Properties

Label 6069.2.a.be.1.3
Level $6069$
Weight $2$
Character 6069.1
Self dual yes
Analytic conductor $48.461$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6069,2,Mod(1,6069)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6069, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6069.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6069 = 3 \cdot 7 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6069.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,4,10,12,-6,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.4612089867\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 4x^{9} - 8x^{8} + 44x^{7} + 5x^{6} - 144x^{5} + 48x^{4} + 160x^{3} - 44x^{2} - 64x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.901740\) of defining polynomial
Character \(\chi\) \(=\) 6069.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.901740 q^{2} +1.00000 q^{3} -1.18686 q^{4} +0.631060 q^{5} -0.901740 q^{6} -1.00000 q^{7} +2.87372 q^{8} +1.00000 q^{9} -0.569052 q^{10} -0.369425 q^{11} -1.18686 q^{12} -4.13176 q^{13} +0.901740 q^{14} +0.631060 q^{15} -0.217625 q^{16} -0.901740 q^{18} -5.75446 q^{19} -0.748982 q^{20} -1.00000 q^{21} +0.333125 q^{22} +6.44827 q^{23} +2.87372 q^{24} -4.60176 q^{25} +3.72577 q^{26} +1.00000 q^{27} +1.18686 q^{28} +0.663950 q^{29} -0.569052 q^{30} -9.71295 q^{31} -5.55121 q^{32} -0.369425 q^{33} -0.631060 q^{35} -1.18686 q^{36} +0.965956 q^{37} +5.18903 q^{38} -4.13176 q^{39} +1.81349 q^{40} +6.52081 q^{41} +0.901740 q^{42} +4.21798 q^{43} +0.438457 q^{44} +0.631060 q^{45} -5.81467 q^{46} +8.03481 q^{47} -0.217625 q^{48} +1.00000 q^{49} +4.14960 q^{50} +4.90383 q^{52} +7.76866 q^{53} -0.901740 q^{54} -0.233129 q^{55} -2.87372 q^{56} -5.75446 q^{57} -0.598711 q^{58} -8.34114 q^{59} -0.748982 q^{60} -12.6862 q^{61} +8.75856 q^{62} -1.00000 q^{63} +5.44100 q^{64} -2.60739 q^{65} +0.333125 q^{66} +3.38378 q^{67} +6.44827 q^{69} +0.569052 q^{70} +9.27556 q^{71} +2.87372 q^{72} +13.4598 q^{73} -0.871041 q^{74} -4.60176 q^{75} +6.82976 q^{76} +0.369425 q^{77} +3.72577 q^{78} +4.51167 q^{79} -0.137335 q^{80} +1.00000 q^{81} -5.88008 q^{82} +0.439943 q^{83} +1.18686 q^{84} -3.80353 q^{86} +0.663950 q^{87} -1.06163 q^{88} -2.28393 q^{89} -0.569052 q^{90} +4.13176 q^{91} -7.65322 q^{92} -9.71295 q^{93} -7.24532 q^{94} -3.63141 q^{95} -5.55121 q^{96} +4.28369 q^{97} -0.901740 q^{98} -0.369425 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 4 q^{2} + 10 q^{3} + 12 q^{4} - 6 q^{5} + 4 q^{6} - 10 q^{7} + 12 q^{8} + 10 q^{9} - 2 q^{11} + 12 q^{12} + 6 q^{13} - 4 q^{14} - 6 q^{15} + 20 q^{16} + 4 q^{18} + 6 q^{19} - 16 q^{20} - 10 q^{21}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.901740 −0.637627 −0.318813 0.947818i \(-0.603284\pi\)
−0.318813 + 0.947818i \(0.603284\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.18686 −0.593432
\(5\) 0.631060 0.282219 0.141109 0.989994i \(-0.454933\pi\)
0.141109 + 0.989994i \(0.454933\pi\)
\(6\) −0.901740 −0.368134
\(7\) −1.00000 −0.377964
\(8\) 2.87372 1.01601
\(9\) 1.00000 0.333333
\(10\) −0.569052 −0.179950
\(11\) −0.369425 −0.111386 −0.0556929 0.998448i \(-0.517737\pi\)
−0.0556929 + 0.998448i \(0.517737\pi\)
\(12\) −1.18686 −0.342618
\(13\) −4.13176 −1.14594 −0.572971 0.819575i \(-0.694209\pi\)
−0.572971 + 0.819575i \(0.694209\pi\)
\(14\) 0.901740 0.241000
\(15\) 0.631060 0.162939
\(16\) −0.217625 −0.0544063
\(17\) 0 0
\(18\) −0.901740 −0.212542
\(19\) −5.75446 −1.32016 −0.660081 0.751194i \(-0.729478\pi\)
−0.660081 + 0.751194i \(0.729478\pi\)
\(20\) −0.748982 −0.167478
\(21\) −1.00000 −0.218218
\(22\) 0.333125 0.0710226
\(23\) 6.44827 1.34456 0.672279 0.740298i \(-0.265316\pi\)
0.672279 + 0.740298i \(0.265316\pi\)
\(24\) 2.87372 0.586597
\(25\) −4.60176 −0.920353
\(26\) 3.72577 0.730684
\(27\) 1.00000 0.192450
\(28\) 1.18686 0.224296
\(29\) 0.663950 0.123292 0.0616462 0.998098i \(-0.480365\pi\)
0.0616462 + 0.998098i \(0.480365\pi\)
\(30\) −0.569052 −0.103894
\(31\) −9.71295 −1.74450 −0.872249 0.489063i \(-0.837339\pi\)
−0.872249 + 0.489063i \(0.837339\pi\)
\(32\) −5.55121 −0.981324
\(33\) −0.369425 −0.0643086
\(34\) 0 0
\(35\) −0.631060 −0.106669
\(36\) −1.18686 −0.197811
\(37\) 0.965956 0.158802 0.0794011 0.996843i \(-0.474699\pi\)
0.0794011 + 0.996843i \(0.474699\pi\)
\(38\) 5.18903 0.841771
\(39\) −4.13176 −0.661610
\(40\) 1.81349 0.286738
\(41\) 6.52081 1.01838 0.509189 0.860654i \(-0.329945\pi\)
0.509189 + 0.860654i \(0.329945\pi\)
\(42\) 0.901740 0.139142
\(43\) 4.21798 0.643236 0.321618 0.946869i \(-0.395773\pi\)
0.321618 + 0.946869i \(0.395773\pi\)
\(44\) 0.438457 0.0660999
\(45\) 0.631060 0.0940729
\(46\) −5.81467 −0.857326
\(47\) 8.03481 1.17200 0.585999 0.810312i \(-0.300702\pi\)
0.585999 + 0.810312i \(0.300702\pi\)
\(48\) −0.217625 −0.0314115
\(49\) 1.00000 0.142857
\(50\) 4.14960 0.586842
\(51\) 0 0
\(52\) 4.90383 0.680039
\(53\) 7.76866 1.06711 0.533553 0.845766i \(-0.320856\pi\)
0.533553 + 0.845766i \(0.320856\pi\)
\(54\) −0.901740 −0.122711
\(55\) −0.233129 −0.0314351
\(56\) −2.87372 −0.384018
\(57\) −5.75446 −0.762196
\(58\) −0.598711 −0.0786145
\(59\) −8.34114 −1.08592 −0.542962 0.839757i \(-0.682697\pi\)
−0.542962 + 0.839757i \(0.682697\pi\)
\(60\) −0.748982 −0.0966932
\(61\) −12.6862 −1.62430 −0.812152 0.583446i \(-0.801704\pi\)
−0.812152 + 0.583446i \(0.801704\pi\)
\(62\) 8.75856 1.11234
\(63\) −1.00000 −0.125988
\(64\) 5.44100 0.680125
\(65\) −2.60739 −0.323406
\(66\) 0.333125 0.0410049
\(67\) 3.38378 0.413394 0.206697 0.978405i \(-0.433728\pi\)
0.206697 + 0.978405i \(0.433728\pi\)
\(68\) 0 0
\(69\) 6.44827 0.776281
\(70\) 0.569052 0.0680148
\(71\) 9.27556 1.10081 0.550403 0.834899i \(-0.314474\pi\)
0.550403 + 0.834899i \(0.314474\pi\)
\(72\) 2.87372 0.338672
\(73\) 13.4598 1.57536 0.787678 0.616087i \(-0.211283\pi\)
0.787678 + 0.616087i \(0.211283\pi\)
\(74\) −0.871041 −0.101257
\(75\) −4.60176 −0.531366
\(76\) 6.82976 0.783427
\(77\) 0.369425 0.0420999
\(78\) 3.72577 0.421861
\(79\) 4.51167 0.507602 0.253801 0.967256i \(-0.418319\pi\)
0.253801 + 0.967256i \(0.418319\pi\)
\(80\) −0.137335 −0.0153545
\(81\) 1.00000 0.111111
\(82\) −5.88008 −0.649346
\(83\) 0.439943 0.0482900 0.0241450 0.999708i \(-0.492314\pi\)
0.0241450 + 0.999708i \(0.492314\pi\)
\(84\) 1.18686 0.129497
\(85\) 0 0
\(86\) −3.80353 −0.410145
\(87\) 0.663950 0.0711829
\(88\) −1.06163 −0.113170
\(89\) −2.28393 −0.242096 −0.121048 0.992647i \(-0.538625\pi\)
−0.121048 + 0.992647i \(0.538625\pi\)
\(90\) −0.569052 −0.0599834
\(91\) 4.13176 0.433126
\(92\) −7.65322 −0.797904
\(93\) −9.71295 −1.00719
\(94\) −7.24532 −0.747297
\(95\) −3.63141 −0.372575
\(96\) −5.55121 −0.566568
\(97\) 4.28369 0.434943 0.217471 0.976067i \(-0.430219\pi\)
0.217471 + 0.976067i \(0.430219\pi\)
\(98\) −0.901740 −0.0910895
\(99\) −0.369425 −0.0371286
\(100\) 5.46167 0.546167
\(101\) −1.87512 −0.186581 −0.0932906 0.995639i \(-0.529739\pi\)
−0.0932906 + 0.995639i \(0.529739\pi\)
\(102\) 0 0
\(103\) −10.5644 −1.04094 −0.520470 0.853880i \(-0.674243\pi\)
−0.520470 + 0.853880i \(0.674243\pi\)
\(104\) −11.8735 −1.16430
\(105\) −0.631060 −0.0615851
\(106\) −7.00531 −0.680416
\(107\) 20.2072 1.95351 0.976754 0.214363i \(-0.0687676\pi\)
0.976754 + 0.214363i \(0.0687676\pi\)
\(108\) −1.18686 −0.114206
\(109\) −2.47901 −0.237446 −0.118723 0.992927i \(-0.537880\pi\)
−0.118723 + 0.992927i \(0.537880\pi\)
\(110\) 0.210222 0.0200439
\(111\) 0.965956 0.0916845
\(112\) 0.217625 0.0205637
\(113\) 7.51457 0.706911 0.353456 0.935451i \(-0.385007\pi\)
0.353456 + 0.935451i \(0.385007\pi\)
\(114\) 5.18903 0.485997
\(115\) 4.06925 0.379459
\(116\) −0.788018 −0.0731657
\(117\) −4.13176 −0.381981
\(118\) 7.52154 0.692414
\(119\) 0 0
\(120\) 1.81349 0.165548
\(121\) −10.8635 −0.987593
\(122\) 11.4397 1.03570
\(123\) 6.52081 0.587961
\(124\) 11.5279 1.03524
\(125\) −6.05929 −0.541959
\(126\) 0.901740 0.0803334
\(127\) −0.422967 −0.0375322 −0.0187661 0.999824i \(-0.505974\pi\)
−0.0187661 + 0.999824i \(0.505974\pi\)
\(128\) 6.19605 0.547658
\(129\) 4.21798 0.371373
\(130\) 2.35119 0.206213
\(131\) −16.7422 −1.46278 −0.731388 0.681962i \(-0.761127\pi\)
−0.731388 + 0.681962i \(0.761127\pi\)
\(132\) 0.438457 0.0381628
\(133\) 5.75446 0.498975
\(134\) −3.05129 −0.263591
\(135\) 0.631060 0.0543130
\(136\) 0 0
\(137\) 22.4668 1.91947 0.959734 0.280911i \(-0.0906366\pi\)
0.959734 + 0.280911i \(0.0906366\pi\)
\(138\) −5.81467 −0.494978
\(139\) 15.4411 1.30969 0.654847 0.755761i \(-0.272733\pi\)
0.654847 + 0.755761i \(0.272733\pi\)
\(140\) 0.748982 0.0633006
\(141\) 8.03481 0.676653
\(142\) −8.36415 −0.701904
\(143\) 1.52637 0.127642
\(144\) −0.217625 −0.0181354
\(145\) 0.418992 0.0347954
\(146\) −12.1373 −1.00449
\(147\) 1.00000 0.0824786
\(148\) −1.14646 −0.0942383
\(149\) −3.31998 −0.271983 −0.135992 0.990710i \(-0.543422\pi\)
−0.135992 + 0.990710i \(0.543422\pi\)
\(150\) 4.14960 0.338813
\(151\) −14.9512 −1.21671 −0.608356 0.793664i \(-0.708171\pi\)
−0.608356 + 0.793664i \(0.708171\pi\)
\(152\) −16.5367 −1.34131
\(153\) 0 0
\(154\) −0.333125 −0.0268440
\(155\) −6.12945 −0.492330
\(156\) 4.90383 0.392621
\(157\) 19.4634 1.55335 0.776673 0.629904i \(-0.216906\pi\)
0.776673 + 0.629904i \(0.216906\pi\)
\(158\) −4.06835 −0.323661
\(159\) 7.76866 0.616094
\(160\) −3.50314 −0.276948
\(161\) −6.44827 −0.508195
\(162\) −0.901740 −0.0708474
\(163\) 21.1986 1.66041 0.830203 0.557462i \(-0.188225\pi\)
0.830203 + 0.557462i \(0.188225\pi\)
\(164\) −7.73931 −0.604339
\(165\) −0.233129 −0.0181491
\(166\) −0.396715 −0.0307910
\(167\) −1.58681 −0.122791 −0.0613956 0.998114i \(-0.519555\pi\)
−0.0613956 + 0.998114i \(0.519555\pi\)
\(168\) −2.87372 −0.221713
\(169\) 4.07141 0.313185
\(170\) 0 0
\(171\) −5.75446 −0.440054
\(172\) −5.00617 −0.381717
\(173\) −1.09964 −0.0836043 −0.0418021 0.999126i \(-0.513310\pi\)
−0.0418021 + 0.999126i \(0.513310\pi\)
\(174\) −0.598711 −0.0453881
\(175\) 4.60176 0.347861
\(176\) 0.0803962 0.00606009
\(177\) −8.34114 −0.626958
\(178\) 2.05951 0.154367
\(179\) 6.30828 0.471503 0.235751 0.971813i \(-0.424245\pi\)
0.235751 + 0.971813i \(0.424245\pi\)
\(180\) −0.748982 −0.0558259
\(181\) −6.43953 −0.478646 −0.239323 0.970940i \(-0.576926\pi\)
−0.239323 + 0.970940i \(0.576926\pi\)
\(182\) −3.72577 −0.276173
\(183\) −12.6862 −0.937792
\(184\) 18.5306 1.36609
\(185\) 0.609576 0.0448169
\(186\) 8.75856 0.642209
\(187\) 0 0
\(188\) −9.53623 −0.695501
\(189\) −1.00000 −0.0727393
\(190\) 3.27459 0.237563
\(191\) 20.9490 1.51582 0.757908 0.652361i \(-0.226222\pi\)
0.757908 + 0.652361i \(0.226222\pi\)
\(192\) 5.44100 0.392670
\(193\) −7.87040 −0.566523 −0.283262 0.959043i \(-0.591417\pi\)
−0.283262 + 0.959043i \(0.591417\pi\)
\(194\) −3.86277 −0.277331
\(195\) −2.60739 −0.186719
\(196\) −1.18686 −0.0847760
\(197\) −12.1738 −0.867345 −0.433672 0.901071i \(-0.642782\pi\)
−0.433672 + 0.901071i \(0.642782\pi\)
\(198\) 0.333125 0.0236742
\(199\) −22.1369 −1.56924 −0.784622 0.619974i \(-0.787143\pi\)
−0.784622 + 0.619974i \(0.787143\pi\)
\(200\) −13.2242 −0.935092
\(201\) 3.38378 0.238673
\(202\) 1.69087 0.118969
\(203\) −0.663950 −0.0466001
\(204\) 0 0
\(205\) 4.11502 0.287405
\(206\) 9.52633 0.663731
\(207\) 6.44827 0.448186
\(208\) 0.899175 0.0623466
\(209\) 2.12584 0.147047
\(210\) 0.569052 0.0392683
\(211\) 10.8176 0.744715 0.372357 0.928089i \(-0.378550\pi\)
0.372357 + 0.928089i \(0.378550\pi\)
\(212\) −9.22034 −0.633255
\(213\) 9.27556 0.635551
\(214\) −18.2217 −1.24561
\(215\) 2.66180 0.181533
\(216\) 2.87372 0.195532
\(217\) 9.71295 0.659358
\(218\) 2.23543 0.151402
\(219\) 13.4598 0.909532
\(220\) 0.276693 0.0186546
\(221\) 0 0
\(222\) −0.871041 −0.0584605
\(223\) −24.2559 −1.62430 −0.812148 0.583452i \(-0.801702\pi\)
−0.812148 + 0.583452i \(0.801702\pi\)
\(224\) 5.55121 0.370906
\(225\) −4.60176 −0.306784
\(226\) −6.77619 −0.450746
\(227\) −4.57003 −0.303324 −0.151662 0.988432i \(-0.548462\pi\)
−0.151662 + 0.988432i \(0.548462\pi\)
\(228\) 6.82976 0.452312
\(229\) 9.40610 0.621573 0.310786 0.950480i \(-0.399408\pi\)
0.310786 + 0.950480i \(0.399408\pi\)
\(230\) −3.66941 −0.241953
\(231\) 0.369425 0.0243064
\(232\) 1.90801 0.125267
\(233\) 9.21166 0.603476 0.301738 0.953391i \(-0.402433\pi\)
0.301738 + 0.953391i \(0.402433\pi\)
\(234\) 3.72577 0.243561
\(235\) 5.07045 0.330760
\(236\) 9.89980 0.644422
\(237\) 4.51167 0.293064
\(238\) 0 0
\(239\) 28.3078 1.83108 0.915539 0.402230i \(-0.131765\pi\)
0.915539 + 0.402230i \(0.131765\pi\)
\(240\) −0.137335 −0.00886491
\(241\) −18.0223 −1.16092 −0.580459 0.814289i \(-0.697127\pi\)
−0.580459 + 0.814289i \(0.697127\pi\)
\(242\) 9.79608 0.629716
\(243\) 1.00000 0.0641500
\(244\) 15.0568 0.963914
\(245\) 0.631060 0.0403169
\(246\) −5.88008 −0.374900
\(247\) 23.7760 1.51283
\(248\) −27.9123 −1.77244
\(249\) 0.439943 0.0278803
\(250\) 5.46391 0.345568
\(251\) 11.2948 0.712919 0.356460 0.934311i \(-0.383984\pi\)
0.356460 + 0.934311i \(0.383984\pi\)
\(252\) 1.18686 0.0747654
\(253\) −2.38215 −0.149765
\(254\) 0.381406 0.0239316
\(255\) 0 0
\(256\) −16.4692 −1.02933
\(257\) 7.97952 0.497749 0.248874 0.968536i \(-0.419939\pi\)
0.248874 + 0.968536i \(0.419939\pi\)
\(258\) −3.80353 −0.236797
\(259\) −0.965956 −0.0600216
\(260\) 3.09461 0.191920
\(261\) 0.663950 0.0410975
\(262\) 15.0971 0.932705
\(263\) 15.5763 0.960477 0.480238 0.877138i \(-0.340550\pi\)
0.480238 + 0.877138i \(0.340550\pi\)
\(264\) −1.06163 −0.0653385
\(265\) 4.90249 0.301157
\(266\) −5.18903 −0.318160
\(267\) −2.28393 −0.139774
\(268\) −4.01609 −0.245322
\(269\) −2.41968 −0.147530 −0.0737652 0.997276i \(-0.523502\pi\)
−0.0737652 + 0.997276i \(0.523502\pi\)
\(270\) −0.569052 −0.0346314
\(271\) 14.7878 0.898295 0.449147 0.893458i \(-0.351728\pi\)
0.449147 + 0.893458i \(0.351728\pi\)
\(272\) 0 0
\(273\) 4.13176 0.250065
\(274\) −20.2592 −1.22390
\(275\) 1.70001 0.102514
\(276\) −7.65322 −0.460670
\(277\) 29.8845 1.79559 0.897793 0.440417i \(-0.145170\pi\)
0.897793 + 0.440417i \(0.145170\pi\)
\(278\) −13.9238 −0.835096
\(279\) −9.71295 −0.581499
\(280\) −1.81349 −0.108377
\(281\) −15.9618 −0.952202 −0.476101 0.879391i \(-0.657950\pi\)
−0.476101 + 0.879391i \(0.657950\pi\)
\(282\) −7.24532 −0.431452
\(283\) 6.74526 0.400964 0.200482 0.979697i \(-0.435749\pi\)
0.200482 + 0.979697i \(0.435749\pi\)
\(284\) −11.0088 −0.653254
\(285\) −3.63141 −0.215106
\(286\) −1.37639 −0.0813878
\(287\) −6.52081 −0.384911
\(288\) −5.55121 −0.327108
\(289\) 0 0
\(290\) −0.377822 −0.0221865
\(291\) 4.28369 0.251114
\(292\) −15.9750 −0.934867
\(293\) 1.07630 0.0628779 0.0314389 0.999506i \(-0.489991\pi\)
0.0314389 + 0.999506i \(0.489991\pi\)
\(294\) −0.901740 −0.0525906
\(295\) −5.26376 −0.306468
\(296\) 2.77589 0.161345
\(297\) −0.369425 −0.0214362
\(298\) 2.99376 0.173424
\(299\) −26.6427 −1.54079
\(300\) 5.46167 0.315330
\(301\) −4.21798 −0.243121
\(302\) 13.4821 0.775808
\(303\) −1.87512 −0.107723
\(304\) 1.25232 0.0718252
\(305\) −8.00576 −0.458409
\(306\) 0 0
\(307\) 4.09877 0.233929 0.116964 0.993136i \(-0.462684\pi\)
0.116964 + 0.993136i \(0.462684\pi\)
\(308\) −0.438457 −0.0249834
\(309\) −10.5644 −0.600987
\(310\) 5.52718 0.313922
\(311\) −26.2434 −1.48813 −0.744064 0.668108i \(-0.767104\pi\)
−0.744064 + 0.668108i \(0.767104\pi\)
\(312\) −11.8735 −0.672206
\(313\) −9.58780 −0.541934 −0.270967 0.962589i \(-0.587343\pi\)
−0.270967 + 0.962589i \(0.587343\pi\)
\(314\) −17.5509 −0.990455
\(315\) −0.631060 −0.0355562
\(316\) −5.35473 −0.301227
\(317\) 16.0367 0.900709 0.450355 0.892850i \(-0.351298\pi\)
0.450355 + 0.892850i \(0.351298\pi\)
\(318\) −7.00531 −0.392838
\(319\) −0.245280 −0.0137330
\(320\) 3.43360 0.191944
\(321\) 20.2072 1.12786
\(322\) 5.81467 0.324039
\(323\) 0 0
\(324\) −1.18686 −0.0659369
\(325\) 19.0134 1.05467
\(326\) −19.1157 −1.05872
\(327\) −2.47901 −0.137090
\(328\) 18.7390 1.03469
\(329\) −8.03481 −0.442974
\(330\) 0.210222 0.0115723
\(331\) 18.2970 1.00570 0.502848 0.864375i \(-0.332286\pi\)
0.502848 + 0.864375i \(0.332286\pi\)
\(332\) −0.522153 −0.0286569
\(333\) 0.965956 0.0529341
\(334\) 1.43089 0.0782950
\(335\) 2.13537 0.116668
\(336\) 0.217625 0.0118724
\(337\) 7.29509 0.397389 0.198694 0.980061i \(-0.436330\pi\)
0.198694 + 0.980061i \(0.436330\pi\)
\(338\) −3.67135 −0.199695
\(339\) 7.51457 0.408135
\(340\) 0 0
\(341\) 3.58820 0.194312
\(342\) 5.18903 0.280590
\(343\) −1.00000 −0.0539949
\(344\) 12.1213 0.653538
\(345\) 4.06925 0.219081
\(346\) 0.991592 0.0533083
\(347\) −22.5231 −1.20910 −0.604551 0.796567i \(-0.706647\pi\)
−0.604551 + 0.796567i \(0.706647\pi\)
\(348\) −0.788018 −0.0422422
\(349\) 26.9175 1.44086 0.720429 0.693528i \(-0.243945\pi\)
0.720429 + 0.693528i \(0.243945\pi\)
\(350\) −4.14960 −0.221805
\(351\) −4.13176 −0.220537
\(352\) 2.05075 0.109306
\(353\) 20.1149 1.07061 0.535304 0.844660i \(-0.320197\pi\)
0.535304 + 0.844660i \(0.320197\pi\)
\(354\) 7.52154 0.399765
\(355\) 5.85344 0.310668
\(356\) 2.71071 0.143667
\(357\) 0 0
\(358\) −5.68843 −0.300643
\(359\) 6.48908 0.342481 0.171240 0.985229i \(-0.445223\pi\)
0.171240 + 0.985229i \(0.445223\pi\)
\(360\) 1.81349 0.0955794
\(361\) 14.1138 0.742830
\(362\) 5.80678 0.305198
\(363\) −10.8635 −0.570187
\(364\) −4.90383 −0.257031
\(365\) 8.49397 0.444595
\(366\) 11.4397 0.597961
\(367\) 6.74119 0.351887 0.175944 0.984400i \(-0.443702\pi\)
0.175944 + 0.984400i \(0.443702\pi\)
\(368\) −1.40331 −0.0731525
\(369\) 6.52081 0.339460
\(370\) −0.549679 −0.0285765
\(371\) −7.76866 −0.403329
\(372\) 11.5279 0.597696
\(373\) 13.2838 0.687807 0.343904 0.939005i \(-0.388251\pi\)
0.343904 + 0.939005i \(0.388251\pi\)
\(374\) 0 0
\(375\) −6.05929 −0.312900
\(376\) 23.0898 1.19077
\(377\) −2.74328 −0.141286
\(378\) 0.901740 0.0463805
\(379\) 13.4136 0.689011 0.344505 0.938784i \(-0.388047\pi\)
0.344505 + 0.938784i \(0.388047\pi\)
\(380\) 4.30999 0.221098
\(381\) −0.422967 −0.0216693
\(382\) −18.8906 −0.966525
\(383\) 28.2085 1.44138 0.720692 0.693255i \(-0.243824\pi\)
0.720692 + 0.693255i \(0.243824\pi\)
\(384\) 6.19605 0.316191
\(385\) 0.233129 0.0118814
\(386\) 7.09705 0.361231
\(387\) 4.21798 0.214412
\(388\) −5.08415 −0.258109
\(389\) −2.24283 −0.113716 −0.0568581 0.998382i \(-0.518108\pi\)
−0.0568581 + 0.998382i \(0.518108\pi\)
\(390\) 2.35119 0.119057
\(391\) 0 0
\(392\) 2.87372 0.145145
\(393\) −16.7422 −0.844534
\(394\) 10.9776 0.553042
\(395\) 2.84713 0.143255
\(396\) 0.438457 0.0220333
\(397\) 12.0970 0.607129 0.303564 0.952811i \(-0.401823\pi\)
0.303564 + 0.952811i \(0.401823\pi\)
\(398\) 19.9618 1.00059
\(399\) 5.75446 0.288083
\(400\) 1.00146 0.0500730
\(401\) 15.6350 0.780777 0.390388 0.920650i \(-0.372341\pi\)
0.390388 + 0.920650i \(0.372341\pi\)
\(402\) −3.05129 −0.152185
\(403\) 40.1315 1.99909
\(404\) 2.22551 0.110723
\(405\) 0.631060 0.0313576
\(406\) 0.598711 0.0297135
\(407\) −0.356848 −0.0176883
\(408\) 0 0
\(409\) 16.9806 0.839639 0.419819 0.907608i \(-0.362093\pi\)
0.419819 + 0.907608i \(0.362093\pi\)
\(410\) −3.71068 −0.183257
\(411\) 22.4668 1.10821
\(412\) 12.5385 0.617727
\(413\) 8.34114 0.410440
\(414\) −5.81467 −0.285775
\(415\) 0.277631 0.0136283
\(416\) 22.9362 1.12454
\(417\) 15.4411 0.756152
\(418\) −1.91696 −0.0937613
\(419\) 19.8074 0.967653 0.483827 0.875164i \(-0.339247\pi\)
0.483827 + 0.875164i \(0.339247\pi\)
\(420\) 0.748982 0.0365466
\(421\) −21.4954 −1.04762 −0.523810 0.851835i \(-0.675490\pi\)
−0.523810 + 0.851835i \(0.675490\pi\)
\(422\) −9.75468 −0.474850
\(423\) 8.03481 0.390666
\(424\) 22.3250 1.08420
\(425\) 0 0
\(426\) −8.36415 −0.405244
\(427\) 12.6862 0.613929
\(428\) −23.9833 −1.15927
\(429\) 1.52637 0.0736940
\(430\) −2.40025 −0.115750
\(431\) −9.78836 −0.471489 −0.235744 0.971815i \(-0.575753\pi\)
−0.235744 + 0.971815i \(0.575753\pi\)
\(432\) −0.217625 −0.0104705
\(433\) −28.7229 −1.38033 −0.690166 0.723651i \(-0.742463\pi\)
−0.690166 + 0.723651i \(0.742463\pi\)
\(434\) −8.75856 −0.420424
\(435\) 0.418992 0.0200891
\(436\) 2.94225 0.140908
\(437\) −37.1063 −1.77504
\(438\) −12.1373 −0.579942
\(439\) 18.1335 0.865463 0.432732 0.901523i \(-0.357550\pi\)
0.432732 + 0.901523i \(0.357550\pi\)
\(440\) −0.669949 −0.0319386
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 30.4981 1.44901 0.724504 0.689270i \(-0.242069\pi\)
0.724504 + 0.689270i \(0.242069\pi\)
\(444\) −1.14646 −0.0544085
\(445\) −1.44129 −0.0683239
\(446\) 21.8725 1.03569
\(447\) −3.31998 −0.157030
\(448\) −5.44100 −0.257063
\(449\) 14.3487 0.677159 0.338579 0.940938i \(-0.390054\pi\)
0.338579 + 0.940938i \(0.390054\pi\)
\(450\) 4.14960 0.195614
\(451\) −2.40895 −0.113433
\(452\) −8.91877 −0.419504
\(453\) −14.9512 −0.702469
\(454\) 4.12098 0.193407
\(455\) 2.60739 0.122236
\(456\) −16.5367 −0.774403
\(457\) −11.9231 −0.557739 −0.278869 0.960329i \(-0.589960\pi\)
−0.278869 + 0.960329i \(0.589960\pi\)
\(458\) −8.48186 −0.396331
\(459\) 0 0
\(460\) −4.82964 −0.225183
\(461\) 17.3571 0.808399 0.404200 0.914671i \(-0.367550\pi\)
0.404200 + 0.914671i \(0.367550\pi\)
\(462\) −0.333125 −0.0154984
\(463\) 14.5685 0.677054 0.338527 0.940957i \(-0.390071\pi\)
0.338527 + 0.940957i \(0.390071\pi\)
\(464\) −0.144492 −0.00670789
\(465\) −6.12945 −0.284247
\(466\) −8.30653 −0.384793
\(467\) −13.1901 −0.610363 −0.305182 0.952294i \(-0.598717\pi\)
−0.305182 + 0.952294i \(0.598717\pi\)
\(468\) 4.90383 0.226680
\(469\) −3.38378 −0.156248
\(470\) −4.57223 −0.210901
\(471\) 19.4634 0.896825
\(472\) −23.9701 −1.10331
\(473\) −1.55823 −0.0716474
\(474\) −4.06835 −0.186866
\(475\) 26.4806 1.21502
\(476\) 0 0
\(477\) 7.76866 0.355702
\(478\) −25.5263 −1.16754
\(479\) 17.8906 0.817440 0.408720 0.912660i \(-0.365975\pi\)
0.408720 + 0.912660i \(0.365975\pi\)
\(480\) −3.50314 −0.159896
\(481\) −3.99109 −0.181978
\(482\) 16.2514 0.740233
\(483\) −6.44827 −0.293407
\(484\) 12.8935 0.586069
\(485\) 2.70326 0.122749
\(486\) −0.901740 −0.0409038
\(487\) −9.54854 −0.432686 −0.216343 0.976317i \(-0.569413\pi\)
−0.216343 + 0.976317i \(0.569413\pi\)
\(488\) −36.4567 −1.65032
\(489\) 21.1986 0.958636
\(490\) −0.569052 −0.0257072
\(491\) −36.1797 −1.63277 −0.816384 0.577510i \(-0.804025\pi\)
−0.816384 + 0.577510i \(0.804025\pi\)
\(492\) −7.73931 −0.348915
\(493\) 0 0
\(494\) −21.4398 −0.964622
\(495\) −0.233129 −0.0104784
\(496\) 2.11378 0.0949117
\(497\) −9.27556 −0.416066
\(498\) −0.396715 −0.0177772
\(499\) −3.97400 −0.177901 −0.0889504 0.996036i \(-0.528351\pi\)
−0.0889504 + 0.996036i \(0.528351\pi\)
\(500\) 7.19155 0.321616
\(501\) −1.58681 −0.0708936
\(502\) −10.1849 −0.454576
\(503\) −18.5350 −0.826434 −0.413217 0.910633i \(-0.635595\pi\)
−0.413217 + 0.910633i \(0.635595\pi\)
\(504\) −2.87372 −0.128006
\(505\) −1.18331 −0.0526567
\(506\) 2.14808 0.0954940
\(507\) 4.07141 0.180818
\(508\) 0.502004 0.0222728
\(509\) 12.0683 0.534916 0.267458 0.963569i \(-0.413816\pi\)
0.267458 + 0.963569i \(0.413816\pi\)
\(510\) 0 0
\(511\) −13.4598 −0.595429
\(512\) 2.45887 0.108668
\(513\) −5.75446 −0.254065
\(514\) −7.19545 −0.317378
\(515\) −6.66676 −0.293773
\(516\) −5.00617 −0.220384
\(517\) −2.96826 −0.130544
\(518\) 0.871041 0.0382714
\(519\) −1.09964 −0.0482690
\(520\) −7.49291 −0.328586
\(521\) −14.7173 −0.644777 −0.322388 0.946608i \(-0.604486\pi\)
−0.322388 + 0.946608i \(0.604486\pi\)
\(522\) −0.598711 −0.0262048
\(523\) 8.29706 0.362805 0.181403 0.983409i \(-0.441936\pi\)
0.181403 + 0.983409i \(0.441936\pi\)
\(524\) 19.8708 0.868058
\(525\) 4.60176 0.200837
\(526\) −14.0458 −0.612426
\(527\) 0 0
\(528\) 0.0803962 0.00349880
\(529\) 18.5802 0.807836
\(530\) −4.42077 −0.192026
\(531\) −8.34114 −0.361974
\(532\) −6.82976 −0.296108
\(533\) −26.9424 −1.16700
\(534\) 2.05951 0.0891237
\(535\) 12.7520 0.551316
\(536\) 9.72405 0.420015
\(537\) 6.30828 0.272222
\(538\) 2.18192 0.0940693
\(539\) −0.369425 −0.0159123
\(540\) −0.748982 −0.0322311
\(541\) −4.45360 −0.191475 −0.0957375 0.995407i \(-0.530521\pi\)
−0.0957375 + 0.995407i \(0.530521\pi\)
\(542\) −13.3348 −0.572777
\(543\) −6.43953 −0.276347
\(544\) 0 0
\(545\) −1.56441 −0.0670118
\(546\) −3.72577 −0.159448
\(547\) −33.2590 −1.42205 −0.711025 0.703167i \(-0.751769\pi\)
−0.711025 + 0.703167i \(0.751769\pi\)
\(548\) −26.6650 −1.13907
\(549\) −12.6862 −0.541434
\(550\) −1.53296 −0.0653658
\(551\) −3.82067 −0.162766
\(552\) 18.5306 0.788713
\(553\) −4.51167 −0.191856
\(554\) −26.9481 −1.14491
\(555\) 0.609576 0.0258751
\(556\) −18.3265 −0.777215
\(557\) 29.5275 1.25112 0.625561 0.780176i \(-0.284870\pi\)
0.625561 + 0.780176i \(0.284870\pi\)
\(558\) 8.75856 0.370779
\(559\) −17.4277 −0.737112
\(560\) 0.137335 0.00580345
\(561\) 0 0
\(562\) 14.3934 0.607149
\(563\) −3.07367 −0.129540 −0.0647700 0.997900i \(-0.520631\pi\)
−0.0647700 + 0.997900i \(0.520631\pi\)
\(564\) −9.53623 −0.401548
\(565\) 4.74214 0.199503
\(566\) −6.08247 −0.255665
\(567\) −1.00000 −0.0419961
\(568\) 26.6554 1.11844
\(569\) −37.5949 −1.57606 −0.788030 0.615637i \(-0.788899\pi\)
−0.788030 + 0.615637i \(0.788899\pi\)
\(570\) 3.27459 0.137157
\(571\) −11.4605 −0.479606 −0.239803 0.970822i \(-0.577083\pi\)
−0.239803 + 0.970822i \(0.577083\pi\)
\(572\) −1.81160 −0.0757467
\(573\) 20.9490 0.875157
\(574\) 5.88008 0.245430
\(575\) −29.6734 −1.23747
\(576\) 5.44100 0.226708
\(577\) 23.5806 0.981672 0.490836 0.871252i \(-0.336691\pi\)
0.490836 + 0.871252i \(0.336691\pi\)
\(578\) 0 0
\(579\) −7.87040 −0.327082
\(580\) −0.497287 −0.0206487
\(581\) −0.439943 −0.0182519
\(582\) −3.86277 −0.160117
\(583\) −2.86993 −0.118861
\(584\) 38.6799 1.60059
\(585\) −2.60739 −0.107802
\(586\) −0.970540 −0.0400926
\(587\) 40.1399 1.65675 0.828376 0.560172i \(-0.189265\pi\)
0.828376 + 0.560172i \(0.189265\pi\)
\(588\) −1.18686 −0.0489455
\(589\) 55.8927 2.30302
\(590\) 4.74654 0.195412
\(591\) −12.1738 −0.500762
\(592\) −0.210217 −0.00863984
\(593\) −26.7909 −1.10017 −0.550085 0.835108i \(-0.685405\pi\)
−0.550085 + 0.835108i \(0.685405\pi\)
\(594\) 0.333125 0.0136683
\(595\) 0 0
\(596\) 3.94036 0.161404
\(597\) −22.1369 −0.906004
\(598\) 24.0248 0.982447
\(599\) −15.6195 −0.638196 −0.319098 0.947722i \(-0.603380\pi\)
−0.319098 + 0.947722i \(0.603380\pi\)
\(600\) −13.2242 −0.539876
\(601\) 14.9065 0.608048 0.304024 0.952664i \(-0.401670\pi\)
0.304024 + 0.952664i \(0.401670\pi\)
\(602\) 3.80353 0.155020
\(603\) 3.38378 0.137798
\(604\) 17.7451 0.722036
\(605\) −6.85554 −0.278717
\(606\) 1.69087 0.0686869
\(607\) −17.7082 −0.718754 −0.359377 0.933192i \(-0.617011\pi\)
−0.359377 + 0.933192i \(0.617011\pi\)
\(608\) 31.9442 1.29551
\(609\) −0.663950 −0.0269046
\(610\) 7.21912 0.292294
\(611\) −33.1979 −1.34304
\(612\) 0 0
\(613\) −6.55292 −0.264670 −0.132335 0.991205i \(-0.542247\pi\)
−0.132335 + 0.991205i \(0.542247\pi\)
\(614\) −3.69602 −0.149159
\(615\) 4.11502 0.165934
\(616\) 1.06163 0.0427741
\(617\) −26.9798 −1.08617 −0.543084 0.839679i \(-0.682743\pi\)
−0.543084 + 0.839679i \(0.682743\pi\)
\(618\) 9.52633 0.383205
\(619\) −23.7257 −0.953615 −0.476808 0.879008i \(-0.658206\pi\)
−0.476808 + 0.879008i \(0.658206\pi\)
\(620\) 7.27483 0.292164
\(621\) 6.44827 0.258760
\(622\) 23.6648 0.948871
\(623\) 2.28393 0.0915036
\(624\) 0.899175 0.0359958
\(625\) 19.1850 0.767402
\(626\) 8.64570 0.345552
\(627\) 2.12584 0.0848978
\(628\) −23.1004 −0.921805
\(629\) 0 0
\(630\) 0.569052 0.0226716
\(631\) 14.2900 0.568875 0.284437 0.958695i \(-0.408193\pi\)
0.284437 + 0.958695i \(0.408193\pi\)
\(632\) 12.9653 0.515731
\(633\) 10.8176 0.429961
\(634\) −14.4609 −0.574316
\(635\) −0.266917 −0.0105923
\(636\) −9.22034 −0.365610
\(637\) −4.13176 −0.163706
\(638\) 0.221179 0.00875654
\(639\) 9.27556 0.366936
\(640\) 3.91008 0.154559
\(641\) −13.6147 −0.537749 −0.268874 0.963175i \(-0.586652\pi\)
−0.268874 + 0.963175i \(0.586652\pi\)
\(642\) −18.2217 −0.719153
\(643\) 11.8861 0.468744 0.234372 0.972147i \(-0.424697\pi\)
0.234372 + 0.972147i \(0.424697\pi\)
\(644\) 7.65322 0.301579
\(645\) 2.66180 0.104808
\(646\) 0 0
\(647\) −4.26169 −0.167544 −0.0837722 0.996485i \(-0.526697\pi\)
−0.0837722 + 0.996485i \(0.526697\pi\)
\(648\) 2.87372 0.112891
\(649\) 3.08142 0.120956
\(650\) −17.1451 −0.672487
\(651\) 9.71295 0.380680
\(652\) −25.1599 −0.985338
\(653\) −8.89111 −0.347936 −0.173968 0.984751i \(-0.555659\pi\)
−0.173968 + 0.984751i \(0.555659\pi\)
\(654\) 2.23543 0.0874121
\(655\) −10.5654 −0.412822
\(656\) −1.41909 −0.0554063
\(657\) 13.4598 0.525119
\(658\) 7.24532 0.282452
\(659\) 30.2214 1.17726 0.588629 0.808403i \(-0.299668\pi\)
0.588629 + 0.808403i \(0.299668\pi\)
\(660\) 0.276693 0.0107702
\(661\) 46.7834 1.81966 0.909832 0.414976i \(-0.136210\pi\)
0.909832 + 0.414976i \(0.136210\pi\)
\(662\) −16.4992 −0.641259
\(663\) 0 0
\(664\) 1.26428 0.0490634
\(665\) 3.63141 0.140820
\(666\) −0.871041 −0.0337522
\(667\) 4.28133 0.165774
\(668\) 1.88333 0.0728683
\(669\) −24.2559 −0.937788
\(670\) −1.92555 −0.0743904
\(671\) 4.68660 0.180924
\(672\) 5.55121 0.214142
\(673\) 41.7293 1.60854 0.804272 0.594261i \(-0.202555\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(674\) −6.57828 −0.253386
\(675\) −4.60176 −0.177122
\(676\) −4.83221 −0.185854
\(677\) 29.1207 1.11920 0.559601 0.828762i \(-0.310955\pi\)
0.559601 + 0.828762i \(0.310955\pi\)
\(678\) −6.77619 −0.260238
\(679\) −4.28369 −0.164393
\(680\) 0 0
\(681\) −4.57003 −0.175124
\(682\) −3.23563 −0.123899
\(683\) −41.1086 −1.57298 −0.786489 0.617605i \(-0.788103\pi\)
−0.786489 + 0.617605i \(0.788103\pi\)
\(684\) 6.82976 0.261142
\(685\) 14.1779 0.541709
\(686\) 0.901740 0.0344286
\(687\) 9.40610 0.358865
\(688\) −0.917940 −0.0349961
\(689\) −32.0982 −1.22284
\(690\) −3.66941 −0.139692
\(691\) −4.06354 −0.154584 −0.0772922 0.997008i \(-0.524627\pi\)
−0.0772922 + 0.997008i \(0.524627\pi\)
\(692\) 1.30513 0.0496135
\(693\) 0.369425 0.0140333
\(694\) 20.3100 0.770955
\(695\) 9.74424 0.369620
\(696\) 1.90801 0.0723229
\(697\) 0 0
\(698\) −24.2726 −0.918730
\(699\) 9.21166 0.348417
\(700\) −5.46167 −0.206432
\(701\) 25.4533 0.961359 0.480680 0.876896i \(-0.340390\pi\)
0.480680 + 0.876896i \(0.340390\pi\)
\(702\) 3.72577 0.140620
\(703\) −5.55855 −0.209645
\(704\) −2.01004 −0.0757562
\(705\) 5.07045 0.190964
\(706\) −18.1384 −0.682648
\(707\) 1.87512 0.0705211
\(708\) 9.89980 0.372057
\(709\) 4.59158 0.172440 0.0862202 0.996276i \(-0.472521\pi\)
0.0862202 + 0.996276i \(0.472521\pi\)
\(710\) −5.27828 −0.198090
\(711\) 4.51167 0.169201
\(712\) −6.56337 −0.245973
\(713\) −62.6318 −2.34558
\(714\) 0 0
\(715\) 0.963233 0.0360229
\(716\) −7.48707 −0.279805
\(717\) 28.3078 1.05717
\(718\) −5.85147 −0.218375
\(719\) 16.3658 0.610340 0.305170 0.952298i \(-0.401287\pi\)
0.305170 + 0.952298i \(0.401287\pi\)
\(720\) −0.137335 −0.00511816
\(721\) 10.5644 0.393438
\(722\) −12.7270 −0.473648
\(723\) −18.0223 −0.670257
\(724\) 7.64284 0.284044
\(725\) −3.05534 −0.113472
\(726\) 9.79608 0.363567
\(727\) 4.97474 0.184503 0.0922515 0.995736i \(-0.470594\pi\)
0.0922515 + 0.995736i \(0.470594\pi\)
\(728\) 11.8735 0.440062
\(729\) 1.00000 0.0370370
\(730\) −7.65936 −0.283486
\(731\) 0 0
\(732\) 15.0568 0.556516
\(733\) 24.9209 0.920476 0.460238 0.887796i \(-0.347764\pi\)
0.460238 + 0.887796i \(0.347764\pi\)
\(734\) −6.07880 −0.224373
\(735\) 0.631060 0.0232770
\(736\) −35.7957 −1.31945
\(737\) −1.25005 −0.0460463
\(738\) −5.88008 −0.216449
\(739\) 23.4573 0.862890 0.431445 0.902139i \(-0.358004\pi\)
0.431445 + 0.902139i \(0.358004\pi\)
\(740\) −0.723484 −0.0265958
\(741\) 23.7760 0.873434
\(742\) 7.00531 0.257173
\(743\) 5.87063 0.215373 0.107686 0.994185i \(-0.465656\pi\)
0.107686 + 0.994185i \(0.465656\pi\)
\(744\) −27.9123 −1.02332
\(745\) −2.09511 −0.0767588
\(746\) −11.9785 −0.438564
\(747\) 0.439943 0.0160967
\(748\) 0 0
\(749\) −20.2072 −0.738357
\(750\) 5.46391 0.199514
\(751\) −11.6601 −0.425481 −0.212741 0.977109i \(-0.568239\pi\)
−0.212741 + 0.977109i \(0.568239\pi\)
\(752\) −1.74858 −0.0637641
\(753\) 11.2948 0.411604
\(754\) 2.47373 0.0900878
\(755\) −9.43511 −0.343379
\(756\) 1.18686 0.0431658
\(757\) −38.8880 −1.41341 −0.706704 0.707510i \(-0.749819\pi\)
−0.706704 + 0.707510i \(0.749819\pi\)
\(758\) −12.0956 −0.439332
\(759\) −2.38215 −0.0864667
\(760\) −10.4357 −0.378541
\(761\) −17.4871 −0.633908 −0.316954 0.948441i \(-0.602660\pi\)
−0.316954 + 0.948441i \(0.602660\pi\)
\(762\) 0.381406 0.0138169
\(763\) 2.47901 0.0897463
\(764\) −24.8636 −0.899534
\(765\) 0 0
\(766\) −25.4367 −0.919066
\(767\) 34.4635 1.24441
\(768\) −16.4692 −0.594282
\(769\) −14.3626 −0.517928 −0.258964 0.965887i \(-0.583381\pi\)
−0.258964 + 0.965887i \(0.583381\pi\)
\(770\) −0.210222 −0.00757588
\(771\) 7.97952 0.287375
\(772\) 9.34109 0.336193
\(773\) 17.7643 0.638937 0.319469 0.947597i \(-0.396496\pi\)
0.319469 + 0.947597i \(0.396496\pi\)
\(774\) −3.80353 −0.136715
\(775\) 44.6967 1.60555
\(776\) 12.3101 0.441908
\(777\) −0.965956 −0.0346535
\(778\) 2.02245 0.0725085
\(779\) −37.5237 −1.34443
\(780\) 3.09461 0.110805
\(781\) −3.42662 −0.122614
\(782\) 0 0
\(783\) 0.663950 0.0237276
\(784\) −0.217625 −0.00777233
\(785\) 12.2826 0.438383
\(786\) 15.0971 0.538497
\(787\) 38.9112 1.38703 0.693517 0.720440i \(-0.256060\pi\)
0.693517 + 0.720440i \(0.256060\pi\)
\(788\) 14.4486 0.514710
\(789\) 15.5763 0.554532
\(790\) −2.56737 −0.0913431
\(791\) −7.51457 −0.267187
\(792\) −1.06163 −0.0377232
\(793\) 52.4163 1.86136
\(794\) −10.9083 −0.387122
\(795\) 4.90249 0.173873
\(796\) 26.2735 0.931240
\(797\) 32.8439 1.16339 0.581696 0.813406i \(-0.302389\pi\)
0.581696 + 0.813406i \(0.302389\pi\)
\(798\) −5.18903 −0.183690
\(799\) 0 0
\(800\) 25.5453 0.903164
\(801\) −2.28393 −0.0806986
\(802\) −14.0987 −0.497844
\(803\) −4.97240 −0.175472
\(804\) −4.01609 −0.141636
\(805\) −4.06925 −0.143422
\(806\) −36.1882 −1.27468
\(807\) −2.41968 −0.0851767
\(808\) −5.38857 −0.189569
\(809\) −2.13795 −0.0751665 −0.0375832 0.999294i \(-0.511966\pi\)
−0.0375832 + 0.999294i \(0.511966\pi\)
\(810\) −0.569052 −0.0199945
\(811\) 44.7014 1.56968 0.784839 0.619700i \(-0.212746\pi\)
0.784839 + 0.619700i \(0.212746\pi\)
\(812\) 0.788018 0.0276540
\(813\) 14.7878 0.518631
\(814\) 0.321784 0.0112785
\(815\) 13.3776 0.468597
\(816\) 0 0
\(817\) −24.2722 −0.849177
\(818\) −15.3121 −0.535376
\(819\) 4.13176 0.144375
\(820\) −4.88397 −0.170556
\(821\) −46.4962 −1.62273 −0.811364 0.584542i \(-0.801274\pi\)
−0.811364 + 0.584542i \(0.801274\pi\)
\(822\) −20.2592 −0.706621
\(823\) −12.4481 −0.433913 −0.216957 0.976181i \(-0.569613\pi\)
−0.216957 + 0.976181i \(0.569613\pi\)
\(824\) −30.3591 −1.05761
\(825\) 1.70001 0.0591866
\(826\) −7.52154 −0.261708
\(827\) 1.54463 0.0537121 0.0268560 0.999639i \(-0.491450\pi\)
0.0268560 + 0.999639i \(0.491450\pi\)
\(828\) −7.65322 −0.265968
\(829\) −30.5764 −1.06196 −0.530981 0.847384i \(-0.678177\pi\)
−0.530981 + 0.847384i \(0.678177\pi\)
\(830\) −0.250351 −0.00868980
\(831\) 29.8845 1.03668
\(832\) −22.4809 −0.779384
\(833\) 0 0
\(834\) −13.9238 −0.482143
\(835\) −1.00137 −0.0346540
\(836\) −2.52308 −0.0872626
\(837\) −9.71295 −0.335729
\(838\) −17.8611 −0.617001
\(839\) 21.9508 0.757826 0.378913 0.925432i \(-0.376298\pi\)
0.378913 + 0.925432i \(0.376298\pi\)
\(840\) −1.81349 −0.0625714
\(841\) −28.5592 −0.984799
\(842\) 19.3833 0.667991
\(843\) −15.9618 −0.549754
\(844\) −12.8390 −0.441938
\(845\) 2.56930 0.0883867
\(846\) −7.24532 −0.249099
\(847\) 10.8635 0.373275
\(848\) −1.69066 −0.0580574
\(849\) 6.74526 0.231497
\(850\) 0 0
\(851\) 6.22875 0.213519
\(852\) −11.0088 −0.377156
\(853\) 26.9316 0.922121 0.461061 0.887369i \(-0.347469\pi\)
0.461061 + 0.887369i \(0.347469\pi\)
\(854\) −11.4397 −0.391458
\(855\) −3.63141 −0.124192
\(856\) 58.0701 1.98479
\(857\) −2.61387 −0.0892881 −0.0446441 0.999003i \(-0.514215\pi\)
−0.0446441 + 0.999003i \(0.514215\pi\)
\(858\) −1.37639 −0.0469893
\(859\) 6.38797 0.217955 0.108977 0.994044i \(-0.465242\pi\)
0.108977 + 0.994044i \(0.465242\pi\)
\(860\) −3.15920 −0.107728
\(861\) −6.52081 −0.222228
\(862\) 8.82656 0.300634
\(863\) 47.3237 1.61092 0.805459 0.592652i \(-0.201919\pi\)
0.805459 + 0.592652i \(0.201919\pi\)
\(864\) −5.55121 −0.188856
\(865\) −0.693940 −0.0235947
\(866\) 25.9006 0.880137
\(867\) 0 0
\(868\) −11.5279 −0.391284
\(869\) −1.66672 −0.0565396
\(870\) −0.377822 −0.0128094
\(871\) −13.9810 −0.473727
\(872\) −7.12400 −0.241249
\(873\) 4.28369 0.144981
\(874\) 33.4603 1.13181
\(875\) 6.05929 0.204841
\(876\) −15.9750 −0.539746
\(877\) 7.62042 0.257323 0.128662 0.991689i \(-0.458932\pi\)
0.128662 + 0.991689i \(0.458932\pi\)
\(878\) −16.3517 −0.551843
\(879\) 1.07630 0.0363026
\(880\) 0.0507348 0.00171027
\(881\) −21.2295 −0.715241 −0.357621 0.933867i \(-0.616412\pi\)
−0.357621 + 0.933867i \(0.616412\pi\)
\(882\) −0.901740 −0.0303632
\(883\) 43.4020 1.46059 0.730297 0.683130i \(-0.239382\pi\)
0.730297 + 0.683130i \(0.239382\pi\)
\(884\) 0 0
\(885\) −5.26376 −0.176939
\(886\) −27.5014 −0.923927
\(887\) 2.77055 0.0930261 0.0465130 0.998918i \(-0.485189\pi\)
0.0465130 + 0.998918i \(0.485189\pi\)
\(888\) 2.77589 0.0931528
\(889\) 0.422967 0.0141859
\(890\) 1.29967 0.0435652
\(891\) −0.369425 −0.0123762
\(892\) 28.7885 0.963909
\(893\) −46.2360 −1.54723
\(894\) 2.99376 0.100126
\(895\) 3.98090 0.133067
\(896\) −6.19605 −0.206995
\(897\) −26.6427 −0.889574
\(898\) −12.9388 −0.431775
\(899\) −6.44891 −0.215083
\(900\) 5.46167 0.182056
\(901\) 0 0
\(902\) 2.17225 0.0723279
\(903\) −4.21798 −0.140366
\(904\) 21.5948 0.718232
\(905\) −4.06373 −0.135083
\(906\) 13.4821 0.447913
\(907\) −49.9548 −1.65872 −0.829361 0.558714i \(-0.811295\pi\)
−0.829361 + 0.558714i \(0.811295\pi\)
\(908\) 5.42401 0.180002
\(909\) −1.87512 −0.0621937
\(910\) −2.35119 −0.0779410
\(911\) 53.0869 1.75885 0.879423 0.476041i \(-0.157929\pi\)
0.879423 + 0.476041i \(0.157929\pi\)
\(912\) 1.25232 0.0414683
\(913\) −0.162526 −0.00537882
\(914\) 10.7515 0.355629
\(915\) −8.00576 −0.264662
\(916\) −11.1638 −0.368861
\(917\) 16.7422 0.552877
\(918\) 0 0
\(919\) −2.55712 −0.0843518 −0.0421759 0.999110i \(-0.513429\pi\)
−0.0421759 + 0.999110i \(0.513429\pi\)
\(920\) 11.6939 0.385536
\(921\) 4.09877 0.135059
\(922\) −15.6516 −0.515457
\(923\) −38.3244 −1.26146
\(924\) −0.438457 −0.0144242
\(925\) −4.44510 −0.146154
\(926\) −13.1370 −0.431708
\(927\) −10.5644 −0.346980
\(928\) −3.68572 −0.120990
\(929\) −10.3456 −0.339428 −0.169714 0.985493i \(-0.554284\pi\)
−0.169714 + 0.985493i \(0.554284\pi\)
\(930\) 5.52718 0.181243
\(931\) −5.75446 −0.188595
\(932\) −10.9330 −0.358122
\(933\) −26.2434 −0.859172
\(934\) 11.8940 0.389184
\(935\) 0 0
\(936\) −11.8735 −0.388098
\(937\) −14.3793 −0.469752 −0.234876 0.972025i \(-0.575468\pi\)
−0.234876 + 0.972025i \(0.575468\pi\)
\(938\) 3.05129 0.0996282
\(939\) −9.58780 −0.312886
\(940\) −6.01793 −0.196283
\(941\) −41.0815 −1.33922 −0.669609 0.742713i \(-0.733539\pi\)
−0.669609 + 0.742713i \(0.733539\pi\)
\(942\) −17.5509 −0.571839
\(943\) 42.0479 1.36927
\(944\) 1.81524 0.0590811
\(945\) −0.631060 −0.0205284
\(946\) 1.40512 0.0456843
\(947\) 7.20008 0.233971 0.116986 0.993134i \(-0.462677\pi\)
0.116986 + 0.993134i \(0.462677\pi\)
\(948\) −5.35473 −0.173914
\(949\) −55.6128 −1.80527
\(950\) −23.8787 −0.774726
\(951\) 16.0367 0.520025
\(952\) 0 0
\(953\) 54.6671 1.77084 0.885421 0.464790i \(-0.153870\pi\)
0.885421 + 0.464790i \(0.153870\pi\)
\(954\) −7.00531 −0.226805
\(955\) 13.2201 0.427792
\(956\) −33.5975 −1.08662
\(957\) −0.245280 −0.00792876
\(958\) −16.1326 −0.521222
\(959\) −22.4668 −0.725491
\(960\) 3.43360 0.110819
\(961\) 63.3414 2.04327
\(962\) 3.59893 0.116034
\(963\) 20.2072 0.651169
\(964\) 21.3900 0.688927
\(965\) −4.96669 −0.159883
\(966\) 5.81467 0.187084
\(967\) −8.09878 −0.260439 −0.130220 0.991485i \(-0.541568\pi\)
−0.130220 + 0.991485i \(0.541568\pi\)
\(968\) −31.2188 −1.00341
\(969\) 0 0
\(970\) −2.43764 −0.0782680
\(971\) 54.9130 1.76224 0.881121 0.472891i \(-0.156790\pi\)
0.881121 + 0.472891i \(0.156790\pi\)
\(972\) −1.18686 −0.0380687
\(973\) −15.4411 −0.495018
\(974\) 8.61031 0.275892
\(975\) 19.0134 0.608915
\(976\) 2.76084 0.0883724
\(977\) −0.689908 −0.0220721 −0.0110361 0.999939i \(-0.503513\pi\)
−0.0110361 + 0.999939i \(0.503513\pi\)
\(978\) −19.1157 −0.611252
\(979\) 0.843739 0.0269660
\(980\) −0.748982 −0.0239254
\(981\) −2.47901 −0.0791488
\(982\) 32.6247 1.04110
\(983\) −42.3641 −1.35120 −0.675602 0.737266i \(-0.736116\pi\)
−0.675602 + 0.737266i \(0.736116\pi\)
\(984\) 18.7390 0.597378
\(985\) −7.68238 −0.244781
\(986\) 0 0
\(987\) −8.03481 −0.255751
\(988\) −28.2189 −0.897763
\(989\) 27.1987 0.864869
\(990\) 0.210222 0.00668130
\(991\) 10.9091 0.346540 0.173270 0.984874i \(-0.444567\pi\)
0.173270 + 0.984874i \(0.444567\pi\)
\(992\) 53.9186 1.71192
\(993\) 18.2970 0.580639
\(994\) 8.36415 0.265295
\(995\) −13.9697 −0.442870
\(996\) −0.522153 −0.0165450
\(997\) −48.6167 −1.53971 −0.769853 0.638222i \(-0.779670\pi\)
−0.769853 + 0.638222i \(0.779670\pi\)
\(998\) 3.58352 0.113434
\(999\) 0.965956 0.0305615
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6069.2.a.be.1.3 10
17.2 even 8 357.2.k.b.106.3 yes 20
17.9 even 8 357.2.k.b.64.8 20
17.16 even 2 6069.2.a.bd.1.3 10
51.2 odd 8 1071.2.n.b.820.8 20
51.26 odd 8 1071.2.n.b.64.3 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.k.b.64.8 20 17.9 even 8
357.2.k.b.106.3 yes 20 17.2 even 8
1071.2.n.b.64.3 20 51.26 odd 8
1071.2.n.b.820.8 20 51.2 odd 8
6069.2.a.bd.1.3 10 17.16 even 2
6069.2.a.be.1.3 10 1.1 even 1 trivial