i \(0.181483\pi\)
\(14\) 0.0320370 0.00856224
\(15\) −2.49420 −0.644000
\(16\) 3.99384 0.998461
\(17\) 0 0
\(18\) −0.0320370 −0.00755119
\(19\) 8.11633 1.86201 0.931007 0.365001i \(-0.118931\pi\)
0.931007 + 0.365001i \(0.118931\pi\)
\(20\) 4.98584 1.11487
\(21\) −1.00000 −0.218218
\(22\) −0.0383453 −0.00817525
\(23\) −7.69432 −1.60438 −0.802189 0.597071i \(-0.796331\pi\)
−0.802189 + 0.597071i \(0.796331\pi\)
\(24\) 0.128115 0.0261514
\(25\) 1.22105 0.244209
\(26\) −0.194479 −0.0381405
\(27\) 1.00000 0.192450
\(28\) 1.99897 0.377771
\(29\) −5.27739 −0.979988 −0.489994 0.871726i \(-0.663001\pi\)
−0.489994 + 0.871726i \(0.663001\pi\)
\(30\) 0.0799067 0.0145889
\(31\) −0.675631 −0.121347 −0.0606734 0.998158i \(-0.519325\pi\)
−0.0606734 + 0.998158i \(0.519325\pi\)
\(32\) −0.384181 −0.0679142
\(33\) 1.19691 0.208355
\(34\) 0 0
\(35\) 2.49420 0.421597
\(36\) −1.99897 −0.333162
\(37\) 1.44837 0.238111 0.119055 0.992888i \(-0.462013\pi\)
0.119055 + 0.992888i \(0.462013\pi\)
\(38\) −0.260023 −0.0421812
\(39\) 6.07047 0.972053
\(40\) −0.319545 −0.0505245
\(41\) −7.34574 −1.14721 −0.573606 0.819131i \(-0.694456\pi\)
−0.573606 + 0.819131i \(0.694456\pi\)
\(42\) 0.0320370 0.00494341
\(43\) −1.76514 −0.269181 −0.134591 0.990901i \(-0.542972\pi\)
−0.134591 + 0.990901i \(0.542972\pi\)
\(44\) −2.39259 −0.360696
\(45\) −2.49420 −0.371814
\(46\) 0.246503 0.0363448
\(47\) −5.15344 −0.751707 −0.375853 0.926679i \(-0.622650\pi\)
−0.375853 + 0.926679i \(0.622650\pi\)
\(48\) 3.99384 0.576462
\(49\) 1.00000 0.142857
\(50\) −0.0391186 −0.00553220
\(51\) 0 0
\(52\) −12.1347 −1.68278
\(53\) −4.55283 −0.625380 −0.312690 0.949855i \(-0.601230\pi\)
−0.312690 + 0.949855i \(0.601230\pi\)
\(54\) −0.0320370 −0.00435968
\(55\) −2.98533 −0.402542
\(56\) −0.128115 −0.0171201
\(57\) 8.11633 1.07503
\(58\) 0.169072 0.0222002
\(59\) 6.26447 0.815564 0.407782 0.913079i \(-0.366302\pi\)
0.407782 + 0.913079i \(0.366302\pi\)
\(60\) 4.98584 0.643670
\(61\) 7.26118 0.929699 0.464850 0.885390i \(-0.346108\pi\)
0.464850 + 0.885390i \(0.346108\pi\)
\(62\) 0.0216452 0.00274894
\(63\) −1.00000 −0.125988
\(64\) −7.97538 −0.996922
\(65\) −15.1410 −1.87801
\(66\) −0.0383453 −0.00471998
\(67\) 3.54409 0.432980 0.216490 0.976285i \(-0.430539\pi\)
0.216490 + 0.976285i \(0.430539\pi\)
\(68\) 0 0
\(69\) −7.69432 −0.926287
\(70\) −0.0799067 −0.00955067
\(71\) −3.75607 −0.445764 −0.222882 0.974845i \(-0.571546\pi\)
−0.222882 + 0.974845i \(0.571546\pi\)
\(72\) 0.128115 0.0150985
\(73\) 15.9665 1.86874 0.934371 0.356302i \(-0.115963\pi\)
0.934371 + 0.356302i \(0.115963\pi\)
\(74\) −0.0464015 −0.00539406
\(75\) 1.22105 0.140994
\(76\) −16.2243 −1.86106
\(77\) −1.19691 −0.136400
\(78\) −0.194479 −0.0220205
\(79\) 0.616782 0.0693934 0.0346967 0.999398i \(-0.488953\pi\)
0.0346967 + 0.999398i \(0.488953\pi\)
\(80\) −9.96145 −1.11372
\(81\) 1.00000 0.111111
\(82\) 0.235335 0.0259884
\(83\) −0.959545 −0.105324 −0.0526619 0.998612i \(-0.516771\pi\)
−0.0526619 + 0.998612i \(0.516771\pi\)
\(84\) 1.99897 0.218106
\(85\) 0 0
\(86\) 0.0565497 0.00609791
\(87\) −5.27739 −0.565796
\(88\) 0.153342 0.0163463
\(89\) 17.8863 1.89594 0.947970 0.318359i \(-0.103132\pi\)
0.947970 + 0.318359i \(0.103132\pi\)
\(90\) 0.0799067 0.00842290
\(91\) −6.07047 −0.636358
\(92\) 15.3807 1.60355
\(93\) −0.675631 −0.0700596
\(94\) 0.165101 0.0170288
\(95\) −20.2438 −2.07697
\(96\) −0.384181 −0.0392103
\(97\) −7.68879 −0.780678 −0.390339 0.920671i \(-0.627642\pi\)
−0.390339 + 0.920671i \(0.627642\pi\)
\(98\) −0.0320370 −0.00323622
\(99\) 1.19691 0.120294
\(100\) −2.44084 −0.244084
\(101\) −12.9635 −1.28992 −0.644959 0.764217i \(-0.723126\pi\)
−0.644959 + 0.764217i \(0.723126\pi\)
\(102\) 0 0
\(103\) 7.23801 0.713182 0.356591 0.934261i \(-0.383939\pi\)
0.356591 + 0.934261i \(0.383939\pi\)
\(104\) 0.777718 0.0762615
\(105\) 2.49420 0.243409
\(106\) 0.145859 0.0141671
\(107\) −0.656429 −0.0634594 −0.0317297 0.999496i \(-0.510102\pi\)
−0.0317297 + 0.999496i \(0.510102\pi\)
\(108\) −1.99897 −0.192351
\(109\) −12.5896 −1.20586 −0.602930 0.797794i \(-0.706000\pi\)
−0.602930 + 0.797794i \(0.706000\pi\)
\(110\) 0.0956410 0.00911901
\(111\) 1.44837 0.137473
\(112\) −3.99384 −0.377383
\(113\) 20.0088 1.88227 0.941137 0.338025i \(-0.109759\pi\)
0.941137 + 0.338025i \(0.109759\pi\)
\(114\) −0.260023 −0.0243534
\(115\) 19.1912 1.78959
\(116\) 10.5494 0.979485
\(117\) 6.07047 0.561215
\(118\) −0.200694 −0.0184754
\(119\) 0 0
\(120\) −0.319545 −0.0291703
\(121\) −9.56741 −0.869765
\(122\) −0.232626 −0.0210610
\(123\) −7.34574 −0.662343
\(124\) 1.35057 0.121285
\(125\) 9.42548 0.843040
\(126\) 0.0320370 0.00285408
\(127\) 8.82854 0.783406 0.391703 0.920092i \(-0.371886\pi\)
0.391703 + 0.920092i \(0.371886\pi\)
\(128\) 1.02387 0.0904980
\(129\) −1.76514 −0.155412
\(130\) 0.485071 0.0425435
\(131\) −4.16622 −0.364004 −0.182002 0.983298i \(-0.558258\pi\)
−0.182002 + 0.983298i \(0.558258\pi\)
\(132\) −2.39259 −0.208248
\(133\) −8.11633 −0.703775
\(134\) −0.113542 −0.00980853
\(135\) −2.49420 −0.214667
\(136\) 0 0
\(137\) −13.0894 −1.11830 −0.559151 0.829066i \(-0.688873\pi\)
−0.559151 + 0.829066i \(0.688873\pi\)
\(138\) 0.246503 0.0209837
\(139\) 19.5822 1.66094 0.830471 0.557062i \(-0.188071\pi\)
0.830471 + 0.557062i \(0.188071\pi\)
\(140\) −4.98584 −0.421381
\(141\) −5.15344 −0.433998
\(142\) 0.120333 0.0100981
\(143\) 7.26579 0.607596
\(144\) 3.99384 0.332820
\(145\) 13.1629 1.09312
\(146\) −0.511519 −0.0423336
\(147\) 1.00000 0.0824786
\(148\) −2.89526 −0.237989
\(149\) 10.9894 0.900284 0.450142 0.892957i \(-0.351373\pi\)
0.450142 + 0.892957i \(0.351373\pi\)
\(150\) −0.0391186 −0.00319402
\(151\) −4.73844 −0.385609 −0.192804 0.981237i \(-0.561758\pi\)
−0.192804 + 0.981237i \(0.561758\pi\)
\(152\) 1.03982 0.0843408
\(153\) 0 0
\(154\) 0.0383453 0.00308995
\(155\) 1.68516 0.135355
\(156\) −12.1347 −0.971554
\(157\) 4.27662 0.341311 0.170656 0.985331i \(-0.445411\pi\)
0.170656 + 0.985331i \(0.445411\pi\)
\(158\) −0.0197598 −0.00157201
\(159\) −4.55283 −0.361063
\(160\) 0.958224 0.0757543
\(161\) 7.69432 0.606398
\(162\) −0.0320370 −0.00251706
\(163\) −3.48148 −0.272691 −0.136345 0.990661i \(-0.543536\pi\)
−0.136345 + 0.990661i \(0.543536\pi\)
\(164\) 14.6839 1.14662
\(165\) −2.98533 −0.232408
\(166\) 0.0307409 0.00238596
\(167\) 17.7583 1.37418 0.687089 0.726573i \(-0.258888\pi\)
0.687089 + 0.726573i \(0.258888\pi\)
\(168\) −0.128115 −0.00988429
\(169\) 23.8506 1.83466
\(170\) 0 0
\(171\) 8.11633 0.620671
\(172\) 3.52847 0.269043
\(173\) 12.1573 0.924303 0.462151 0.886801i \(-0.347078\pi\)
0.462151 + 0.886801i \(0.347078\pi\)
\(174\) 0.169072 0.0128173
\(175\) −1.22105 −0.0923023
\(176\) 4.78026 0.360326
\(177\) 6.26447 0.470866
\(178\) −0.573022 −0.0429498
\(179\) −2.15314 −0.160933 −0.0804665 0.996757i \(-0.525641\pi\)
−0.0804665 + 0.996757i \(0.525641\pi\)
\(180\) 4.98584 0.371623
\(181\) 13.1695 0.978884 0.489442 0.872036i \(-0.337200\pi\)
0.489442 + 0.872036i \(0.337200\pi\)
\(182\) 0.194479 0.0144158
\(183\) 7.26118 0.536762
\(184\) −0.985758 −0.0726710
\(185\) −3.61253 −0.265599
\(186\) 0.0216452 0.00158710
\(187\) 0 0
\(188\) 10.3016 0.751321
\(189\) −1.00000 −0.0727393
\(190\) 0.648549 0.0470507
\(191\) 8.39465 0.607416 0.303708 0.952765i \(-0.401775\pi\)
0.303708 + 0.952765i \(0.401775\pi\)
\(192\) −7.97538 −0.575573
\(193\) −17.7755 −1.27951 −0.639754 0.768580i \(-0.720964\pi\)
−0.639754 + 0.768580i \(0.720964\pi\)
\(194\) 0.246325 0.0176851
\(195\) −15.1410 −1.08427
\(196\) −1.99897 −0.142784
\(197\) −8.50221 −0.605757 −0.302879 0.953029i \(-0.597948\pi\)
−0.302879 + 0.953029i \(0.597948\pi\)
\(198\) −0.0383453 −0.00272508
\(199\) 4.88644 0.346391 0.173195 0.984888i \(-0.444591\pi\)
0.173195 + 0.984888i \(0.444591\pi\)
\(200\) 0.156434 0.0110616
\(201\) 3.54409 0.249981
\(202\) 0.415312 0.0292212
\(203\) 5.27739 0.370400
\(204\) 0 0
\(205\) 18.3218 1.27965
\(206\) −0.231884 −0.0161561
\(207\) −7.69432 −0.534792
\(208\) 24.2445 1.68105
\(209\) 9.71451 0.671966
\(210\) −0.0799067 −0.00551408
\(211\) −2.47918 −0.170674 −0.0853370 0.996352i \(-0.527197\pi\)
−0.0853370 + 0.996352i \(0.527197\pi\)
\(212\) 9.10099 0.625059
\(213\) −3.75607 −0.257362
\(214\) 0.0210300 0.00143758
\(215\) 4.40261 0.300256
\(216\) 0.128115 0.00871712
\(217\) 0.675631 0.0458648
\(218\) 0.403331 0.0273170
\(219\) 15.9665 1.07892
\(220\) 5.96760 0.402335
\(221\) 0 0
\(222\) −0.0464015 −0.00311426
\(223\) −28.3519 −1.89858 −0.949290 0.314401i \(-0.898196\pi\)
−0.949290 + 0.314401i \(0.898196\pi\)
\(224\) 0.384181 0.0256691
\(225\) 1.22105 0.0814030
\(226\) −0.641023 −0.0426402
\(227\) 0.431744 0.0286559 0.0143279 0.999897i \(-0.495439\pi\)
0.0143279 + 0.999897i \(0.495439\pi\)
\(228\) −16.2243 −1.07448
\(229\) −18.2795 −1.20795 −0.603973 0.797005i \(-0.706417\pi\)
−0.603973 + 0.797005i \(0.706417\pi\)
\(230\) −0.614828 −0.0405405
\(231\) −1.19691 −0.0787508
\(232\) −0.676113 −0.0443890
\(233\) 17.3095 1.13398 0.566990 0.823725i \(-0.308108\pi\)
0.566990 + 0.823725i \(0.308108\pi\)
\(234\) −0.194479 −0.0127135
\(235\) 12.8537 0.838484
\(236\) −12.5225 −0.815145
\(237\) 0.616782 0.0400643
\(238\) 0 0
\(239\) 22.9147 1.48223 0.741116 0.671377i \(-0.234297\pi\)
0.741116 + 0.671377i \(0.234297\pi\)
\(240\) −9.96145 −0.643009
\(241\) 25.8879 1.66758 0.833792 0.552079i \(-0.186165\pi\)
0.833792 + 0.552079i \(0.186165\pi\)
\(242\) 0.306511 0.0197033
\(243\) 1.00000 0.0641500
\(244\) −14.5149 −0.929222
\(245\) −2.49420 −0.159349
\(246\) 0.235335 0.0150044
\(247\) 49.2699 3.13497
\(248\) −0.0865584 −0.00549647
\(249\) −0.959545 −0.0608087
\(250\) −0.301964 −0.0190979
\(251\) 29.8362 1.88324 0.941622 0.336673i \(-0.109302\pi\)
0.941622 + 0.336673i \(0.109302\pi\)
\(252\) 1.99897 0.125924
\(253\) −9.20940 −0.578990
\(254\) −0.282839 −0.0177469
\(255\) 0 0
\(256\) 15.9180 0.994872
\(257\) 8.29710 0.517559 0.258780 0.965936i \(-0.416680\pi\)
0.258780 + 0.965936i \(0.416680\pi\)
\(258\) 0.0565497 0.00352063
\(259\) −1.44837 −0.0899975
\(260\) 30.2664 1.87704
\(261\) −5.27739 −0.326663
\(262\) 0.133473 0.00824599
\(263\) −12.3822 −0.763522 −0.381761 0.924261i \(-0.624682\pi\)
−0.381761 + 0.924261i \(0.624682\pi\)
\(264\) 0.153342 0.00943754
\(265\) 11.3557 0.697574
\(266\) 0.260023 0.0159430
\(267\) 17.8863 1.09462
\(268\) −7.08455 −0.432758
\(269\) −14.7850 −0.901459 −0.450729 0.892661i \(-0.648836\pi\)
−0.450729 + 0.892661i \(0.648836\pi\)
\(270\) 0.0799067 0.00486297
\(271\) 7.94792 0.482802 0.241401 0.970425i \(-0.422393\pi\)
0.241401 + 0.970425i \(0.422393\pi\)
\(272\) 0 0
\(273\) −6.07047 −0.367401
\(274\) 0.419345 0.0253335
\(275\) 1.46148 0.0881305
\(276\) 15.3807 0.925812
\(277\) 23.4684 1.41008 0.705041 0.709166i \(-0.250928\pi\)
0.705041 + 0.709166i \(0.250928\pi\)
\(278\) −0.627355 −0.0376262
\(279\) −0.675631 −0.0404490
\(280\) 0.319545 0.0190964
\(281\) 20.5627 1.22667 0.613335 0.789823i \(-0.289828\pi\)
0.613335 + 0.789823i \(0.289828\pi\)
\(282\) 0.165101 0.00983160
\(283\) −23.6702 −1.40705 −0.703523 0.710672i \(-0.748391\pi\)
−0.703523 + 0.710672i \(0.748391\pi\)
\(284\) 7.50829 0.445535
\(285\) −20.2438 −1.19914
\(286\) −0.232774 −0.0137642
\(287\) 7.34574 0.433605
\(288\) −0.384181 −0.0226381
\(289\) 0 0
\(290\) −0.421699 −0.0247630
\(291\) −7.68879 −0.450725
\(292\) −31.9167 −1.86778
\(293\) 17.2639 1.00857 0.504285 0.863537i \(-0.331756\pi\)
0.504285 + 0.863537i \(0.331756\pi\)
\(294\) −0.0320370 −0.00186843
\(295\) −15.6248 −0.909714
\(296\) 0.185558 0.0107854
\(297\) 1.19691 0.0694517
\(298\) −0.352066 −0.0203946
\(299\) −46.7081 −2.70120
\(300\) −2.44084 −0.140922
\(301\) 1.76514 0.101741
\(302\) 0.151805 0.00873541
\(303\) −12.9635 −0.744735
\(304\) 32.4154 1.85915
\(305\) −18.1109 −1.03703
\(306\) 0 0
\(307\) 15.4910 0.884117 0.442059 0.896986i \(-0.354248\pi\)
0.442059 + 0.896986i \(0.354248\pi\)
\(308\) 2.39259 0.136330
\(309\) 7.23801 0.411756
\(310\) −0.0539874 −0.00306628
\(311\) 9.83560 0.557726 0.278863 0.960331i \(-0.410043\pi\)
0.278863 + 0.960331i \(0.410043\pi\)
\(312\) 0.777718 0.0440296
\(313\) 6.14928 0.347578 0.173789 0.984783i \(-0.444399\pi\)
0.173789 + 0.984783i \(0.444399\pi\)
\(314\) −0.137010 −0.00773191
\(315\) 2.49420 0.140532
\(316\) −1.23293 −0.0693578
\(317\) 11.3092 0.635189 0.317595 0.948227i \(-0.397125\pi\)
0.317595 + 0.948227i \(0.397125\pi\)
\(318\) 0.145859 0.00817936
\(319\) −6.31656 −0.353659
\(320\) 19.8922 1.11201
\(321\) −0.656429 −0.0366383
\(322\) −0.246503 −0.0137371
\(323\) 0 0
\(324\) −1.99897 −0.111054
\(325\) 7.41232 0.411161
\(326\) 0.111536 0.00617741
\(327\) −12.5896 −0.696204
\(328\) −0.941099 −0.0519635
\(329\) 5.15344 0.284118
\(330\) 0.0956410 0.00526486
\(331\) −0.0226644 −0.00124575 −0.000622874 1.00000i \(-0.500198\pi\)
−0.000622874 1.00000i \(0.500198\pi\)
\(332\) 1.91811 0.105270
\(333\) 1.44837 0.0793703
\(334\) −0.568922 −0.0311300
\(335\) −8.83969 −0.482964
\(336\) −3.99384 −0.217882
\(337\) −8.73908 −0.476048 −0.238024 0.971259i \(-0.576500\pi\)
−0.238024 + 0.971259i \(0.576500\pi\)
\(338\) −0.764100 −0.0415616
\(339\) 20.0088 1.08673
\(340\) 0 0
\(341\) −0.808668 −0.0437918
\(342\) −0.260023 −0.0140604
\(343\) −1.00000 −0.0539949
\(344\) −0.226141 −0.0121927
\(345\) 19.1912 1.03322
\(346\) −0.389483 −0.0209387
\(347\) −0.672393 −0.0360959 −0.0180480 0.999837i \(-0.505745\pi\)
−0.0180480 + 0.999837i \(0.505745\pi\)
\(348\) 10.5494 0.565506
\(349\) −18.8163 −1.00721 −0.503606 0.863934i \(-0.667994\pi\)
−0.503606 + 0.863934i \(0.667994\pi\)
\(350\) 0.0391186 0.00209098
\(351\) 6.07047 0.324018
\(352\) −0.459829 −0.0245090
\(353\) −10.7979 −0.574715 −0.287358 0.957823i \(-0.592777\pi\)
−0.287358 + 0.957823i \(0.592777\pi\)
\(354\) −0.200694 −0.0106668
\(355\) 9.36840 0.497223
\(356\) −35.7542 −1.89497
\(357\) 0 0
\(358\) 0.0689800 0.00364571
\(359\) 7.87458 0.415604 0.207802 0.978171i \(-0.433369\pi\)
0.207802 + 0.978171i \(0.433369\pi\)
\(360\) −0.319545 −0.0168415
\(361\) 46.8748 2.46710
\(362\) −0.421912 −0.0221752
\(363\) −9.56741 −0.502159
\(364\) 12.1347 0.636031
\(365\) −39.8238 −2.08447
\(366\) −0.232626 −0.0121596
\(367\) −12.0687 −0.629979 −0.314990 0.949095i \(-0.602001\pi\)
−0.314990 + 0.949095i \(0.602001\pi\)
\(368\) −30.7299 −1.60191
\(369\) −7.34574 −0.382404
\(370\) 0.115735 0.00601676
\(371\) 4.55283 0.236371
\(372\) 1.35057 0.0700237
\(373\) 4.21469 0.218228 0.109114 0.994029i \(-0.465199\pi\)
0.109114 + 0.994029i \(0.465199\pi\)
\(374\) 0 0
\(375\) 9.42548 0.486730
\(376\) −0.660233 −0.0340489
\(377\) −32.0363 −1.64995
\(378\) 0.0320370 0.00164780
\(379\) −12.1018 −0.621628 −0.310814 0.950471i \(-0.600602\pi\)
−0.310814 + 0.950471i \(0.600602\pi\)
\(380\) 40.4668 2.07590
\(381\) 8.82854 0.452300
\(382\) −0.268939 −0.0137601
\(383\) 18.3983 0.940108 0.470054 0.882638i \(-0.344234\pi\)
0.470054 + 0.882638i \(0.344234\pi\)
\(384\) 1.02387 0.0522490
\(385\) 2.98533 0.152147
\(386\) 0.569473 0.0289854
\(387\) −1.76514 −0.0897270
\(388\) 15.3697 0.780277
\(389\) −27.1775 −1.37795 −0.688976 0.724784i \(-0.741939\pi\)
−0.688976 + 0.724784i \(0.741939\pi\)
\(390\) 0.485071 0.0245625
\(391\) 0 0
\(392\) 0.128115 0.00647078
\(393\) −4.16622 −0.210158
\(394\) 0.272385 0.0137226
\(395\) −1.53838 −0.0774042
\(396\) −2.39259 −0.120232
\(397\) 6.37566 0.319985 0.159993 0.987118i \(-0.448853\pi\)
0.159993 + 0.987118i \(0.448853\pi\)
\(398\) −0.156547 −0.00784698
\(399\) −8.11633 −0.406325
\(400\) 4.87666 0.243833
\(401\) −7.01469 −0.350297 −0.175148 0.984542i \(-0.556041\pi\)
−0.175148 + 0.984542i \(0.556041\pi\)
\(402\) −0.113542 −0.00566296
\(403\) −4.10140 −0.204305
\(404\) 25.9137 1.28926
\(405\) −2.49420 −0.123938
\(406\) −0.169072 −0.00839089
\(407\) 1.73357 0.0859298
\(408\) 0 0
\(409\) −2.17117 −0.107358 −0.0536788 0.998558i \(-0.517095\pi\)
−0.0536788 + 0.998558i \(0.517095\pi\)
\(410\) −0.586974 −0.0289886
\(411\) −13.0894 −0.645652
\(412\) −14.4686 −0.712816
\(413\) −6.26447 −0.308254
\(414\) 0.246503 0.0121149
\(415\) 2.39330 0.117483
\(416\) −2.33216 −0.114343
\(417\) 19.5822 0.958945
\(418\) −0.311223 −0.0152224
\(419\) 20.9432 1.02314 0.511570 0.859242i \(-0.329064\pi\)
0.511570 + 0.859242i \(0.329064\pi\)
\(420\) −4.98584 −0.243284
\(421\) 24.1096 1.17503 0.587514 0.809214i \(-0.300107\pi\)
0.587514 + 0.809214i \(0.300107\pi\)
\(422\) 0.0794255 0.00386637
\(423\) −5.15344 −0.250569
\(424\) −0.583286 −0.0283269
\(425\) 0 0
\(426\) 0.120333 0.00583016
\(427\) −7.26118 −0.351393
\(428\) 1.31218 0.0634268
\(429\) 7.26579 0.350796
\(430\) −0.141046 −0.00680186
\(431\) −30.2463 −1.45691 −0.728456 0.685092i \(-0.759762\pi\)
−0.728456 + 0.685092i \(0.759762\pi\)
\(432\) 3.99384 0.192154
\(433\) 16.9171 0.812984 0.406492 0.913654i \(-0.366752\pi\)
0.406492 + 0.913654i \(0.366752\pi\)
\(434\) −0.0216452 −0.00103900
\(435\) 13.1629 0.631112
\(436\) 25.1662 1.20524
\(437\) −62.4497 −2.98737
\(438\) −0.511519 −0.0244413
\(439\) 3.35952 0.160341 0.0801706 0.996781i \(-0.474453\pi\)
0.0801706 + 0.996781i \(0.474453\pi\)
\(440\) −0.382466 −0.0182333
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 10.0201 0.476067 0.238033 0.971257i \(-0.423497\pi\)
0.238033 + 0.971257i \(0.423497\pi\)
\(444\) −2.89526 −0.137403
\(445\) −44.6120 −2.11481
\(446\) 0.908307 0.0430096
\(447\) 10.9894 0.519779
\(448\) 7.97538 0.376801
\(449\) 18.0226 0.850541 0.425271 0.905066i \(-0.360179\pi\)
0.425271 + 0.905066i \(0.360179\pi\)
\(450\) −0.0391186 −0.00184407
\(451\) −8.79218 −0.414007
\(452\) −39.9972 −1.88131
\(453\) −4.73844 −0.222631
\(454\) −0.0138318 −0.000649157 0
\(455\) 15.1410 0.709820
\(456\) 1.03982 0.0486942
\(457\) 17.5069 0.818939 0.409470 0.912324i \(-0.365714\pi\)
0.409470 + 0.912324i \(0.365714\pi\)
\(458\) 0.585621 0.0273643
\(459\) 0 0
\(460\) −38.3627 −1.78867
\(461\) −35.8718 −1.67071 −0.835357 0.549708i \(-0.814739\pi\)
−0.835357 + 0.549708i \(0.814739\pi\)
\(462\) 0.0383453 0.00178399
\(463\) −11.1535 −0.518345 −0.259172 0.965831i \(-0.583450\pi\)
−0.259172 + 0.965831i \(0.583450\pi\)
\(464\) −21.0771 −0.978479
\(465\) 1.68516 0.0781474
\(466\) −0.554542 −0.0256887
\(467\) 31.0692 1.43771 0.718855 0.695160i \(-0.244667\pi\)
0.718855 + 0.695160i \(0.244667\pi\)
\(468\) −12.1347 −0.560927
\(469\) −3.54409 −0.163651
\(470\) −0.411794 −0.0189947
\(471\) 4.27662 0.197056
\(472\) 0.802572 0.0369414
\(473\) −2.11271 −0.0971425
\(474\) −0.0197598 −0.000907599 0
\(475\) 9.91041 0.454721
\(476\) 0 0
\(477\) −4.55283 −0.208460
\(478\) −0.734119 −0.0335778
\(479\) 19.8485 0.906901 0.453451 0.891281i \(-0.350193\pi\)
0.453451 + 0.891281i \(0.350193\pi\)
\(480\) 0.958224 0.0437367
\(481\) 8.79230 0.400894
\(482\) −0.829369 −0.0377767
\(483\) 7.69432 0.350104
\(484\) 19.1250 0.869318
\(485\) 19.1774 0.870800
\(486\) −0.0320370 −0.00145323
\(487\) 3.92615 0.177911 0.0889553 0.996036i \(-0.471647\pi\)
0.0889553 + 0.996036i \(0.471647\pi\)
\(488\) 0.930267 0.0421112
\(489\) −3.48148 −0.157438
\(490\) 0.0799067 0.00360982
\(491\) 22.0363 0.994486 0.497243 0.867611i \(-0.334346\pi\)
0.497243 + 0.867611i \(0.334346\pi\)
\(492\) 14.6839 0.662003
\(493\) 0 0
\(494\) −1.57846 −0.0710182
\(495\) −2.98533 −0.134181
\(496\) −2.69836 −0.121160
\(497\) 3.75607 0.168483
\(498\) 0.0307409 0.00137753
\(499\) 29.2650 1.31008 0.655041 0.755593i \(-0.272651\pi\)
0.655041 + 0.755593i \(0.272651\pi\)
\(500\) −18.8413 −0.842608
\(501\) 17.7583 0.793382
\(502\) −0.955861 −0.0426622
\(503\) −2.16558 −0.0965584 −0.0482792 0.998834i \(-0.515374\pi\)
−0.0482792 + 0.998834i \(0.515374\pi\)
\(504\) −0.128115 −0.00570669
\(505\) 32.3336 1.43883
\(506\) 0.295041 0.0131162
\(507\) 23.8506 1.05924
\(508\) −17.6480 −0.783004
\(509\) 31.4557 1.39425 0.697125 0.716950i \(-0.254462\pi\)
0.697125 + 0.716950i \(0.254462\pi\)
\(510\) 0 0
\(511\) −15.9665 −0.706318
\(512\) −2.55770 −0.113035
\(513\) 8.11633 0.358345
\(514\) −0.265814 −0.0117246
\(515\) −18.0531 −0.795513
\(516\) 3.52847 0.155332
\(517\) −6.16820 −0.271277
\(518\) 0.0464015 0.00203876
\(519\) 12.1573 0.533646
\(520\) −1.93979 −0.0850652
\(521\) −7.19537 −0.315235 −0.157617 0.987500i \(-0.550381\pi\)
−0.157617 + 0.987500i \(0.550381\pi\)
\(522\) 0.169072 0.00740007
\(523\) −31.6415 −1.38359 −0.691793 0.722096i \(-0.743179\pi\)
−0.691793 + 0.722096i \(0.743179\pi\)
\(524\) 8.32816 0.363817
\(525\) −1.22105 −0.0532908
\(526\) 0.396690 0.0172965
\(527\) 0 0
\(528\) 4.78026 0.208034
\(529\) 36.2026 1.57403
\(530\) −0.363802 −0.0158025
\(531\) 6.26447 0.271855
\(532\) 16.2243 0.703414
\(533\) −44.5921 −1.93150
\(534\) −0.573022 −0.0247971
\(535\) 1.63727 0.0707852
\(536\) 0.454051 0.0196120
\(537\) −2.15314 −0.0929147
\(538\) 0.473667 0.0204213
\(539\) 1.19691 0.0515545
\(540\) 4.98584 0.214557
\(541\) 29.5299 1.26959 0.634794 0.772681i \(-0.281085\pi\)
0.634794 + 0.772681i \(0.281085\pi\)
\(542\) −0.254627 −0.0109372
\(543\) 13.1695 0.565159
\(544\) 0 0
\(545\) 31.4009 1.34507
\(546\) 0.194479 0.00832295
\(547\) 12.8253 0.548370 0.274185 0.961677i \(-0.411592\pi\)
0.274185 + 0.961677i \(0.411592\pi\)
\(548\) 26.1654 1.11773
\(549\) 7.26118 0.309900
\(550\) −0.0468214 −0.00199647
\(551\) −42.8331 −1.82475
\(552\) −0.985758 −0.0419566
\(553\) −0.616782 −0.0262282
\(554\) −0.751858 −0.0319434
\(555\) −3.61253 −0.153344
\(556\) −39.1443 −1.66009
\(557\) −8.21543 −0.348099 −0.174050 0.984737i \(-0.555685\pi\)
−0.174050 + 0.984737i \(0.555685\pi\)
\(558\) 0.0216452 0.000916313 0
\(559\) −10.7152 −0.453205
\(560\) 9.96145 0.420948
\(561\) 0 0
\(562\) −0.658767 −0.0277884
\(563\) 40.9986 1.72789 0.863943 0.503589i \(-0.167987\pi\)
0.863943 + 0.503589i \(0.167987\pi\)
\(564\) 10.3016 0.433775
\(565\) −49.9061 −2.09957
\(566\) 0.758321 0.0318746
\(567\) −1.00000 −0.0419961
\(568\) −0.481209 −0.0201911
\(569\) −24.3430 −1.02051 −0.510256 0.860022i \(-0.670449\pi\)
−0.510256 + 0.860022i \(0.670449\pi\)
\(570\) 0.648549 0.0271647
\(571\) 29.6719 1.24173 0.620866 0.783917i \(-0.286781\pi\)
0.620866 + 0.783917i \(0.286781\pi\)
\(572\) −14.5241 −0.607284
\(573\) 8.39465 0.350692
\(574\) −0.235335 −0.00982270
\(575\) −9.39512 −0.391803
\(576\) −7.97538 −0.332307
\(577\) 3.22696 0.134340 0.0671700 0.997742i \(-0.478603\pi\)
0.0671700 + 0.997742i \(0.478603\pi\)
\(578\) 0 0
\(579\) −17.7755 −0.738724
\(580\) −26.3123 −1.09256
\(581\) 0.959545 0.0398087
\(582\) 0.246325 0.0102105
\(583\) −5.44932 −0.225688
\(584\) 2.04555 0.0846455
\(585\) −15.1410 −0.626002
\(586\) −0.553084 −0.0228477
\(587\) −40.0268 −1.65208 −0.826042 0.563608i \(-0.809413\pi\)
−0.826042 + 0.563608i \(0.809413\pi\)
\(588\) −1.99897 −0.0824363
\(589\) −5.48364 −0.225950
\(590\) 0.500573 0.0206082
\(591\) −8.50221 −0.349734
\(592\) 5.78457 0.237744
\(593\) −23.2555 −0.954987 −0.477494 0.878635i \(-0.658455\pi\)
−0.477494 + 0.878635i \(0.658455\pi\)
\(594\) −0.0383453 −0.00157333
\(595\) 0 0
\(596\) −21.9675 −0.899822
\(597\) 4.88644 0.199989
\(598\) 1.49639 0.0611918
\(599\) −1.27348 −0.0520331 −0.0260165 0.999662i \(-0.508282\pi\)
−0.0260165 + 0.999662i \(0.508282\pi\)
\(600\) 0.156434 0.00638640
\(601\) −12.6277 −0.515094 −0.257547 0.966266i \(-0.582914\pi\)
−0.257547 + 0.966266i \(0.582914\pi\)
\(602\) −0.0565497 −0.00230479
\(603\) 3.54409 0.144327
\(604\) 9.47202 0.385411
\(605\) 23.8631 0.970171
\(606\) 0.415312 0.0168709
\(607\) 22.0549 0.895182 0.447591 0.894239i \(-0.352282\pi\)
0.447591 + 0.894239i \(0.352282\pi\)
\(608\) −3.11814 −0.126457
\(609\) 5.27739 0.213851
\(610\) 0.580217 0.0234923
\(611\) −31.2838 −1.26561
\(612\) 0 0
\(613\) −27.7612 −1.12126 −0.560631 0.828066i \(-0.689441\pi\)
−0.560631 + 0.828066i \(0.689441\pi\)
\(614\) −0.496284 −0.0200284
\(615\) 18.3218 0.738805
\(616\) −0.153342 −0.00617832
\(617\) −17.9459 −0.722473 −0.361237 0.932474i \(-0.617645\pi\)
−0.361237 + 0.932474i \(0.617645\pi\)
\(618\) −0.231884 −0.00932773
\(619\) −31.2149 −1.25463 −0.627317 0.778764i \(-0.715847\pi\)
−0.627317 + 0.778764i \(0.715847\pi\)
\(620\) −3.36859 −0.135286
\(621\) −7.69432 −0.308762
\(622\) −0.315103 −0.0126345
\(623\) −17.8863 −0.716598
\(624\) 24.2445 0.970557
\(625\) −29.6143 −1.18457
\(626\) −0.197004 −0.00787387
\(627\) 9.71451 0.387960
\(628\) −8.54884 −0.341136
\(629\) 0 0
\(630\) −0.0799067 −0.00318356
\(631\) −3.93329 −0.156582 −0.0782908 0.996931i \(-0.524946\pi\)
−0.0782908 + 0.996931i \(0.524946\pi\)
\(632\) 0.0790190 0.00314321
\(633\) −2.47918 −0.0985387
\(634\) −0.362313 −0.0143893
\(635\) −22.0202 −0.873843
\(636\) 9.10099 0.360878
\(637\) 6.07047 0.240521
\(638\) 0.202363 0.00801164
\(639\) −3.75607 −0.148588
\(640\) −2.55373 −0.100945
\(641\) −24.7916 −0.979210 −0.489605 0.871944i \(-0.662859\pi\)
−0.489605 + 0.871944i \(0.662859\pi\)
\(642\) 0.0210300 0.000829988 0
\(643\) −14.7505 −0.581702 −0.290851 0.956768i \(-0.593938\pi\)
−0.290851 + 0.956768i \(0.593938\pi\)
\(644\) −15.3807 −0.606086
\(645\) 4.40261 0.173353
\(646\) 0 0
\(647\) 25.0562 0.985060 0.492530 0.870295i \(-0.336072\pi\)
0.492530 + 0.870295i \(0.336072\pi\)
\(648\) 0.128115 0.00503283
\(649\) 7.49799 0.294322
\(650\) −0.237468 −0.00931427
\(651\) 0.675631 0.0264801
\(652\) 6.95939 0.272551
\(653\) 7.35352 0.287765 0.143883 0.989595i \(-0.454041\pi\)
0.143883 + 0.989595i \(0.454041\pi\)
\(654\) 0.403331 0.0157715
\(655\) 10.3914 0.406025
\(656\) −29.3377 −1.14545
\(657\) 15.9665 0.622914
\(658\) −0.165101 −0.00643629
\(659\) 21.9466 0.854917 0.427458 0.904035i \(-0.359409\pi\)
0.427458 + 0.904035i \(0.359409\pi\)
\(660\) 5.96760 0.232288
\(661\) 10.2441 0.398451 0.199225 0.979954i \(-0.436157\pi\)
0.199225 + 0.979954i \(0.436157\pi\)
\(662\) 0.000726098 0 2.82206e−5 0
\(663\) 0 0
\(664\) −0.122932 −0.00477069
\(665\) 20.2438 0.785020
\(666\) −0.0464015 −0.00179802
\(667\) 40.6060 1.57227
\(668\) −35.4984 −1.37347
\(669\) −28.3519 −1.09615
\(670\) 0.283197 0.0109408
\(671\) 8.69097 0.335511
\(672\) 0.384181 0.0148201
\(673\) −30.7568 −1.18559 −0.592794 0.805354i \(-0.701975\pi\)
−0.592794 + 0.805354i \(0.701975\pi\)
\(674\) 0.279974 0.0107842
\(675\) 1.22105 0.0469981
\(676\) −47.6767 −1.83372
\(677\) −50.0728 −1.92445 −0.962227 0.272250i \(-0.912232\pi\)
−0.962227 + 0.272250i \(0.912232\pi\)
\(678\) −0.641023 −0.0246183
\(679\) 7.68879 0.295069
\(680\) 0 0
\(681\) 0.431744 0.0165445
\(682\) 0.0259073 0.000992041 0
\(683\) −28.2130 −1.07954 −0.539771 0.841812i \(-0.681489\pi\)
−0.539771 + 0.841812i \(0.681489\pi\)
\(684\) −16.2243 −0.620353
\(685\) 32.6476 1.24740
\(686\) 0.0320370 0.00122318
\(687\) −18.2795 −0.697408
\(688\) −7.04969 −0.268767
\(689\) −27.6378 −1.05292
\(690\) −0.614828 −0.0234061
\(691\) −32.2264 −1.22595 −0.612975 0.790102i \(-0.710028\pi\)
−0.612975 + 0.790102i \(0.710028\pi\)
\(692\) −24.3021 −0.923828
\(693\) −1.19691 −0.0454668
\(694\) 0.0215414 0.000817701 0
\(695\) −48.8420 −1.85268
\(696\) −0.676113 −0.0256280
\(697\) 0 0
\(698\) 0.602816 0.0228169
\(699\) 17.3095 0.654704
\(700\) 2.44084 0.0922550
\(701\) −1.84962 −0.0698592 −0.0349296 0.999390i \(-0.511121\pi\)
−0.0349296 + 0.999390i \(0.511121\pi\)
\(702\) −0.194479 −0.00734015
\(703\) 11.7555 0.443366
\(704\) −9.54580 −0.359771
\(705\) 12.8537 0.484099
\(706\) 0.345933 0.0130193
\(707\) 12.9635 0.487543
\(708\) −12.5225 −0.470624
\(709\) 37.0619 1.39189 0.695944 0.718096i \(-0.254986\pi\)
0.695944 + 0.718096i \(0.254986\pi\)
\(710\) −0.300135 −0.0112639
\(711\) 0.616782 0.0231311
\(712\) 2.29150 0.0858775
\(713\) 5.19852 0.194686
\(714\) 0 0
\(715\) −18.1224 −0.677738
\(716\) 4.30406 0.160850
\(717\) 22.9147 0.855767
\(718\) −0.252278 −0.00941492
\(719\) 22.1881 0.827476 0.413738 0.910396i \(-0.364223\pi\)
0.413738 + 0.910396i \(0.364223\pi\)
\(720\) −9.96145 −0.371241
\(721\) −7.23801 −0.269557
\(722\) −1.50173 −0.0558885
\(723\) 25.8879 0.962780
\(724\) −26.3256 −0.978382
\(725\) −6.44394 −0.239322
\(726\) 0.306511 0.0113757
\(727\) 24.5756 0.911459 0.455730 0.890118i \(-0.349378\pi\)
0.455730 + 0.890118i \(0.349378\pi\)
\(728\) −0.777718 −0.0288241
\(729\) 1.00000 0.0370370
\(730\) 1.27583 0.0472207
\(731\) 0 0
\(732\) −14.5149 −0.536487
\(733\) 16.3286 0.603112 0.301556 0.953448i \(-0.402494\pi\)
0.301556 + 0.953448i \(0.402494\pi\)
\(734\) 0.386643 0.0142713
\(735\) −2.49420 −0.0920000
\(736\) 2.95601 0.108960
\(737\) 4.24196 0.156254
\(738\) 0.235335 0.00866281
\(739\) −35.6148 −1.31011 −0.655055 0.755581i \(-0.727355\pi\)
−0.655055 + 0.755581i \(0.727355\pi\)
\(740\) 7.22136 0.265462
\(741\) 49.2699 1.80998
\(742\) −0.145859 −0.00535465
\(743\) −23.8891 −0.876406 −0.438203 0.898876i \(-0.644385\pi\)
−0.438203 + 0.898876i \(0.644385\pi\)
\(744\) −0.0865584 −0.00317339
\(745\) −27.4097 −1.00421
\(746\) −0.135026 −0.00494365
\(747\) −0.959545 −0.0351079
\(748\) 0 0
\(749\) 0.656429 0.0239854
\(750\) −0.301964 −0.0110262
\(751\) 34.8469 1.27158 0.635791 0.771861i \(-0.280674\pi\)
0.635791 + 0.771861i \(0.280674\pi\)
\(752\) −20.5820 −0.750549
\(753\) 29.8362 1.08729
\(754\) 1.02634 0.0373773
\(755\) 11.8186 0.430124
\(756\) 1.99897 0.0727020
\(757\) −11.9402 −0.433973 −0.216986 0.976175i \(-0.569623\pi\)
−0.216986 + 0.976175i \(0.569623\pi\)
\(758\) 0.387705 0.0140821
\(759\) −9.20940 −0.334280
\(760\) −2.59353 −0.0940773
\(761\) 31.8811 1.15569 0.577845 0.816146i \(-0.303894\pi\)
0.577845 + 0.816146i \(0.303894\pi\)
\(762\) −0.282839 −0.0102462
\(763\) 12.5896 0.455772
\(764\) −16.7807 −0.607104
\(765\) 0 0
\(766\) −0.589425 −0.0212968
\(767\) 38.0282 1.37312
\(768\) 15.9180 0.574390
\(769\) −14.6114 −0.526901 −0.263451 0.964673i \(-0.584861\pi\)
−0.263451 + 0.964673i \(0.584861\pi\)
\(770\) −0.0956410 −0.00344666
\(771\) 8.29710 0.298813
\(772\) 35.5327 1.27885
\(773\) −29.0677 −1.04549 −0.522746 0.852489i \(-0.675092\pi\)
−0.522746 + 0.852489i \(0.675092\pi\)
\(774\) 0.0565497 0.00203264
\(775\) −0.824976 −0.0296340
\(776\) −0.985049 −0.0353612
\(777\) −1.44837 −0.0519601
\(778\) 0.870683 0.0312155
\(779\) −59.6205 −2.13612
\(780\) 30.2664 1.08371
\(781\) −4.49567 −0.160868
\(782\) 0 0
\(783\) −5.27739 −0.188599
\(784\) 3.99384 0.142637
\(785\) −10.6667 −0.380713
\(786\) 0.133473 0.00476082
\(787\) 7.95596 0.283599 0.141800 0.989895i \(-0.454711\pi\)
0.141800 + 0.989895i \(0.454711\pi\)
\(788\) 16.9957 0.605446
\(789\) −12.3822 −0.440820
\(790\) 0.0492850 0.00175348
\(791\) −20.0088 −0.711433
\(792\) 0.153342 0.00544877
\(793\) 44.0788 1.56528
\(794\) −0.204257 −0.00724880
\(795\) 11.3557 0.402745
\(796\) −9.76786 −0.346213
\(797\) −30.5849 −1.08337 −0.541686 0.840581i \(-0.682214\pi\)
−0.541686 + 0.840581i \(0.682214\pi\)
\(798\) 0.260023 0.00920470
\(799\) 0 0
\(800\) −0.469102 −0.0165853
\(801\) 17.8863 0.631980
\(802\) 0.224729 0.00793547
\(803\) 19.1105 0.674394
\(804\) −7.08455 −0.249853
\(805\) −19.1912 −0.676401
\(806\) 0.131396 0.00462824
\(807\) −14.7850 −0.520458
\(808\) −1.66082 −0.0584275
\(809\) 47.1770 1.65866 0.829328 0.558762i \(-0.188724\pi\)
0.829328 + 0.558762i \(0.188724\pi\)
\(810\) 0.0799067 0.00280763
\(811\) 16.3345 0.573581 0.286791 0.957993i \(-0.407412\pi\)
0.286791 + 0.957993i \(0.407412\pi\)
\(812\) −10.5494 −0.370210
\(813\) 7.94792 0.278746
\(814\) −0.0555383 −0.00194662
\(815\) 8.68351 0.304170
\(816\) 0 0
\(817\) −14.3265 −0.501219
\(818\) 0.0695578 0.00243203
\(819\) −6.07047 −0.212119
\(820\) −36.6247 −1.27899
\(821\) −21.7554 −0.759269 −0.379635 0.925136i \(-0.623950\pi\)
−0.379635 + 0.925136i \(0.623950\pi\)
\(822\) 0.419345 0.0146263
\(823\) −24.4219 −0.851296 −0.425648 0.904889i \(-0.639954\pi\)
−0.425648 + 0.904889i \(0.639954\pi\)
\(824\) 0.927297 0.0323039
\(825\) 1.46148 0.0508822
\(826\) 0.200694 0.00698305
\(827\) 28.8981 1.00489 0.502443 0.864610i \(-0.332435\pi\)
0.502443 + 0.864610i \(0.332435\pi\)
\(828\) 15.3807 0.534518
\(829\) −14.9474 −0.519146 −0.259573 0.965723i \(-0.583582\pi\)
−0.259573 + 0.965723i \(0.583582\pi\)
\(830\) −0.0766741 −0.00266140
\(831\) 23.4684 0.814111
\(832\) −48.4143 −1.67846
\(833\) 0 0
\(834\) −0.627355 −0.0217235
\(835\) −44.2928 −1.53281
\(836\) −19.4190 −0.671622
\(837\) −0.675631 −0.0233532
\(838\) −0.670955 −0.0231778
\(839\) 23.8981 0.825055 0.412528 0.910945i \(-0.364646\pi\)
0.412528 + 0.910945i \(0.364646\pi\)
\(840\) 0.319545 0.0110253
\(841\) −1.14911 −0.0396244
\(842\) −0.772397 −0.0266186
\(843\) 20.5627 0.708218
\(844\) 4.95582 0.170586
\(845\) −59.4882 −2.04646
\(846\) 0.165101 0.00567628
\(847\) 9.56741 0.328740
\(848\) −18.1833 −0.624417
\(849\) −23.6702 −0.812358
\(850\) 0 0
\(851\) −11.1442 −0.382020
\(852\) 7.50829 0.257230
\(853\) 12.6177 0.432021 0.216011 0.976391i \(-0.430695\pi\)
0.216011 + 0.976391i \(0.430695\pi\)
\(854\) 0.232626 0.00796031
\(855\) −20.2438 −0.692322
\(856\) −0.0840984 −0.00287442
\(857\) 53.2353 1.81848 0.909241 0.416271i \(-0.136663\pi\)
0.909241 + 0.416271i \(0.136663\pi\)
\(858\) −0.232774 −0.00794677
\(859\) −13.7646 −0.469642 −0.234821 0.972039i \(-0.575450\pi\)
−0.234821 + 0.972039i \(0.575450\pi\)
\(860\) −8.80071 −0.300102
\(861\) 7.34574 0.250342
\(862\) 0.968999 0.0330043
\(863\) 17.1090 0.582399 0.291199 0.956662i \(-0.405946\pi\)
0.291199 + 0.956662i \(0.405946\pi\)
\(864\) −0.384181 −0.0130701
\(865\) −30.3228 −1.03101
\(866\) −0.541972 −0.0184170
\(867\) 0 0
\(868\) −1.35057 −0.0458413
\(869\) 0.738231 0.0250428
\(870\) −0.421699 −0.0142969
\(871\) 21.5143 0.728984
\(872\) −1.61291 −0.0546200
\(873\) −7.68879 −0.260226
\(874\) 2.00070 0.0676746
\(875\) −9.42548 −0.318639
\(876\) −31.9167 −1.07836
\(877\) 45.3777 1.53230 0.766148 0.642664i \(-0.222171\pi\)
0.766148 + 0.642664i \(0.222171\pi\)
\(878\) −0.107629 −0.00363230
\(879\) 17.2639 0.582298
\(880\) −11.9229 −0.401922
\(881\) −10.0513 −0.338638 −0.169319 0.985561i \(-0.554157\pi\)
−0.169319 + 0.985561i \(0.554157\pi\)
\(882\) −0.0320370 −0.00107874
\(883\) −45.8540 −1.54311 −0.771554 0.636163i \(-0.780520\pi\)
−0.771554 + 0.636163i \(0.780520\pi\)
\(884\) 0 0
\(885\) −15.6248 −0.525223
\(886\) −0.321012 −0.0107846
\(887\) 24.4053 0.819451 0.409726 0.912209i \(-0.365624\pi\)
0.409726 + 0.912209i \(0.365624\pi\)
\(888\) 0.185558 0.00622693
\(889\) −8.82854 −0.296100
\(890\) 1.42923 0.0479080
\(891\) 1.19691 0.0400979
\(892\) 56.6746 1.89761
\(893\) −41.8270 −1.39969
\(894\) −0.352066 −0.0117748
\(895\) 5.37036 0.179511
\(896\) −1.02387 −0.0342050
\(897\) −46.7081 −1.55954
\(898\) −0.577391 −0.0192678
\(899\) 3.56557 0.118918
\(900\) −2.44084 −0.0813612
\(901\) 0 0
\(902\) 0.281675 0.00937874
\(903\) 1.76514 0.0587401
\(904\) 2.56343 0.0852585
\(905\) −32.8475 −1.09189
\(906\) 0.151805 0.00504339
\(907\) 9.77194 0.324472 0.162236 0.986752i \(-0.448129\pi\)
0.162236 + 0.986752i \(0.448129\pi\)
\(908\) −0.863045 −0.0286412
\(909\) −12.9635 −0.429973
\(910\) −0.485071 −0.0160799
\(911\) −11.1010 −0.367792 −0.183896 0.982946i \(-0.558871\pi\)
−0.183896 + 0.982946i \(0.558871\pi\)
\(912\) 32.4154 1.07338
\(913\) −1.14849 −0.0380094
\(914\) −0.560869 −0.0185519
\(915\) −18.1109 −0.598727
\(916\) 36.5403 1.20733
\(917\) 4.16622 0.137581
\(918\) 0 0
\(919\) 18.9671 0.625668 0.312834 0.949808i \(-0.398722\pi\)
0.312834 + 0.949808i \(0.398722\pi\)
\(920\) 2.45868 0.0810603
\(921\) 15.4910 0.510445
\(922\) 1.14922 0.0378476
\(923\) −22.8011 −0.750508
\(924\) 2.39259 0.0787104
\(925\) 1.76853 0.0581489
\(926\) 0.357323 0.0117424
\(927\) 7.23801 0.237727
\(928\) 2.02747 0.0665550
\(929\) −5.60311 −0.183832 −0.0919160 0.995767i \(-0.529299\pi\)
−0.0919160 + 0.995767i \(0.529299\pi\)
\(930\) −0.0539874 −0.00177032
\(931\) 8.11633 0.266002
\(932\) −34.6011 −1.13340
\(933\) 9.83560 0.322003
\(934\) −0.995362 −0.0325692
\(935\) 0 0
\(936\) 0.777718 0.0254205
\(937\) 20.5013 0.669749 0.334875 0.942263i \(-0.391306\pi\)
0.334875 + 0.942263i \(0.391306\pi\)
\(938\) 0.113542 0.00370728
\(939\) 6.14928 0.200674
\(940\) −25.6943 −0.838054
\(941\) 49.7248 1.62098 0.810490 0.585752i \(-0.199201\pi\)
0.810490 + 0.585752i \(0.199201\pi\)
\(942\) −0.137010 −0.00446402
\(943\) 56.5205 1.84056
\(944\) 25.0193 0.814309
\(945\) 2.49420 0.0811364
\(946\) 0.0676848 0.00220062
\(947\) 56.7708 1.84480 0.922401 0.386233i \(-0.126224\pi\)
0.922401 + 0.386233i \(0.126224\pi\)
\(948\) −1.23293 −0.0400437
\(949\) 96.9243 3.14630
\(950\) −0.317499 −0.0103010
\(951\) 11.3092 0.366727
\(952\) 0 0
\(953\) 32.2040 1.04319 0.521594 0.853194i \(-0.325338\pi\)
0.521594 + 0.853194i \(0.325338\pi\)
\(954\) 0.145859 0.00472236
\(955\) −20.9380 −0.677536
\(956\) −45.8060 −1.48147
\(957\) −6.31656 −0.204185
\(958\) −0.635886 −0.0205445
\(959\) 13.0894 0.422679
\(960\) 19.8922 0.642018
\(961\) −30.5435 −0.985275
\(962\) −0.281679 −0.00908168
\(963\) −0.656429 −0.0211531
\(964\) −51.7492 −1.66673
\(965\) 44.3357 1.42722
\(966\) −0.246503 −0.00793110
\(967\) 39.1577 1.25923 0.629613 0.776909i \(-0.283213\pi\)
0.629613 + 0.776909i \(0.283213\pi\)
\(968\) −1.22573 −0.0393964
\(969\) 0 0
\(970\) −0.614385 −0.0197267
\(971\) 39.1476 1.25631 0.628153 0.778090i \(-0.283811\pi\)
0.628153 + 0.778090i \(0.283811\pi\)
\(972\) −1.99897 −0.0641171
\(973\) −19.5822 −0.627777
\(974\) −0.125782 −0.00403031
\(975\) 7.41232 0.237384
\(976\) 29.0000 0.928268
\(977\) 42.4663 1.35862 0.679308 0.733853i \(-0.262280\pi\)
0.679308 + 0.733853i \(0.262280\pi\)
\(978\) 0.111536 0.00356653
\(979\) 21.4082 0.684210
\(980\) 4.98584 0.159267
\(981\) −12.5896 −0.401953
\(982\) −0.705978 −0.0225286
\(983\) 26.0435 0.830659 0.415329 0.909671i \(-0.363666\pi\)
0.415329 + 0.909671i \(0.363666\pi\)
\(984\) −0.941099 −0.0300012
\(985\) 21.2062 0.675686
\(986\) 0 0
\(987\) 5.15344 0.164036
\(988\) −98.4893 −3.13336
\(989\) 13.5815 0.431868
\(990\) 0.0956410 0.00303967
\(991\) −47.1316 −1.49718 −0.748592 0.663031i \(-0.769270\pi\)
−0.748592 + 0.663031i \(0.769270\pi\)
\(992\) 0.259564 0.00824117
\(993\) −0.0226644 −0.000719233 0
\(994\) −0.120333 −0.00381673
\(995\) −12.1878 −0.386378
\(996\) 1.91811 0.0607775
\(997\) −2.41793 −0.0765767 −0.0382883 0.999267i \(-0.512191\pi\)
−0.0382883 + 0.999267i \(0.512191\pi\)
\(998\) −0.937563 −0.0296780
\(999\) 1.44837 0.0458245
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.be.1.5 10
17.2 even 8 357.2.k.b.106.5 yes 20
17.9 even 8 357.2.k.b.64.6 20
17.16 even 2 6069.2.a.bd.1.5 10
51.2 odd 8 1071.2.n.b.820.6 20
51.26 odd 8 1071.2.n.b.64.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.6 20 17.9 even 8
357.2.k.b.106.5 yes 20 17.2 even 8
1071.2.n.b.64.5 20 51.26 odd 8
1071.2.n.b.820.6 20 51.2 odd 8
6069.2.a.bd.1.5 10 17.16 even 2
6069.2.a.be.1.5 10 1.1 even 1 trivial