Properties

Label 605.2.j.i.444.4
Level $605$
Weight $2$
Character 605.444
Analytic conductor $4.831$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [605,2,Mod(9,605)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(605, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 6])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("605.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.j (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,6,3,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: 16.0.343361479062744140625.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + \cdots + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 444.4
Root \(-1.70149 - 0.323920i\) of defining polynomial
Character \(\chi\) \(=\) 605.444
Dual form 605.2.j.i.124.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.48377 - 2.04223i) q^{2} +(-0.753510 - 0.244830i) q^{3} +(-1.35111 - 4.15829i) q^{4} +(-1.80602 - 1.31844i) q^{5} +(-1.61803 + 1.17557i) q^{6} +(3.29456 - 1.07047i) q^{7} +(-5.69534 - 1.85053i) q^{8} +(-1.91922 - 1.39439i) q^{9} +(-5.37228 + 1.73205i) q^{10} +3.46410i q^{12} +(2.70222 - 8.31657i) q^{14} +(1.03806 + 1.43563i) q^{15} +(-5.15528 + 3.74553i) q^{16} +(0.931389 + 1.28195i) q^{17} +(-5.69534 + 1.85053i) q^{18} +(-1.23607 + 3.80423i) q^{19} +(-3.04233 + 9.29131i) q^{20} -2.74456 q^{21} +0.792287i q^{23} +(3.83843 + 2.78878i) q^{24} +(1.52342 + 4.76227i) q^{25} +(2.50184 + 3.44349i) q^{27} +(-8.90261 - 12.2534i) q^{28} +(-2.70222 - 8.31657i) q^{29} +(4.47212 + 0.0101793i) q^{30} +(-2.72823 - 1.98218i) q^{31} +4.10891i q^{32} +4.00000 q^{34} +(-7.36138 - 2.41040i) q^{35} +(-3.20521 + 9.86463i) q^{36} +(-1.03403 + 0.335976i) q^{37} +(5.93507 + 8.16893i) q^{38} +(7.84609 + 10.8511i) q^{40} +(2.70222 - 8.31657i) q^{41} +(-4.07230 + 5.60503i) q^{42} +3.46410i q^{43} +(1.62772 + 5.04868i) q^{45} +(1.61803 + 1.17557i) q^{46} +(6.30860 + 2.04979i) q^{47} +(4.80158 - 1.56013i) q^{48} +(4.04508 - 2.93893i) q^{49} +(11.9861 + 3.95492i) q^{50} +(-0.387951 - 1.19399i) q^{51} +(5.93507 - 8.16893i) q^{53} +10.7446 q^{54} -20.7446 q^{56} +(1.86278 - 2.56389i) q^{57} +(-20.9938 - 6.82131i) q^{58} +(2.27816 + 7.01146i) q^{59} +(4.56722 - 6.25624i) q^{60} +(0.602364 - 0.437643i) q^{61} +(-8.09613 + 2.63059i) q^{62} +(-7.81561 - 2.53945i) q^{63} +(-1.91922 - 1.39439i) q^{64} -9.30506i q^{67} +(4.07230 - 5.60503i) q^{68} +(0.193976 - 0.596996i) q^{69} +(-15.8452 + 11.4572i) q^{70} +(8.18470 - 5.94653i) q^{71} +(8.35023 + 11.4931i) q^{72} +(6.58911 - 2.14093i) q^{73} +(-0.848116 + 2.61023i) q^{74} +(0.0180337 - 3.96139i) q^{75} +17.4891 q^{76} +(1.01567 + 0.737928i) q^{79} +(14.2488 + 0.0324327i) q^{80} +(1.15713 + 3.56129i) q^{81} +(-12.9749 - 17.8584i) q^{82} +(-3.89893 - 5.36641i) q^{83} +(3.70820 + 11.4127i) q^{84} +(0.00806494 - 3.54321i) q^{85} +(7.07450 + 5.13992i) q^{86} +6.92820i q^{87} -1.37228 q^{89} +(12.7257 + 4.16689i) q^{90} +(3.29456 - 1.07047i) q^{92} +(1.57045 + 2.16154i) q^{93} +(13.5466 - 9.84221i) q^{94} +(7.24802 - 5.24083i) q^{95} +(1.00599 - 3.09610i) q^{96} +(-3.43323 + 4.72544i) q^{97} -12.6217i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 6 q^{4} + 3 q^{5} - 8 q^{6} + 2 q^{9} - 40 q^{10} - 12 q^{14} - q^{15} - 14 q^{16} + 16 q^{19} + 12 q^{20} + 48 q^{21} - 4 q^{24} - q^{25} + 12 q^{29} + 6 q^{30} - 2 q^{31} + 64 q^{34} - 18 q^{35}+ \cdots - 36 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48377 2.04223i 1.04918 1.44408i 0.159667 0.987171i \(-0.448958\pi\)
0.889515 0.456905i \(-0.151042\pi\)
\(3\) −0.753510 0.244830i −0.435039 0.141353i 0.0833066 0.996524i \(-0.473452\pi\)
−0.518346 + 0.855171i \(0.673452\pi\)
\(4\) −1.35111 4.15829i −0.675555 2.07914i
\(5\) −1.80602 1.31844i −0.807677 0.589625i
\(6\) −1.61803 + 1.17557i −0.660560 + 0.479925i
\(7\) 3.29456 1.07047i 1.24523 0.404598i 0.389018 0.921230i \(-0.372814\pi\)
0.856208 + 0.516632i \(0.172814\pi\)
\(8\) −5.69534 1.85053i −2.01361 0.654261i
\(9\) −1.91922 1.39439i −0.639739 0.464797i
\(10\) −5.37228 + 1.73205i −1.69886 + 0.547723i
\(11\) 0 0
\(12\) 3.46410i 1.00000i
\(13\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(14\) 2.70222 8.31657i 0.722198 2.22270i
\(15\) 1.03806 + 1.43563i 0.268026 + 0.370677i
\(16\) −5.15528 + 3.74553i −1.28882 + 0.936383i
\(17\) 0.931389 + 1.28195i 0.225895 + 0.310918i 0.906888 0.421372i \(-0.138451\pi\)
−0.680993 + 0.732290i \(0.738451\pi\)
\(18\) −5.69534 + 1.85053i −1.34241 + 0.436174i
\(19\) −1.23607 + 3.80423i −0.283573 + 0.872749i 0.703249 + 0.710943i \(0.251732\pi\)
−0.986823 + 0.161806i \(0.948268\pi\)
\(20\) −3.04233 + 9.29131i −0.680285 + 2.07760i
\(21\) −2.74456 −0.598913
\(22\) 0 0
\(23\) 0.792287i 0.165203i 0.996583 + 0.0826016i \(0.0263229\pi\)
−0.996583 + 0.0826016i \(0.973677\pi\)
\(24\) 3.83843 + 2.78878i 0.783517 + 0.569258i
\(25\) 1.52342 + 4.76227i 0.304684 + 0.952453i
\(26\) 0 0
\(27\) 2.50184 + 3.44349i 0.481480 + 0.662700i
\(28\) −8.90261 12.2534i −1.68244 2.31567i
\(29\) −2.70222 8.31657i −0.501789 1.54435i −0.806102 0.591777i \(-0.798427\pi\)
0.304313 0.952572i \(-0.401573\pi\)
\(30\) 4.47212 + 0.0101793i 0.816494 + 0.00185848i
\(31\) −2.72823 1.98218i −0.490005 0.356010i 0.315181 0.949032i \(-0.397935\pi\)
−0.805186 + 0.593022i \(0.797935\pi\)
\(32\) 4.10891i 0.726360i
\(33\) 0 0
\(34\) 4.00000 0.685994
\(35\) −7.36138 2.41040i −1.24430 0.407432i
\(36\) −3.20521 + 9.86463i −0.534202 + 1.64410i
\(37\) −1.03403 + 0.335976i −0.169993 + 0.0552341i −0.392777 0.919634i \(-0.628486\pi\)
0.222784 + 0.974868i \(0.428486\pi\)
\(38\) 5.93507 + 8.16893i 0.962796 + 1.32518i
\(39\) 0 0
\(40\) 7.84609 + 10.8511i 1.24058 + 1.71571i
\(41\) 2.70222 8.31657i 0.422016 1.29883i −0.483807 0.875174i \(-0.660747\pi\)
0.905823 0.423656i \(-0.139253\pi\)
\(42\) −4.07230 + 5.60503i −0.628369 + 0.864876i
\(43\) 3.46410i 0.528271i 0.964486 + 0.264135i \(0.0850865\pi\)
−0.964486 + 0.264135i \(0.914913\pi\)
\(44\) 0 0
\(45\) 1.62772 + 5.04868i 0.242646 + 0.752612i
\(46\) 1.61803 + 1.17557i 0.238566 + 0.173328i
\(47\) 6.30860 + 2.04979i 0.920203 + 0.298992i 0.730550 0.682859i \(-0.239264\pi\)
0.189653 + 0.981851i \(0.439264\pi\)
\(48\) 4.80158 1.56013i 0.693048 0.225185i
\(49\) 4.04508 2.93893i 0.577869 0.419847i
\(50\) 11.9861 + 3.95492i 1.69508 + 0.559310i
\(51\) −0.387951 1.19399i −0.0543241 0.167192i
\(52\) 0 0
\(53\) 5.93507 8.16893i 0.815245 1.12209i −0.175248 0.984524i \(-0.556073\pi\)
0.990493 0.137564i \(-0.0439274\pi\)
\(54\) 10.7446 1.46215
\(55\) 0 0
\(56\) −20.7446 −2.77211
\(57\) 1.86278 2.56389i 0.246731 0.339596i
\(58\) −20.9938 6.82131i −2.75663 0.895682i
\(59\) 2.27816 + 7.01146i 0.296591 + 0.912814i 0.982682 + 0.185298i \(0.0593251\pi\)
−0.686091 + 0.727516i \(0.740675\pi\)
\(60\) 4.56722 6.25624i 0.589625 0.807677i
\(61\) 0.602364 0.437643i 0.0771248 0.0560344i −0.548555 0.836115i \(-0.684822\pi\)
0.625680 + 0.780080i \(0.284822\pi\)
\(62\) −8.09613 + 2.63059i −1.02821 + 0.334086i
\(63\) −7.81561 2.53945i −0.984675 0.319940i
\(64\) −1.91922 1.39439i −0.239902 0.174299i
\(65\) 0 0
\(66\) 0 0
\(67\) 9.30506i 1.13679i −0.822754 0.568397i \(-0.807564\pi\)
0.822754 0.568397i \(-0.192436\pi\)
\(68\) 4.07230 5.60503i 0.493838 0.679710i
\(69\) 0.193976 0.596996i 0.0233519 0.0718699i
\(70\) −15.8452 + 11.4572i −1.89386 + 1.36940i
\(71\) 8.18470 5.94653i 0.971345 0.705723i 0.0155873 0.999879i \(-0.495038\pi\)
0.955758 + 0.294155i \(0.0950382\pi\)
\(72\) 8.35023 + 11.4931i 0.984084 + 1.35448i
\(73\) 6.58911 2.14093i 0.771197 0.250577i 0.103120 0.994669i \(-0.467117\pi\)
0.668077 + 0.744092i \(0.267117\pi\)
\(74\) −0.848116 + 2.61023i −0.0985915 + 0.303434i
\(75\) 0.0180337 3.96139i 0.00208235 0.457422i
\(76\) 17.4891 2.00614
\(77\) 0 0
\(78\) 0 0
\(79\) 1.01567 + 0.737928i 0.114272 + 0.0830233i 0.643453 0.765485i \(-0.277501\pi\)
−0.529182 + 0.848509i \(0.677501\pi\)
\(80\) 14.2488 + 0.0324327i 1.59307 + 0.00362609i
\(81\) 1.15713 + 3.56129i 0.128570 + 0.395699i
\(82\) −12.9749 17.8584i −1.43284 1.97213i
\(83\) −3.89893 5.36641i −0.427963 0.589040i 0.539521 0.841972i \(-0.318605\pi\)
−0.967484 + 0.252932i \(0.918605\pi\)
\(84\) 3.70820 + 11.4127i 0.404598 + 1.24523i
\(85\) 0.00806494 3.54321i 0.000874766 0.384315i
\(86\) 7.07450 + 5.13992i 0.762863 + 0.554252i
\(87\) 6.92820i 0.742781i
\(88\) 0 0
\(89\) −1.37228 −0.145462 −0.0727308 0.997352i \(-0.523171\pi\)
−0.0727308 + 0.997352i \(0.523171\pi\)
\(90\) 12.7257 + 4.16689i 1.34141 + 0.439228i
\(91\) 0 0
\(92\) 3.29456 1.07047i 0.343481 0.111604i
\(93\) 1.57045 + 2.16154i 0.162848 + 0.224142i
\(94\) 13.5466 9.84221i 1.39723 1.01515i
\(95\) 7.24802 5.24083i 0.743631 0.537698i
\(96\) 1.00599 3.09610i 0.102673 0.315995i
\(97\) −3.43323 + 4.72544i −0.348592 + 0.479796i −0.946926 0.321451i \(-0.895829\pi\)
0.598334 + 0.801247i \(0.295829\pi\)
\(98\) 12.6217i 1.27498i
\(99\) 0 0
\(100\) 17.7446 12.7692i 1.77446 1.27692i
\(101\) −4.85410 3.52671i −0.483001 0.350921i 0.319485 0.947591i \(-0.396490\pi\)
−0.802486 + 0.596670i \(0.796490\pi\)
\(102\) −3.01404 0.979321i −0.298434 0.0969672i
\(103\) 9.88367 3.21140i 0.973867 0.316429i 0.221491 0.975162i \(-0.428908\pi\)
0.752376 + 0.658734i \(0.228908\pi\)
\(104\) 0 0
\(105\) 4.95674 + 3.61855i 0.483728 + 0.353134i
\(106\) −7.87657 24.2416i −0.765040 2.35455i
\(107\) 6.30860 + 2.04979i 0.609875 + 0.198160i 0.597640 0.801765i \(-0.296105\pi\)
0.0122352 + 0.999925i \(0.496105\pi\)
\(108\) 10.9388 15.0559i 1.05258 1.44876i
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 0 0
\(111\) 0.861407 0.0817611
\(112\) −12.9749 + 17.8584i −1.22601 + 1.68746i
\(113\) −0.472992 0.153684i −0.0444954 0.0144574i 0.286685 0.958025i \(-0.407447\pi\)
−0.331180 + 0.943568i \(0.607447\pi\)
\(114\) −2.47214 7.60845i −0.231537 0.712597i
\(115\) 1.04458 1.43089i 0.0974080 0.133431i
\(116\) −30.9317 + 22.4732i −2.87194 + 2.08658i
\(117\) 0 0
\(118\) 17.6993 + 5.75085i 1.62935 + 0.529408i
\(119\) 4.44080 + 3.22643i 0.407087 + 0.295766i
\(120\) −3.25544 10.0974i −0.297179 0.921758i
\(121\) 0 0
\(122\) 1.87953i 0.170164i
\(123\) −4.07230 + 5.60503i −0.367187 + 0.505389i
\(124\) −4.55632 + 14.0229i −0.409170 + 1.25929i
\(125\) 3.52744 10.6093i 0.315504 0.948924i
\(126\) −16.7827 + 12.1933i −1.49512 + 1.08627i
\(127\) −4.83032 6.64836i −0.428621 0.589946i 0.539015 0.842296i \(-0.318797\pi\)
−0.967636 + 0.252350i \(0.918797\pi\)
\(128\) −13.5110 + 4.38998i −1.19421 + 0.388023i
\(129\) 0.848116 2.61023i 0.0746725 0.229818i
\(130\) 0 0
\(131\) −2.74456 −0.239794 −0.119897 0.992786i \(-0.538256\pi\)
−0.119897 + 0.992786i \(0.538256\pi\)
\(132\) 0 0
\(133\) 13.8564i 1.20150i
\(134\) −19.0031 13.8066i −1.64162 1.19271i
\(135\) 0.0216636 9.51755i 0.00186450 0.819140i
\(136\) −2.93230 9.02469i −0.251443 0.773861i
\(137\) 8.43692 + 11.6124i 0.720814 + 0.992116i 0.999496 + 0.0317325i \(0.0101025\pi\)
−0.278682 + 0.960383i \(0.589898\pi\)
\(138\) −0.931389 1.28195i −0.0792851 0.109127i
\(139\) 5.01649 + 15.4392i 0.425493 + 1.30953i 0.902522 + 0.430644i \(0.141714\pi\)
−0.477029 + 0.878888i \(0.658286\pi\)
\(140\) −0.0770881 + 33.8675i −0.00651514 + 2.86232i
\(141\) −4.25174 3.08907i −0.358061 0.260147i
\(142\) 25.5383i 2.14313i
\(143\) 0 0
\(144\) 15.1168 1.25974
\(145\) −6.08466 + 18.5826i −0.505303 + 1.54320i
\(146\) 5.40444 16.6331i 0.447274 1.37657i
\(147\) −3.76755 + 1.22415i −0.310742 + 0.100966i
\(148\) 2.79417 + 3.84584i 0.229679 + 0.316126i
\(149\) −9.29490 + 6.75314i −0.761468 + 0.553239i −0.899360 0.437209i \(-0.855967\pi\)
0.137892 + 0.990447i \(0.455967\pi\)
\(150\) −8.06333 5.91462i −0.658368 0.482927i
\(151\) −3.78042 + 11.6349i −0.307646 + 0.946837i 0.671031 + 0.741430i \(0.265852\pi\)
−0.978677 + 0.205407i \(0.934148\pi\)
\(152\) 14.0797 19.3790i 1.14201 1.57184i
\(153\) 3.75906i 0.303902i
\(154\) 0 0
\(155\) 2.31386 + 7.17687i 0.185854 + 0.576460i
\(156\) 0 0
\(157\) 23.2544 + 7.55580i 1.85590 + 0.603019i 0.995653 + 0.0931428i \(0.0296913\pi\)
0.860248 + 0.509876i \(0.170309\pi\)
\(158\) 3.01404 0.979321i 0.239784 0.0779106i
\(159\) −6.47214 + 4.70228i −0.513274 + 0.372915i
\(160\) 5.41736 7.42078i 0.428280 0.586664i
\(161\) 0.848116 + 2.61023i 0.0668409 + 0.205715i
\(162\) 8.98990 + 2.92100i 0.706313 + 0.229495i
\(163\) −2.03615 + 2.80252i −0.159483 + 0.219510i −0.881279 0.472596i \(-0.843317\pi\)
0.721796 + 0.692106i \(0.243317\pi\)
\(164\) −38.2337 −2.98555
\(165\) 0 0
\(166\) −16.7446 −1.29963
\(167\) 9.24935 12.7306i 0.715736 0.985126i −0.283918 0.958848i \(-0.591635\pi\)
0.999655 0.0262779i \(-0.00836549\pi\)
\(168\) 15.6312 + 5.07889i 1.20598 + 0.391845i
\(169\) 4.01722 + 12.3637i 0.309017 + 0.951057i
\(170\) −7.22408 5.27377i −0.554062 0.404480i
\(171\) 7.67686 5.57757i 0.587064 0.426527i
\(172\) 14.4047 4.68038i 1.09835 0.356876i
\(173\) −8.09613 2.63059i −0.615538 0.200000i −0.0153795 0.999882i \(-0.504896\pi\)
−0.600158 + 0.799881i \(0.704896\pi\)
\(174\) 14.1490 + 10.2798i 1.07263 + 0.779313i
\(175\) 10.1168 + 14.0588i 0.764762 + 1.06274i
\(176\) 0 0
\(177\) 5.84096i 0.439034i
\(178\) −2.03615 + 2.80252i −0.152616 + 0.210058i
\(179\) −3.97439 + 12.2319i −0.297060 + 0.914257i 0.685462 + 0.728109i \(0.259600\pi\)
−0.982522 + 0.186148i \(0.940400\pi\)
\(180\) 18.7946 13.5898i 1.40087 1.01293i
\(181\) −19.5109 + 14.1755i −1.45024 + 1.05366i −0.464461 + 0.885594i \(0.653752\pi\)
−0.985776 + 0.168065i \(0.946248\pi\)
\(182\) 0 0
\(183\) −0.561035 + 0.182291i −0.0414729 + 0.0134754i
\(184\) 1.46615 4.51235i 0.108086 0.332655i
\(185\) 2.31044 + 0.756526i 0.169867 + 0.0556209i
\(186\) 6.74456 0.494535
\(187\) 0 0
\(188\) 29.0024i 2.11522i
\(189\) 11.9286 + 8.66664i 0.867678 + 0.630405i
\(190\) 0.0513921 22.5783i 0.00372837 1.63800i
\(191\) −5.98636 18.4241i −0.433158 1.33312i −0.894962 0.446142i \(-0.852798\pi\)
0.461804 0.886982i \(-0.347202\pi\)
\(192\) 1.10476 + 1.52057i 0.0797291 + 0.109738i
\(193\) 9.66063 + 13.2967i 0.695387 + 0.957119i 0.999989 + 0.00463891i \(0.00147662\pi\)
−0.304602 + 0.952480i \(0.598523\pi\)
\(194\) 4.55632 + 14.0229i 0.327125 + 1.00679i
\(195\) 0 0
\(196\) −17.6862 12.8498i −1.26330 0.917844i
\(197\) 8.51278i 0.606510i −0.952909 0.303255i \(-0.901927\pi\)
0.952909 0.303255i \(-0.0980734\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0.136306 29.9419i 0.00963832 2.11721i
\(201\) −2.27816 + 7.01146i −0.160689 + 0.494550i
\(202\) −14.4047 + 4.68038i −1.01351 + 0.329310i
\(203\) −17.8052 24.5068i −1.24968 1.72004i
\(204\) −4.44080 + 3.22643i −0.310918 + 0.225895i
\(205\) −15.8452 + 11.4572i −1.10668 + 0.800205i
\(206\) 8.10666 24.9497i 0.564817 1.73833i
\(207\) 1.10476 1.52057i 0.0767860 0.105687i
\(208\) 0 0
\(209\) 0 0
\(210\) 14.7446 4.75372i 1.01747 0.328038i
\(211\) −1.20473 0.875286i −0.0829369 0.0602572i 0.545544 0.838082i \(-0.316323\pi\)
−0.628481 + 0.777825i \(0.716323\pi\)
\(212\) −41.9877 13.6426i −2.88373 0.936979i
\(213\) −7.62314 + 2.47691i −0.522329 + 0.169715i
\(214\) 13.5466 9.84221i 0.926029 0.672799i
\(215\) 4.56722 6.25624i 0.311482 0.426672i
\(216\) −7.87657 24.2416i −0.535933 1.64943i
\(217\) −11.1102 3.60991i −0.754208 0.245057i
\(218\) −14.8377 + 20.4223i −1.00493 + 1.38317i
\(219\) −5.48913 −0.370921
\(220\) 0 0
\(221\) 0 0
\(222\) 1.27813 1.75919i 0.0857823 0.118069i
\(223\) −2.26053 0.734490i −0.151376 0.0491851i 0.232349 0.972633i \(-0.425359\pi\)
−0.383725 + 0.923447i \(0.625359\pi\)
\(224\) 4.39845 + 13.5370i 0.293884 + 0.904482i
\(225\) 3.71669 11.2641i 0.247779 0.750938i
\(226\) −1.01567 + 0.737928i −0.0675614 + 0.0490862i
\(227\) 15.9117 5.17004i 1.05610 0.343148i 0.271040 0.962568i \(-0.412632\pi\)
0.785059 + 0.619420i \(0.212632\pi\)
\(228\) −13.1782 4.28187i −0.872749 0.283573i
\(229\) 11.8341 + 8.59796i 0.782018 + 0.568169i 0.905584 0.424167i \(-0.139433\pi\)
−0.123566 + 0.992336i \(0.539433\pi\)
\(230\) −1.37228 4.25639i −0.0904856 0.280658i
\(231\) 0 0
\(232\) 52.3663i 3.43801i
\(233\) −2.20952 + 3.04114i −0.144750 + 0.199232i −0.875236 0.483697i \(-0.839294\pi\)
0.730485 + 0.682928i \(0.239294\pi\)
\(234\) 0 0
\(235\) −8.69093 12.0195i −0.566934 0.784064i
\(236\) 26.0776 18.9465i 1.69751 1.23331i
\(237\) −0.584650 0.804702i −0.0379771 0.0522710i
\(238\) 13.1782 4.28187i 0.854217 0.277552i
\(239\) 4.55632 14.0229i 0.294724 0.907067i −0.688590 0.725151i \(-0.741770\pi\)
0.983314 0.181916i \(-0.0582299\pi\)
\(240\) −10.7287 3.51298i −0.692533 0.226762i
\(241\) 16.7446 1.07861 0.539306 0.842110i \(-0.318687\pi\)
0.539306 + 0.842110i \(0.318687\pi\)
\(242\) 0 0
\(243\) 15.7359i 1.00946i
\(244\) −2.63370 1.91350i −0.168606 0.122499i
\(245\) −11.1803 0.0254483i −0.714284 0.00162583i
\(246\) 5.40444 + 16.6331i 0.344574 + 1.06049i
\(247\) 0 0
\(248\) 11.8701 + 16.3379i 0.753755 + 1.03745i
\(249\) 1.62402 + 4.99822i 0.102918 + 0.316749i
\(250\) −16.4327 22.9456i −1.03930 1.45121i
\(251\) 17.8929 + 13.0000i 1.12939 + 0.820550i 0.985606 0.169059i \(-0.0540729\pi\)
0.143784 + 0.989609i \(0.454073\pi\)
\(252\) 35.9306i 2.26342i
\(253\) 0 0
\(254\) −20.7446 −1.30163
\(255\) −0.873561 + 2.66787i −0.0547045 + 0.167068i
\(256\) −9.61563 + 29.5939i −0.600977 + 1.84962i
\(257\) 10.1642 3.30254i 0.634025 0.206007i 0.0256675 0.999671i \(-0.491829\pi\)
0.608357 + 0.793663i \(0.291829\pi\)
\(258\) −4.07230 5.60503i −0.253530 0.348954i
\(259\) −3.04701 + 2.21378i −0.189332 + 0.137558i
\(260\) 0 0
\(261\) −6.41042 + 19.7293i −0.396795 + 1.22121i
\(262\) −4.07230 + 5.60503i −0.251587 + 0.346280i
\(263\) 27.4179i 1.69066i 0.534246 + 0.845329i \(0.320595\pi\)
−0.534246 + 0.845329i \(0.679405\pi\)
\(264\) 0 0
\(265\) −21.4891 + 6.92820i −1.32007 + 0.425596i
\(266\) 28.2980 + 20.5597i 1.73506 + 1.26060i
\(267\) 1.03403 + 0.335976i 0.0632814 + 0.0205614i
\(268\) −38.6931 + 12.5722i −2.36356 + 0.767967i
\(269\) −9.29490 + 6.75314i −0.566720 + 0.411746i −0.833912 0.551897i \(-0.813904\pi\)
0.267192 + 0.963643i \(0.413904\pi\)
\(270\) −19.4049 14.1661i −1.18094 0.862120i
\(271\) 4.16837 + 12.8289i 0.253210 + 0.779301i 0.994177 + 0.107760i \(0.0343677\pi\)
−0.740967 + 0.671542i \(0.765632\pi\)
\(272\) −9.60315 3.12025i −0.582277 0.189193i
\(273\) 0 0
\(274\) 36.2337 2.18896
\(275\) 0 0
\(276\) −2.74456 −0.165203
\(277\) 6.86646 9.45088i 0.412566 0.567848i −0.551276 0.834323i \(-0.685859\pi\)
0.963842 + 0.266475i \(0.0858589\pi\)
\(278\) 38.9736 + 12.6633i 2.33748 + 0.759494i
\(279\) 2.47214 + 7.60845i 0.148003 + 0.455506i
\(280\) 37.4651 + 27.3505i 2.23897 + 1.63451i
\(281\) 0.413306 0.300285i 0.0246558 0.0179135i −0.575389 0.817880i \(-0.695149\pi\)
0.600045 + 0.799966i \(0.295149\pi\)
\(282\) −12.6172 + 4.09957i −0.751343 + 0.244126i
\(283\) 14.4047 + 4.68038i 0.856272 + 0.278220i 0.704071 0.710130i \(-0.251364\pi\)
0.152201 + 0.988350i \(0.451364\pi\)
\(284\) −35.7858 25.9999i −2.12350 1.54281i
\(285\) −6.74456 + 2.17448i −0.399513 + 0.128805i
\(286\) 0 0
\(287\) 30.2921i 1.78808i
\(288\) 5.72943 7.88589i 0.337610 0.464680i
\(289\) 4.47739 13.7800i 0.263376 0.810587i
\(290\) 28.9218 + 39.9986i 1.69835 + 2.34880i
\(291\) 3.74390 2.72010i 0.219471 0.159455i
\(292\) −17.8052 24.5068i −1.04197 1.43415i
\(293\) −3.01404 + 0.979321i −0.176082 + 0.0572125i −0.395731 0.918366i \(-0.629509\pi\)
0.219649 + 0.975579i \(0.429509\pi\)
\(294\) −3.09017 + 9.51057i −0.180222 + 0.554667i
\(295\) 5.12979 15.6665i 0.298668 0.912136i
\(296\) 6.51087 0.378437
\(297\) 0 0
\(298\) 29.0024i 1.68007i
\(299\) 0 0
\(300\) −16.4970 + 5.27729i −0.952453 + 0.304684i
\(301\) 3.70820 + 11.4127i 0.213737 + 0.657816i
\(302\) 18.1520 + 24.9840i 1.04453 + 1.43767i
\(303\) 2.79417 + 3.84584i 0.160521 + 0.220938i
\(304\) −7.87657 24.2416i −0.451752 1.39035i
\(305\) −1.66489 0.00378957i −0.0953312 0.000216990i
\(306\) −7.67686 5.57757i −0.438857 0.318848i
\(307\) 31.5817i 1.80246i −0.433340 0.901231i \(-0.642665\pi\)
0.433340 0.901231i \(-0.357335\pi\)
\(308\) 0 0
\(309\) −8.23369 −0.468398
\(310\) 18.0901 + 5.92338i 1.02745 + 0.336425i
\(311\) 1.69623 5.22047i 0.0961845 0.296026i −0.891376 0.453265i \(-0.850259\pi\)
0.987561 + 0.157239i \(0.0502593\pi\)
\(312\) 0 0
\(313\) 12.8560 + 17.6947i 0.726661 + 1.00016i 0.999276 + 0.0380403i \(0.0121115\pi\)
−0.272615 + 0.962123i \(0.587888\pi\)
\(314\) 49.9348 36.2798i 2.81798 2.04739i
\(315\) 10.7670 + 14.8907i 0.606654 + 0.838998i
\(316\) 1.69623 5.22047i 0.0954206 0.293674i
\(317\) −19.3757 + 26.6683i −1.08825 + 1.49784i −0.238141 + 0.971231i \(0.576538\pi\)
−0.850106 + 0.526612i \(0.823462\pi\)
\(318\) 20.1947i 1.13246i
\(319\) 0 0
\(320\) 1.62772 + 5.04868i 0.0909922 + 0.282230i
\(321\) −4.25174 3.08907i −0.237309 0.172415i
\(322\) 6.58911 + 2.14093i 0.367197 + 0.119310i
\(323\) −6.02808 + 1.95864i −0.335411 + 0.108982i
\(324\) 13.2455 9.62339i 0.735859 0.534633i
\(325\) 0 0
\(326\) 2.70222 + 8.31657i 0.149662 + 0.460612i
\(327\) 7.53510 + 2.44830i 0.416692 + 0.135391i
\(328\) −30.7801 + 42.3652i −1.69955 + 2.33923i
\(329\) 22.9783 1.26683
\(330\) 0 0
\(331\) −14.1168 −0.775932 −0.387966 0.921674i \(-0.626822\pi\)
−0.387966 + 0.921674i \(0.626822\pi\)
\(332\) −17.0472 + 23.4635i −0.935587 + 1.28772i
\(333\) 2.45300 + 0.797029i 0.134424 + 0.0436769i
\(334\) −12.2750 37.7786i −0.671659 2.06716i
\(335\) −12.2682 + 16.8051i −0.670283 + 0.918163i
\(336\) 14.1490 10.2798i 0.771891 0.560812i
\(337\) −30.8775 + 10.0327i −1.68201 + 0.546517i −0.985299 0.170840i \(-0.945352\pi\)
−0.696706 + 0.717356i \(0.745352\pi\)
\(338\) 31.2102 + 10.1408i 1.69761 + 0.551588i
\(339\) 0.318778 + 0.231605i 0.0173136 + 0.0125791i
\(340\) −14.7446 + 4.75372i −0.799636 + 0.257807i
\(341\) 0 0
\(342\) 23.9538i 1.29527i
\(343\) −4.07230 + 5.60503i −0.219883 + 0.302643i
\(344\) 6.41042 19.7293i 0.345627 1.06373i
\(345\) −1.13743 + 0.822441i −0.0612371 + 0.0442787i
\(346\) −17.3851 + 12.6310i −0.934627 + 0.679046i
\(347\) −13.3216 18.3357i −0.715143 0.984310i −0.999671 0.0256427i \(-0.991837\pi\)
0.284528 0.958668i \(-0.408163\pi\)
\(348\) 28.8095 9.36076i 1.54435 0.501789i
\(349\) −4.78640 + 14.7310i −0.256210 + 0.788534i 0.737379 + 0.675480i \(0.236063\pi\)
−0.993589 + 0.113054i \(0.963937\pi\)
\(350\) 43.7224 + 0.199040i 2.33706 + 0.0106391i
\(351\) 0 0
\(352\) 0 0
\(353\) 25.0410i 1.33280i 0.745595 + 0.666399i \(0.232165\pi\)
−0.745595 + 0.666399i \(0.767835\pi\)
\(354\) −11.9286 8.66664i −0.633998 0.460627i
\(355\) −22.6219 0.0514913i −1.20065 0.00273287i
\(356\) 1.85410 + 5.70634i 0.0982672 + 0.302435i
\(357\) −2.55626 3.51838i −0.135291 0.186213i
\(358\) 19.0834 + 26.2660i 1.00859 + 1.38820i
\(359\) −9.11264 28.0458i −0.480947 1.48020i −0.837766 0.546029i \(-0.816139\pi\)
0.356820 0.934173i \(-0.383861\pi\)
\(360\) 0.0723050 31.7661i 0.00381081 1.67422i
\(361\) 2.42705 + 1.76336i 0.127740 + 0.0928082i
\(362\) 60.8791i 3.19973i
\(363\) 0 0
\(364\) 0 0
\(365\) −14.7228 4.82079i −0.770625 0.252332i
\(366\) −0.460165 + 1.41624i −0.0240532 + 0.0740282i
\(367\) 24.4809 7.95432i 1.27789 0.415212i 0.410054 0.912061i \(-0.365510\pi\)
0.867837 + 0.496849i \(0.165510\pi\)
\(368\) −2.96754 4.08446i −0.154694 0.212917i
\(369\) −16.7827 + 12.1933i −0.873673 + 0.634760i
\(370\) 4.97316 3.59594i 0.258542 0.186944i
\(371\) 10.8089 33.2663i 0.561169 1.72710i
\(372\) 6.86646 9.45088i 0.356010 0.490005i
\(373\) 11.6819i 0.604867i −0.953170 0.302434i \(-0.902201\pi\)
0.953170 0.302434i \(-0.0977990\pi\)
\(374\) 0 0
\(375\) −5.25544 + 7.13058i −0.271390 + 0.368222i
\(376\) −32.1364 23.3485i −1.65731 1.20411i
\(377\) 0 0
\(378\) 35.3986 11.5017i 1.82071 0.591583i
\(379\) −0.507835 + 0.368964i −0.0260857 + 0.0189524i −0.600752 0.799436i \(-0.705132\pi\)
0.574666 + 0.818388i \(0.305132\pi\)
\(380\) −31.5857 23.0584i −1.62031 1.18287i
\(381\) 2.01197 + 6.19221i 0.103076 + 0.317237i
\(382\) −46.5087 15.1116i −2.37959 0.773177i
\(383\) −6.40077 + 8.80990i −0.327064 + 0.450165i −0.940608 0.339496i \(-0.889744\pi\)
0.613544 + 0.789661i \(0.289744\pi\)
\(384\) 11.2554 0.574377
\(385\) 0 0
\(386\) 41.4891 2.11174
\(387\) 4.83032 6.64836i 0.245539 0.337955i
\(388\) 24.2884 + 7.89178i 1.23306 + 0.400644i
\(389\) −5.82850 17.9383i −0.295516 0.909506i −0.983047 0.183351i \(-0.941305\pi\)
0.687531 0.726155i \(-0.258695\pi\)
\(390\) 0 0
\(391\) −1.01567 + 0.737928i −0.0513646 + 0.0373186i
\(392\) −28.4767 + 9.25265i −1.43829 + 0.467329i
\(393\) 2.06805 + 0.671952i 0.104320 + 0.0338955i
\(394\) −17.3851 12.6310i −0.875847 0.636340i
\(395\) −0.861407 2.67181i −0.0433421 0.134434i
\(396\) 0 0
\(397\) 16.4356i 0.824881i 0.910984 + 0.412441i \(0.135324\pi\)
−0.910984 + 0.412441i \(0.864676\pi\)
\(398\) 11.8701 16.3379i 0.594997 0.818943i
\(399\) 3.39247 10.4409i 0.169836 0.522701i
\(400\) −25.6909 18.8448i −1.28454 0.942241i
\(401\) 9.29490 6.75314i 0.464165 0.337236i −0.330998 0.943631i \(-0.607385\pi\)
0.795163 + 0.606396i \(0.207385\pi\)
\(402\) 10.9388 + 15.0559i 0.545576 + 0.750921i
\(403\) 0 0
\(404\) −8.10666 + 24.9497i −0.403321 + 1.24129i
\(405\) 2.60555 7.95738i 0.129471 0.395405i
\(406\) −76.4674 −3.79501
\(407\) 0 0
\(408\) 7.51811i 0.372202i
\(409\) 22.2392 + 16.1577i 1.09966 + 0.798947i 0.981004 0.193989i \(-0.0621426\pi\)
0.118652 + 0.992936i \(0.462143\pi\)
\(410\) −0.112350 + 49.3594i −0.00554859 + 2.43768i
\(411\) −3.51423 10.8157i −0.173344 0.533498i
\(412\) −26.7078 36.7602i −1.31580 1.81104i
\(413\) 15.0111 + 20.6609i 0.738646 + 1.01666i
\(414\) −1.46615 4.51235i −0.0720574 0.221770i
\(415\) −0.0337610 + 14.8324i −0.00165726 + 0.728092i
\(416\) 0 0
\(417\) 12.8617i 0.629842i
\(418\) 0 0
\(419\) 22.9783 1.12256 0.561280 0.827626i \(-0.310309\pi\)
0.561280 + 0.827626i \(0.310309\pi\)
\(420\) 8.34986 25.5006i 0.407432 1.24430i
\(421\) 2.63000 8.09432i 0.128179 0.394493i −0.866288 0.499545i \(-0.833501\pi\)
0.994467 + 0.105051i \(0.0335007\pi\)
\(422\) −3.57507 + 1.16161i −0.174032 + 0.0565464i
\(423\) −9.24935 12.7306i −0.449719 0.618985i
\(424\) −48.9191 + 35.5418i −2.37572 + 1.72606i
\(425\) −4.68608 + 6.38847i −0.227308 + 0.309886i
\(426\) −6.25255 + 19.2434i −0.302937 + 0.932345i
\(427\) 1.51604 2.08665i 0.0733663 0.100980i
\(428\) 29.0024i 1.40189i
\(429\) 0 0
\(430\) −6.00000 18.6101i −0.289346 0.897460i
\(431\) 20.8102 + 15.1195i 1.00239 + 0.728280i 0.962600 0.270928i \(-0.0873305\pi\)
0.0397920 + 0.999208i \(0.487330\pi\)
\(432\) −25.7954 8.38144i −1.24108 0.403252i
\(433\) −27.7754 + 9.02478i −1.33480 + 0.433703i −0.887553 0.460706i \(-0.847596\pi\)
−0.447249 + 0.894409i \(0.647596\pi\)
\(434\) −23.8572 + 17.3333i −1.14518 + 0.832024i
\(435\) 9.13443 12.5125i 0.437963 0.599927i
\(436\) 13.5111 + 41.5829i 0.647064 + 1.99146i
\(437\) −3.01404 0.979321i −0.144181 0.0468473i
\(438\) −8.14459 + 11.2101i −0.389164 + 0.535638i
\(439\) −21.4891 −1.02562 −0.512810 0.858502i \(-0.671395\pi\)
−0.512810 + 0.858502i \(0.671395\pi\)
\(440\) 0 0
\(441\) −11.8614 −0.564829
\(442\) 0 0
\(443\) −30.1240 9.78788i −1.43123 0.465036i −0.512081 0.858937i \(-0.671125\pi\)
−0.919153 + 0.393901i \(0.871125\pi\)
\(444\) −1.16385 3.58198i −0.0552341 0.169993i
\(445\) 2.47837 + 1.80927i 0.117486 + 0.0857678i
\(446\) −4.85410 + 3.52671i −0.229848 + 0.166995i
\(447\) 8.65717 2.81288i 0.409470 0.133045i
\(448\) −7.81561 2.53945i −0.369253 0.119978i
\(449\) 5.55099 + 4.03303i 0.261968 + 0.190331i 0.711014 0.703178i \(-0.248236\pi\)
−0.449046 + 0.893508i \(0.648236\pi\)
\(450\) −17.4891 24.3036i −0.824445 1.14568i
\(451\) 0 0
\(452\) 2.17448i 0.102279i
\(453\) 5.69716 7.84147i 0.267676 0.368424i
\(454\) 13.0509 40.1666i 0.612510 1.88511i
\(455\) 0 0
\(456\) −15.3537 + 11.1551i −0.719004 + 0.522387i
\(457\) −12.2169 16.8151i −0.571482 0.786577i 0.421247 0.906946i \(-0.361592\pi\)
−0.992729 + 0.120368i \(0.961592\pi\)
\(458\) 35.1181 11.4105i 1.64096 0.533180i
\(459\) −2.08418 + 6.41446i −0.0972814 + 0.299401i
\(460\) −7.36138 2.41040i −0.343226 0.112385i
\(461\) 2.23369 0.104033 0.0520166 0.998646i \(-0.483435\pi\)
0.0520166 + 0.998646i \(0.483435\pi\)
\(462\) 0 0
\(463\) 30.0897i 1.39839i −0.714933 0.699193i \(-0.753543\pi\)
0.714933 0.699193i \(-0.246457\pi\)
\(464\) 45.0807 + 32.7530i 2.09282 + 1.52052i
\(465\) 0.0135986 5.97434i 0.000630621 0.277054i
\(466\) 2.93230 + 9.02469i 0.135836 + 0.418061i
\(467\) −4.53799 6.24601i −0.209993 0.289031i 0.691008 0.722847i \(-0.257167\pi\)
−0.901001 + 0.433816i \(0.857167\pi\)
\(468\) 0 0
\(469\) −9.96076 30.6561i −0.459945 1.41557i
\(470\) −37.4419 0.0852241i −1.72707 0.00393110i
\(471\) −15.6725 11.3867i −0.722151 0.524673i
\(472\) 44.1485i 2.03210i
\(473\) 0 0
\(474\) −2.51087 −0.115328
\(475\) −19.9998 0.0910464i −0.917653 0.00417749i
\(476\) 7.41641 22.8254i 0.339930 1.04620i
\(477\) −22.7814 + 7.40212i −1.04309 + 0.338920i
\(478\) −21.8775 30.1118i −1.00065 1.37728i
\(479\) −4.44080 + 3.22643i −0.202905 + 0.147419i −0.684598 0.728921i \(-0.740022\pi\)
0.481693 + 0.876340i \(0.340022\pi\)
\(480\) −5.89887 + 4.26530i −0.269245 + 0.194683i
\(481\) 0 0
\(482\) 24.8451 34.1963i 1.13166 1.55760i
\(483\) 2.17448i 0.0989423i
\(484\) 0 0
\(485\) 12.4307 4.00772i 0.564449 0.181981i
\(486\) −32.1364 23.3485i −1.45774 1.05911i
\(487\) 6.78159 + 2.20347i 0.307303 + 0.0998488i 0.458609 0.888638i \(-0.348348\pi\)
−0.151306 + 0.988487i \(0.548348\pi\)
\(488\) −4.24054 + 1.37784i −0.191960 + 0.0623717i
\(489\) 2.22040 1.61321i 0.100410 0.0729520i
\(490\) −16.6410 + 22.7950i −0.751762 + 1.02977i
\(491\) 2.01197 + 6.19221i 0.0907990 + 0.279451i 0.986136 0.165939i \(-0.0530654\pi\)
−0.895337 + 0.445389i \(0.853065\pi\)
\(492\) 28.8095 + 9.36076i 1.29883 + 0.422016i
\(493\) 8.14459 11.2101i 0.366814 0.504876i
\(494\) 0 0
\(495\) 0 0
\(496\) 21.4891 0.964890
\(497\) 20.5994 28.3526i 0.924009 1.27179i
\(498\) 12.6172 + 4.09957i 0.565390 + 0.183706i
\(499\) 6.18034 + 19.0211i 0.276670 + 0.851503i 0.988773 + 0.149427i \(0.0477430\pi\)
−0.712103 + 0.702075i \(0.752257\pi\)
\(500\) −48.8825 0.333799i −2.18609 0.0149279i
\(501\) −10.0863 + 7.32814i −0.450623 + 0.327397i
\(502\) 53.0979 17.2525i 2.36987 0.770018i
\(503\) 12.8977 + 4.19072i 0.575080 + 0.186855i 0.582095 0.813120i \(-0.302233\pi\)
−0.00701509 + 0.999975i \(0.502233\pi\)
\(504\) 39.8133 + 28.9261i 1.77343 + 1.28847i
\(505\) 4.11684 + 12.7692i 0.183197 + 0.568220i
\(506\) 0 0
\(507\) 10.2997i 0.457427i
\(508\) −21.1195 + 29.0685i −0.937026 + 1.28971i
\(509\) −6.99235 + 21.5202i −0.309930 + 0.953868i 0.667861 + 0.744286i \(0.267210\pi\)
−0.977791 + 0.209582i \(0.932790\pi\)
\(510\) 4.15224 + 5.74251i 0.183864 + 0.254283i
\(511\) 19.4164 14.1068i 0.858931 0.624050i
\(512\) 29.4697 + 40.5616i 1.30239 + 1.79259i
\(513\) −16.1923 + 5.26119i −0.714906 + 0.232287i
\(514\) 8.33674 25.6578i 0.367718 1.13172i
\(515\) −22.0842 7.23119i −0.973144 0.318644i
\(516\) −12.0000 −0.528271
\(517\) 0 0
\(518\) 9.50744i 0.417733i
\(519\) 5.45647 + 3.96435i 0.239512 + 0.174016i
\(520\) 0 0
\(521\) −6.67661 20.5485i −0.292508 0.900246i −0.984047 0.177907i \(-0.943067\pi\)
0.691540 0.722339i \(-0.256933\pi\)
\(522\) 30.7801 + 42.3652i 1.34721 + 1.85428i
\(523\) −17.0472 23.4635i −0.745422 1.02599i −0.998288 0.0584843i \(-0.981373\pi\)
0.252866 0.967501i \(-0.418627\pi\)
\(524\) 3.70820 + 11.4127i 0.161994 + 0.498565i
\(525\) −4.18113 13.0703i −0.182479 0.570436i
\(526\) 55.9936 + 40.6818i 2.44144 + 1.77381i
\(527\) 5.34363i 0.232772i
\(528\) 0 0
\(529\) 22.3723 0.972708
\(530\) −17.7359 + 54.1656i −0.770398 + 2.35280i
\(531\) 5.40444 16.6331i 0.234533 0.721817i
\(532\) 57.6189 18.7215i 2.49810 0.811681i
\(533\) 0 0
\(534\) 2.22040 1.61321i 0.0960860 0.0698106i
\(535\) −8.69093 12.0195i −0.375742 0.519647i
\(536\) −17.2193 + 52.9955i −0.743760 + 2.28906i
\(537\) 5.98949 8.24382i 0.258465 0.355747i
\(538\) 29.0024i 1.25038i
\(539\) 0 0
\(540\) −39.6060 + 12.7692i −1.70437 + 0.549497i
\(541\) −27.6956 20.1221i −1.19073 0.865115i −0.197387 0.980326i \(-0.563246\pi\)
−0.993341 + 0.115211i \(0.963246\pi\)
\(542\) 32.3845 + 10.5224i 1.39103 + 0.451975i
\(543\) 18.1723 5.90453i 0.779847 0.253388i
\(544\) −5.26741 + 3.82700i −0.225838 + 0.164081i
\(545\) 18.0602 + 13.1844i 0.773614 + 0.564759i
\(546\) 0 0
\(547\) 27.5830 + 8.96224i 1.17936 + 0.383198i 0.832130 0.554581i \(-0.187122\pi\)
0.347232 + 0.937779i \(0.387122\pi\)
\(548\) 36.8886 50.7728i 1.57580 2.16891i
\(549\) −1.76631 −0.0753844
\(550\) 0 0
\(551\) 34.9783 1.49012
\(552\) −2.20952 + 3.04114i −0.0940433 + 0.129439i
\(553\) 4.13611 + 1.34390i 0.175885 + 0.0571486i
\(554\) −9.11264 28.0458i −0.387159 1.19155i
\(555\) −1.55572 1.13571i −0.0660366 0.0482084i
\(556\) 57.4226 41.7200i 2.43526 1.76932i
\(557\) −0.945984 + 0.307369i −0.0400826 + 0.0130236i −0.328990 0.944334i \(-0.606708\pi\)
0.288907 + 0.957357i \(0.406708\pi\)
\(558\) 19.2063 + 6.24051i 0.813068 + 0.264182i
\(559\) 0 0
\(560\) 46.9783 15.1460i 1.98519 0.640036i
\(561\) 0 0
\(562\) 1.28962i 0.0543994i
\(563\) −11.1121 + 15.2945i −0.468320 + 0.644588i −0.976208 0.216836i \(-0.930426\pi\)
0.507888 + 0.861423i \(0.330426\pi\)
\(564\) −7.10067 + 21.8536i −0.298992 + 0.920203i
\(565\) 0.651610 + 0.901170i 0.0274134 + 0.0379125i
\(566\) 30.9317 22.4732i 1.30016 0.944619i
\(567\) 7.62448 + 10.4942i 0.320198 + 0.440715i
\(568\) −57.6189 + 18.7215i −2.41764 + 0.785537i
\(569\) 8.42239 25.9215i 0.353085 1.08668i −0.604026 0.796964i \(-0.706438\pi\)
0.957111 0.289720i \(-0.0935621\pi\)
\(570\) −5.56657 + 17.0004i −0.233158 + 0.712068i
\(571\) 1.48913 0.0623180 0.0311590 0.999514i \(-0.490080\pi\)
0.0311590 + 0.999514i \(0.490080\pi\)
\(572\) 0 0
\(573\) 15.3484i 0.641189i
\(574\) −61.8634 44.9464i −2.58213 1.87603i
\(575\) −3.77308 + 1.20699i −0.157348 + 0.0503348i
\(576\) 1.73906 + 5.35228i 0.0724609 + 0.223012i
\(577\) 12.8560 + 17.6947i 0.535200 + 0.736640i 0.987912 0.155017i \(-0.0495433\pi\)
−0.452712 + 0.891657i \(0.649543\pi\)
\(578\) −21.4985 29.5902i −0.894220 1.23079i
\(579\) −4.02394 12.3844i −0.167229 0.514679i
\(580\) 85.4929 + 0.194596i 3.54990 + 0.00808018i
\(581\) −18.5898 13.5063i −0.771235 0.560335i
\(582\) 11.6819i 0.484231i
\(583\) 0 0
\(584\) −41.4891 −1.71683
\(585\) 0 0
\(586\) −2.47214 + 7.60845i −0.102123 + 0.314302i
\(587\) −39.2542 + 12.7544i −1.62019 + 0.526432i −0.971987 0.235033i \(-0.924480\pi\)
−0.648205 + 0.761466i \(0.724480\pi\)
\(588\) 10.1807 + 14.0126i 0.419847 + 0.577869i
\(589\) 10.9129 7.92871i 0.449660 0.326697i
\(590\) −24.3831 33.7216i −1.00384 1.38830i
\(591\) −2.08418 + 6.41446i −0.0857319 + 0.263856i
\(592\) 4.07230 5.60503i 0.167370 0.230365i
\(593\) 22.7739i 0.935214i −0.883937 0.467607i \(-0.845116\pi\)
0.883937 0.467607i \(-0.154884\pi\)
\(594\) 0 0
\(595\) −3.76631 11.6819i −0.154404 0.478912i
\(596\) 40.6399 + 29.5266i 1.66468 + 1.20946i
\(597\) −6.02808 1.95864i −0.246713 0.0801618i
\(598\) 0 0
\(599\) 8.88159 6.45285i 0.362892 0.263656i −0.391365 0.920235i \(-0.627997\pi\)
0.754257 + 0.656579i \(0.227997\pi\)
\(600\) −7.43338 + 22.5281i −0.303467 + 0.919707i
\(601\) −11.8871 36.5846i −0.484884 1.49232i −0.832149 0.554552i \(-0.812890\pi\)
0.347265 0.937767i \(-0.387110\pi\)
\(602\) 28.8095 + 9.36076i 1.17419 + 0.381516i
\(603\) −12.9749 + 17.8584i −0.528379 + 0.727251i
\(604\) 53.4891 2.17644
\(605\) 0 0
\(606\) 12.0000 0.487467
\(607\) −2.03615 + 2.80252i −0.0826447 + 0.113751i −0.848338 0.529456i \(-0.822396\pi\)
0.765693 + 0.643206i \(0.222396\pi\)
\(608\) −15.6312 5.07889i −0.633930 0.205976i
\(609\) 7.41641 + 22.8254i 0.300528 + 0.924930i
\(610\) −2.47805 + 3.39447i −0.100333 + 0.137438i
\(611\) 0 0
\(612\) −15.6312 + 5.07889i −0.631855 + 0.205302i
\(613\) −4.13611 1.34390i −0.167056 0.0542797i 0.224295 0.974521i \(-0.427992\pi\)
−0.391351 + 0.920242i \(0.627992\pi\)
\(614\) −64.4971 46.8599i −2.60289 1.89111i
\(615\) 14.7446 4.75372i 0.594558 0.191689i
\(616\) 0 0
\(617\) 17.0256i 0.685423i 0.939441 + 0.342712i \(0.111345\pi\)
−0.939441 + 0.342712i \(0.888655\pi\)
\(618\) −12.2169 + 16.8151i −0.491435 + 0.676403i
\(619\) −4.36234 + 13.4259i −0.175337 + 0.539633i −0.999649 0.0265037i \(-0.991563\pi\)
0.824311 + 0.566137i \(0.191563\pi\)
\(620\) 26.7172 19.3184i 1.07299 0.775847i
\(621\) −2.72823 + 1.98218i −0.109480 + 0.0795420i
\(622\) −8.14459 11.2101i −0.326568 0.449483i
\(623\) −4.52106 + 1.46898i −0.181132 + 0.0588535i
\(624\) 0 0
\(625\) −20.3584 + 14.5099i −0.814335 + 0.580395i
\(626\) 55.2119 2.20671
\(627\) 0 0
\(628\) 106.907i 4.26606i
\(629\) −1.39379 1.01264i −0.0555739 0.0403768i
\(630\) 46.3861 + 0.105583i 1.84807 + 0.00420652i
\(631\) 7.29465 + 22.4506i 0.290395 + 0.893745i 0.984729 + 0.174092i \(0.0556990\pi\)
−0.694334 + 0.719653i \(0.744301\pi\)
\(632\) −4.41903 6.08228i −0.175780 0.241940i
\(633\) 0.693478 + 0.954490i 0.0275633 + 0.0379376i
\(634\) 25.7139 + 79.1393i 1.02123 + 3.14302i
\(635\) −0.0418259 + 18.3756i −0.00165981 + 0.729212i
\(636\) 28.2980 + 20.5597i 1.12209 + 0.815245i
\(637\) 0 0
\(638\) 0 0
\(639\) −24.0000 −0.949425
\(640\) 30.1890 + 9.88503i 1.19333 + 0.390740i
\(641\) −7.84047 + 24.1305i −0.309680 + 0.953096i 0.668210 + 0.743973i \(0.267061\pi\)
−0.977889 + 0.209123i \(0.932939\pi\)
\(642\) −12.6172 + 4.09957i −0.497961 + 0.161797i
\(643\) 17.9242 + 24.6705i 0.706861 + 0.972910i 0.999859 + 0.0167972i \(0.00534696\pi\)
−0.292998 + 0.956113i \(0.594653\pi\)
\(644\) 9.70820 7.05342i 0.382557 0.277944i
\(645\) −4.97316 + 3.59594i −0.195818 + 0.141590i
\(646\) −4.94427 + 15.2169i −0.194530 + 0.598701i
\(647\) 12.9205 17.7835i 0.507957 0.699143i −0.475616 0.879653i \(-0.657775\pi\)
0.983573 + 0.180510i \(0.0577749\pi\)
\(648\) 22.4241i 0.880901i
\(649\) 0 0
\(650\) 0 0
\(651\) 7.48781 + 5.44021i 0.293470 + 0.213219i
\(652\) 14.4047 + 4.68038i 0.564133 + 0.183298i
\(653\) 29.2824 9.51444i 1.14591 0.372329i 0.326309 0.945263i \(-0.394195\pi\)
0.819601 + 0.572934i \(0.194195\pi\)
\(654\) 16.1803 11.7557i 0.632701 0.459684i
\(655\) 4.95674 + 3.61855i 0.193676 + 0.141388i
\(656\) 17.2193 + 52.9955i 0.672301 + 2.06913i
\(657\) −15.6312 5.07889i −0.609832 0.198147i
\(658\) 34.0944 46.9269i 1.32914 1.82940i
\(659\) −21.2554 −0.827994 −0.413997 0.910278i \(-0.635868\pi\)
−0.413997 + 0.910278i \(0.635868\pi\)
\(660\) 0 0
\(661\) −16.3505 −0.635962 −0.317981 0.948097i \(-0.603005\pi\)
−0.317981 + 0.948097i \(0.603005\pi\)
\(662\) −20.9461 + 28.8299i −0.814094 + 1.12050i
\(663\) 0 0
\(664\) 12.2750 + 37.7786i 0.476363 + 1.46610i
\(665\) 18.2689 25.0250i 0.708436 0.970426i
\(666\) 5.26741 3.82700i 0.204108 0.148293i
\(667\) 6.58911 2.14093i 0.255131 0.0828972i
\(668\) −65.4345 21.2610i −2.53174 0.822611i
\(669\) 1.52351 + 1.10689i 0.0589021 + 0.0427949i
\(670\) 16.1168 + 49.9894i 0.622648 + 1.93126i
\(671\) 0 0
\(672\) 11.2772i 0.435026i
\(673\) 10.9388 15.0559i 0.421658 0.580363i −0.544355 0.838855i \(-0.683226\pi\)
0.966013 + 0.258492i \(0.0832256\pi\)
\(674\) −25.3260 + 77.9453i −0.975519 + 3.00234i
\(675\) −12.5875 + 17.1603i −0.484492 + 0.660501i
\(676\) 45.9842 33.4095i 1.76862 1.28498i
\(677\) 29.4375 + 40.5172i 1.13137 + 1.55720i 0.785434 + 0.618945i \(0.212440\pi\)
0.345939 + 0.938257i \(0.387560\pi\)
\(678\) 0.945984 0.307369i 0.0363303 0.0118044i
\(679\) −6.25255 + 19.2434i −0.239951 + 0.738493i
\(680\) −6.60274 + 20.1649i −0.253204 + 0.773287i
\(681\) −13.2554 −0.507949
\(682\) 0 0
\(683\) 17.9104i 0.685323i 0.939459 + 0.342661i \(0.111328\pi\)
−0.939459 + 0.342661i \(0.888672\pi\)
\(684\) −33.5654 24.3867i −1.28341 0.932449i
\(685\) 0.0730557 32.0959i 0.00279131 1.22632i
\(686\) 5.40444 + 16.6331i 0.206342 + 0.635056i
\(687\) −6.81205 9.37598i −0.259896 0.357716i
\(688\) −12.9749 17.8584i −0.494664 0.680846i
\(689\) 0 0
\(690\) −0.00806494 + 3.54321i −0.000307027 + 0.134888i
\(691\) −36.2936 26.3689i −1.38068 1.00312i −0.996817 0.0797273i \(-0.974595\pi\)
−0.383858 0.923392i \(-0.625405\pi\)
\(692\) 37.2203i 1.41490i
\(693\) 0 0
\(694\) −57.2119 −2.17174
\(695\) 11.2958 34.4974i 0.428472 1.30856i
\(696\) 12.8208 39.4585i 0.485973 1.49567i
\(697\) 13.1782 4.28187i 0.499161 0.162187i
\(698\) 22.9823 + 31.6324i 0.869892 + 1.19730i
\(699\) 2.40946 1.75057i 0.0911340 0.0662127i
\(700\) 44.7915 61.0637i 1.69296 2.30799i
\(701\) −3.86607 + 11.8985i −0.146020 + 0.449402i −0.997141 0.0755673i \(-0.975923\pi\)
0.851121 + 0.524969i \(0.175923\pi\)
\(702\) 0 0
\(703\) 4.34896i 0.164024i
\(704\) 0 0
\(705\) 3.60597 + 11.1846i 0.135809 + 0.421236i
\(706\) 51.1395 + 37.1550i 1.92466 + 1.39835i
\(707\) −19.7673 6.42280i −0.743427 0.241554i
\(708\) −24.2884 + 7.89178i −0.912814 + 0.296591i
\(709\) 19.3219 14.0382i 0.725648 0.527214i −0.162535 0.986703i \(-0.551967\pi\)
0.888184 + 0.459488i \(0.151967\pi\)
\(710\) −33.6708 + 46.1228i −1.26364 + 1.73096i
\(711\) −0.920330 2.83248i −0.0345151 0.106226i
\(712\) 7.81561 + 2.53945i 0.292903 + 0.0951698i
\(713\) 1.57045 2.16154i 0.0588139 0.0809504i
\(714\) −10.9783 −0.410851
\(715\) 0 0
\(716\) 56.2337 2.10155
\(717\) −6.86646 + 9.45088i −0.256433 + 0.352949i
\(718\) −70.7971 23.0034i −2.64213 0.858479i
\(719\) 9.37883 + 28.8651i 0.349771 + 1.07649i 0.958980 + 0.283475i \(0.0914874\pi\)
−0.609208 + 0.793010i \(0.708513\pi\)
\(720\) −27.3013 19.9307i −1.01746 0.742773i
\(721\) 29.1246 21.1603i 1.08466 0.788050i
\(722\) 7.20236 2.34019i 0.268044 0.0870928i
\(723\) −12.6172 4.09957i −0.469238 0.152465i
\(724\) 85.3073 + 61.9794i 3.17042 + 2.30345i
\(725\) 35.4891 25.5383i 1.31803 0.948470i
\(726\) 0 0
\(727\) 14.0588i 0.521412i −0.965418 0.260706i \(-0.916045\pi\)
0.965418 0.260706i \(-0.0839552\pi\)
\(728\) 0 0
\(729\) −0.381231 + 1.17331i −0.0141196 + 0.0434558i
\(730\) −31.6904 + 22.9144i −1.17291 + 0.848099i
\(731\) −4.44080 + 3.22643i −0.164249 + 0.119334i
\(732\) 1.51604 + 2.08665i 0.0560344 + 0.0771248i
\(733\) 9.04212 2.93796i 0.333978 0.108516i −0.137227 0.990540i \(-0.543819\pi\)
0.471205 + 0.882024i \(0.343819\pi\)
\(734\) 20.0794 61.7980i 0.741144 2.28101i
\(735\) 8.41824 + 2.75645i 0.310512 + 0.101673i
\(736\) −3.25544 −0.119997
\(737\) 0 0
\(738\) 52.3663i 1.92763i
\(739\) −8.69253 6.31550i −0.319760 0.232319i 0.416313 0.909221i \(-0.363322\pi\)
−0.736073 + 0.676902i \(0.763322\pi\)
\(740\) 0.0241948 10.6296i 0.000889420 0.390753i
\(741\) 0 0
\(742\) −51.8996 71.4337i −1.90530 2.62241i
\(743\) −6.69309 9.21225i −0.245546 0.337965i 0.668399 0.743803i \(-0.266980\pi\)
−0.913945 + 0.405838i \(0.866980\pi\)
\(744\) −4.94427 15.2169i −0.181266 0.557879i
\(745\) 25.6904 + 0.0584757i 0.941223 + 0.00214239i
\(746\) −23.8572 17.3333i −0.873474 0.634616i
\(747\) 15.7359i 0.575748i
\(748\) 0 0
\(749\) 22.9783 0.839607
\(750\) 6.76445 + 21.3130i 0.247003 + 0.778239i
\(751\) 8.45850 26.0326i 0.308655 0.949943i −0.669633 0.742692i \(-0.733549\pi\)
0.978288 0.207250i \(-0.0664515\pi\)
\(752\) −40.2001 + 13.0618i −1.46595 + 0.476316i
\(753\) −10.2997 14.1763i −0.375342 0.516614i
\(754\) 0 0
\(755\) 22.1675 16.0287i 0.806758 0.583343i
\(756\) 19.9215 61.3121i 0.724538 2.22990i
\(757\) −23.3936 + 32.1985i −0.850253 + 1.17027i 0.133554 + 0.991042i \(0.457361\pi\)
−0.983807 + 0.179232i \(0.942639\pi\)
\(758\) 1.58457i 0.0575543i
\(759\) 0 0
\(760\) −50.9783 + 16.4356i −1.84918 + 0.596184i
\(761\) −26.4909 19.2468i −0.960295 0.697695i −0.00707549 0.999975i \(-0.502252\pi\)
−0.953219 + 0.302280i \(0.902252\pi\)
\(762\) 15.6312 + 5.07889i 0.566260 + 0.183989i
\(763\) −32.9456 + 10.7047i −1.19271 + 0.387535i
\(764\) −68.5246 + 49.7860i −2.47913 + 1.80120i
\(765\) −4.95610 + 6.78893i −0.179188 + 0.245454i
\(766\) 8.49461 + 26.1437i 0.306923 + 0.944611i
\(767\) 0 0
\(768\) 14.4909 19.9451i 0.522897 0.719706i
\(769\) −29.2119 −1.05341 −0.526705 0.850048i \(-0.676573\pi\)
−0.526705 + 0.850048i \(0.676573\pi\)
\(770\) 0 0
\(771\) −8.46738 −0.304945
\(772\) 42.2390 58.1370i 1.52021 2.09240i
\(773\) −16.7533 5.44348i −0.602574 0.195788i −0.00818608 0.999966i \(-0.502606\pi\)
−0.594388 + 0.804178i \(0.702606\pi\)
\(774\) −6.41042 19.7293i −0.230418 0.709153i
\(775\) 5.28341 16.0123i 0.189786 0.575178i
\(776\) 28.2980 20.5597i 1.01584 0.738050i
\(777\) 2.83795 0.922107i 0.101811 0.0330804i
\(778\) −45.2822 14.7131i −1.62345 0.527490i
\(779\) 28.2980 + 20.5597i 1.01388 + 0.736628i
\(780\) 0 0
\(781\) 0 0
\(782\) 3.16915i 0.113328i
\(783\) 21.8775 30.1118i 0.781839 1.07611i
\(784\) −9.84572 + 30.3020i −0.351633 + 1.08221i
\(785\) −32.0360 44.3055i −1.14341 1.58133i
\(786\) 4.44080 3.22643i 0.158398 0.115083i
\(787\) −8.90261 12.2534i −0.317344 0.436786i 0.620310 0.784357i \(-0.287007\pi\)
−0.937654 + 0.347570i \(0.887007\pi\)
\(788\) −35.3986 + 11.5017i −1.26102 + 0.409731i
\(789\) 6.71272 20.6596i 0.238979 0.735502i
\(790\) −6.73459 2.20516i −0.239606 0.0784561i
\(791\) −1.72281 −0.0612562
\(792\) 0 0
\(793\) 0 0
\(794\) 33.5654 + 24.3867i 1.19119 + 0.865451i
\(795\) 17.8885 + 0.0407173i 0.634440 + 0.00144409i
\(796\) −10.8089 33.2663i −0.383110 1.17909i
\(797\) 3.08649 + 4.24819i 0.109329 + 0.150479i 0.860175 0.509998i \(-0.170354\pi\)
−0.750846 + 0.660477i \(0.770354\pi\)
\(798\) −16.2892 22.4201i −0.576631 0.793664i
\(799\) 3.24804 + 9.99644i 0.114907 + 0.353648i
\(800\) −19.5677 + 6.25960i −0.691824 + 0.221310i
\(801\) 2.63370 + 1.91350i 0.0930574 + 0.0676101i
\(802\) 29.0024i 1.02411i
\(803\) 0 0
\(804\) 32.2337 1.13679
\(805\) 1.90973 5.83233i 0.0673090 0.205563i
\(806\) 0 0
\(807\) 8.65717 2.81288i 0.304747 0.0990182i
\(808\) 21.1195 + 29.0685i 0.742981 + 1.02263i
\(809\) −26.4909 + 19.2468i −0.931371 + 0.676680i −0.946328 0.323208i \(-0.895239\pi\)
0.0149573 + 0.999888i \(0.495239\pi\)
\(810\) −12.3848 17.1280i −0.435157 0.601818i
\(811\) −0.0722135 + 0.222250i −0.00253576 + 0.00780427i −0.952316 0.305112i \(-0.901306\pi\)
0.949781 + 0.312917i \(0.101306\pi\)
\(812\) −77.8494 + 107.151i −2.73198 + 3.76025i
\(813\) 10.6873i 0.374819i
\(814\) 0 0
\(815\) 7.37228 2.37686i 0.258240 0.0832578i
\(816\) 6.47214 + 4.70228i 0.226570 + 0.164613i
\(817\) −13.1782 4.28187i −0.461048 0.149803i
\(818\) 65.9956 21.4433i 2.30748 0.749746i
\(819\) 0 0
\(820\) 69.0508 + 50.4089i 2.41136 + 1.76036i
\(821\) −5.56231 17.1190i −0.194126 0.597458i −0.999986 0.00535152i \(-0.998297\pi\)
0.805860 0.592106i \(-0.201703\pi\)
\(822\) −27.3024 8.87110i −0.952282 0.309415i
\(823\) 32.9352 45.3315i 1.14805 1.58016i 0.399997 0.916516i \(-0.369011\pi\)
0.748053 0.663639i \(-0.230989\pi\)
\(824\) −62.2337 −2.16801
\(825\) 0 0
\(826\) 64.4674 2.24311
\(827\) −16.7005 + 22.9862i −0.580732 + 0.799309i −0.993775 0.111402i \(-0.964466\pi\)
0.413043 + 0.910711i \(0.364466\pi\)
\(828\) −7.81561 2.53945i −0.271611 0.0882519i
\(829\) 6.28866 + 19.3545i 0.218414 + 0.672210i 0.998894 + 0.0470282i \(0.0149751\pi\)
−0.780479 + 0.625182i \(0.785025\pi\)
\(830\) 30.2410 + 22.0767i 1.04968 + 0.766295i
\(831\) −7.48781 + 5.44021i −0.259749 + 0.188719i
\(832\) 0 0
\(833\) 7.53510 + 2.44830i 0.261076 + 0.0848286i
\(834\) −26.2667 19.0838i −0.909540 0.660819i
\(835\) −33.4891 + 10.7971i −1.15894 + 0.373648i
\(836\) 0 0
\(837\) 14.3537i 0.496138i
\(838\) 34.0944 46.9269i 1.17777 1.62106i
\(839\) 3.12628 9.62169i 0.107931 0.332178i −0.882476 0.470357i \(-0.844125\pi\)
0.990407 + 0.138180i \(0.0441251\pi\)
\(840\) −21.5341 29.7815i −0.742997 1.02756i
\(841\) −38.4019 + 27.9006i −1.32420 + 0.962090i
\(842\) −12.6282 17.3812i −0.435195 0.598995i
\(843\) −0.384949 + 0.125078i −0.0132583 + 0.00430790i
\(844\) −2.01197 + 6.19221i −0.0692549 + 0.213145i
\(845\) 9.04568 27.6256i 0.311181 0.950351i
\(846\) −39.7228 −1.36570
\(847\) 0 0
\(848\) 64.3432i 2.20955i
\(849\) −9.70820 7.05342i −0.333185 0.242073i
\(850\) 6.09369 + 19.0491i 0.209012 + 0.653378i
\(851\) −0.266189 0.819246i −0.00912485 0.0280834i
\(852\) 20.5994 + 28.3526i 0.705723 + 0.971345i
\(853\) −20.5994 28.3526i −0.705310 0.970775i −0.999885 0.0151473i \(-0.995178\pi\)
0.294576 0.955628i \(-0.404822\pi\)
\(854\) −2.01197 6.19221i −0.0688482 0.211893i
\(855\) −21.2183 0.0482964i −0.725650 0.00165170i
\(856\) −32.1364 23.3485i −1.09840 0.798035i
\(857\) 23.9538i 0.818245i 0.912480 + 0.409122i \(0.134165\pi\)
−0.912480 + 0.409122i \(0.865835\pi\)
\(858\) 0 0
\(859\) 6.11684 0.208704 0.104352 0.994540i \(-0.466723\pi\)
0.104352 + 0.994540i \(0.466723\pi\)
\(860\) −32.1860 10.5389i −1.09754 0.359375i
\(861\) −7.41641 + 22.8254i −0.252751 + 0.777886i
\(862\) 61.7550 20.0654i 2.10338 0.683431i
\(863\) 1.68941 + 2.32527i 0.0575082 + 0.0791532i 0.836802 0.547505i \(-0.184422\pi\)
−0.779294 + 0.626658i \(0.784422\pi\)
\(864\) −14.1490 + 10.2798i −0.481359 + 0.349728i
\(865\) 11.1535 + 15.4252i 0.379230 + 0.524472i
\(866\) −22.7816 + 70.1146i −0.774150 + 2.38259i
\(867\) −6.74751 + 9.28715i −0.229157 + 0.315408i
\(868\) 51.0767i 1.73365i
\(869\) 0 0
\(870\) −12.0000 37.2203i −0.406838 1.26188i
\(871\) 0 0
\(872\) 56.9534 + 18.5053i 1.92869 + 0.626668i
\(873\) 13.1782 4.28187i 0.446015 0.144919i
\(874\) −6.47214 + 4.70228i −0.218923 + 0.159057i
\(875\) 0.264465 38.7289i 0.00894054 1.30928i
\(876\) 7.41641 + 22.8254i 0.250577 + 0.771197i
\(877\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(878\) −31.8849 + 43.8858i −1.07606 + 1.48107i
\(879\) 2.51087 0.0846897
\(880\) 0 0
\(881\) −6.86141 −0.231167 −0.115583 0.993298i \(-0.536874\pi\)
−0.115583 + 0.993298i \(0.536874\pi\)
\(882\) −17.5996 + 24.2237i −0.592609 + 0.815656i
\(883\) 23.0619 + 7.49326i 0.776095 + 0.252168i 0.670172 0.742206i \(-0.266220\pi\)
0.105923 + 0.994374i \(0.466220\pi\)
\(884\) 0 0
\(885\) −7.70097 + 10.5489i −0.258865 + 0.354597i
\(886\) −64.6862 + 46.9973i −2.17317 + 1.57890i
\(887\) −26.0759 + 8.47258i −0.875544 + 0.284482i −0.712106 0.702072i \(-0.752258\pi\)
−0.163438 + 0.986554i \(0.552258\pi\)
\(888\) −4.90601 1.59406i −0.164635 0.0534931i
\(889\) −23.0306 16.7327i −0.772421 0.561197i
\(890\) 7.37228 2.37686i 0.247119 0.0796726i
\(891\) 0 0
\(892\) 10.3923i 0.347960i
\(893\) −15.5957 + 21.4656i −0.521890 + 0.718320i
\(894\) 7.10067 21.8536i 0.237482 0.730894i
\(895\) 23.3049 16.8511i 0.778998 0.563270i
\(896\) −39.8133 + 28.9261i −1.33007 + 0.966352i
\(897\) 0 0
\(898\) 16.4728 5.35233i 0.549704 0.178610i
\(899\) −9.11264 + 28.0458i −0.303924 + 0.935381i
\(900\) −51.8609 0.236090i −1.72870 0.00786965i
\(901\) 16.0000 0.533037
\(902\) 0 0
\(903\) 9.50744i 0.316388i
\(904\) 2.40946 + 1.75057i 0.0801373 + 0.0582232i
\(905\) 53.9268 + 0.122747i 1.79259 + 0.00408023i
\(906\) −7.56083 23.2699i −0.251192 0.773089i
\(907\) −11.6968 16.0992i −0.388385 0.534566i 0.569396 0.822063i \(-0.307177\pi\)
−0.957782 + 0.287497i \(0.907177\pi\)
\(908\) −42.9970 59.1803i −1.42691 1.96397i
\(909\) 4.39845 + 13.5370i 0.145887 + 0.448995i
\(910\) 0 0
\(911\) 43.2736 + 31.4401i 1.43372 + 1.04166i 0.989309 + 0.145834i \(0.0465865\pi\)
0.444410 + 0.895824i \(0.353413\pi\)
\(912\) 20.1947i 0.668713i
\(913\) 0 0
\(914\) −52.4674 −1.73547
\(915\) 1.25358 + 0.410470i 0.0414421 + 0.0135697i
\(916\) 19.7636 60.8262i 0.653009 2.00976i
\(917\) −9.04212 + 2.93796i −0.298597 + 0.0970200i
\(918\) 10.0074 + 13.7740i 0.330292 + 0.454609i
\(919\) −22.8415 + 16.5953i −0.753473 + 0.547430i −0.896901 0.442231i \(-0.854187\pi\)
0.143429 + 0.989661i \(0.454187\pi\)
\(920\) −8.59717 + 6.21636i −0.283440 + 0.204947i
\(921\) −7.73215 + 23.7971i −0.254783 + 0.784141i
\(922\) 3.31428 4.56171i 0.109150 0.150232i
\(923\) 0 0
\(924\) 0 0
\(925\) −3.17527 4.41248i −0.104402 0.145081i
\(926\) −61.4501 44.6461i −2.01938 1.46716i
\(927\) −23.4468 7.61834i −0.770095 0.250219i
\(928\) 34.1721 11.1032i 1.12175 0.364480i
\(929\) −5.68071 + 4.12728i −0.186378 + 0.135412i −0.677062 0.735926i \(-0.736747\pi\)
0.490684 + 0.871338i \(0.336747\pi\)
\(930\) −12.1808 8.89231i −0.399425 0.291590i
\(931\) 6.18034 + 19.0211i 0.202552 + 0.623392i
\(932\) 15.6312 + 5.07889i 0.512018 + 0.166365i
\(933\) −2.55626 + 3.51838i −0.0836881 + 0.115187i
\(934\) −19.4891 −0.637704
\(935\) 0 0
\(936\) 0 0
\(937\) −31.5381 + 43.4085i −1.03031 + 1.41810i −0.125589 + 0.992082i \(0.540082\pi\)
−0.904717 + 0.426013i \(0.859918\pi\)
\(938\) −77.3862 25.1443i −2.52675 0.820991i
\(939\) −5.35489 16.4807i −0.174750 0.537826i
\(940\) −38.2380 + 52.3790i −1.24719 + 1.70841i
\(941\) 47.3011 34.3663i 1.54197 1.12031i 0.592888 0.805285i \(-0.297988\pi\)
0.949084 0.315023i \(-0.102012\pi\)
\(942\) −46.5087 + 15.1116i −1.51534 + 0.492363i
\(943\) 6.58911 + 2.14093i 0.214571 + 0.0697184i
\(944\) −38.0062 27.6131i −1.23700 0.898731i
\(945\) −10.1168 31.3793i −0.329101 1.02077i
\(946\) 0 0
\(947\) 26.7354i 0.868783i 0.900724 + 0.434392i \(0.143037\pi\)
−0.900724 + 0.434392i \(0.856963\pi\)
\(948\) −2.55626 + 3.51838i −0.0830233 + 0.114272i
\(949\) 0 0
\(950\) −29.8610 + 40.7091i −0.968819 + 1.32078i
\(951\) 21.1290 15.3511i 0.685154 0.497793i
\(952\) −19.3213 26.5934i −0.626206 0.861898i
\(953\) −29.7554 + 9.66813i −0.963873 + 0.313181i −0.748340 0.663315i \(-0.769149\pi\)
−0.215533 + 0.976497i \(0.569149\pi\)
\(954\) −18.6854 + 57.5079i −0.604964 + 1.86189i
\(955\) −13.4797 + 41.1670i −0.436191 + 1.33213i
\(956\) −64.4674 −2.08502
\(957\) 0 0
\(958\) 13.8564i 0.447680i
\(959\) 40.2266 + 29.2263i 1.29898 + 0.943768i
\(960\) 0.00956616 4.20274i 0.000308746 0.135643i
\(961\) −6.06530 18.6671i −0.195655 0.602164i
\(962\) 0 0
\(963\) −9.24935 12.7306i −0.298056 0.410239i
\(964\) −22.6237 69.6287i −0.728661 2.24259i
\(965\) 0.0836519 36.7511i 0.00269285 1.18306i
\(966\) −4.44080 3.22643i −0.142880 0.103809i
\(967\) 26.4232i 0.849713i 0.905261 + 0.424856i \(0.139675\pi\)
−0.905261 + 0.424856i \(0.860325\pi\)
\(968\) 0 0
\(969\) 5.02175 0.161322
\(970\) 10.2596 31.3329i 0.329416 1.00604i
\(971\) −2.81054 + 8.64995i −0.0901945 + 0.277590i −0.985972 0.166914i \(-0.946620\pi\)
0.895777 + 0.444504i \(0.146620\pi\)
\(972\) −65.4345 + 21.2610i −2.09881 + 0.681946i
\(973\) 33.0542 + 45.4952i 1.05967 + 1.45851i
\(974\) 14.5623 10.5801i 0.466606 0.339009i
\(975\) 0 0
\(976\) −1.46615 + 4.51235i −0.0469303 + 0.144437i
\(977\) 29.7298 40.9195i 0.951140 1.30913i 0.000120920 1.00000i \(-0.499962\pi\)
0.951019 0.309132i \(-0.100038\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 0 0
\(980\) 15.0000 + 46.5253i 0.479157 + 1.48620i
\(981\) 19.1922 + 13.9439i 0.612758 + 0.445195i
\(982\) 15.6312 + 5.07889i 0.498813 + 0.162074i
\(983\) 23.5349 7.64695i 0.750646 0.243900i 0.0913870 0.995815i \(-0.470870\pi\)
0.659259 + 0.751916i \(0.270870\pi\)
\(984\) 33.5654 24.3867i 1.07003 0.777419i
\(985\) −11.2236 + 15.3743i −0.357614 + 0.489864i
\(986\) −10.8089 33.2663i −0.344225 1.05941i
\(987\) −17.3143 5.62577i −0.551121 0.179070i
\(988\) 0 0
\(989\) −2.74456 −0.0872720
\(990\) 0 0
\(991\) 18.9783 0.602864 0.301432 0.953488i \(-0.402535\pi\)
0.301432 + 0.953488i \(0.402535\pi\)
\(992\) 8.14459 11.2101i 0.258591 0.355920i
\(993\) 10.6372 + 3.45623i 0.337561 + 0.109680i
\(994\) −27.3379 84.1375i −0.867106 2.66868i
\(995\) −14.4482 10.5475i −0.458038 0.334379i
\(996\) 18.5898 13.5063i 0.589040 0.427963i
\(997\) 2.06805 0.671952i 0.0654959 0.0212809i −0.276086 0.961133i \(-0.589037\pi\)
0.341582 + 0.939852i \(0.389037\pi\)
\(998\) 48.0158 + 15.6013i 1.51991 + 0.493849i
\(999\) −3.74390 2.72010i −0.118452 0.0860603i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.j.i.444.4 16
5.4 even 2 inner 605.2.j.i.444.1 16
11.2 odd 10 605.2.j.j.269.4 16
11.3 even 5 inner 605.2.j.i.124.1 16
11.4 even 5 inner 605.2.j.i.9.4 16
11.5 even 5 55.2.b.a.34.4 yes 4
11.6 odd 10 605.2.b.c.364.1 4
11.7 odd 10 605.2.j.j.9.1 16
11.8 odd 10 605.2.j.j.124.4 16
11.9 even 5 inner 605.2.j.i.269.1 16
11.10 odd 2 605.2.j.j.444.1 16
33.5 odd 10 495.2.c.a.199.1 4
44.27 odd 10 880.2.b.h.529.3 4
55.4 even 10 inner 605.2.j.i.9.1 16
55.9 even 10 inner 605.2.j.i.269.4 16
55.14 even 10 inner 605.2.j.i.124.4 16
55.17 even 20 3025.2.a.ba.1.4 4
55.19 odd 10 605.2.j.j.124.1 16
55.24 odd 10 605.2.j.j.269.1 16
55.27 odd 20 275.2.a.h.1.1 4
55.28 even 20 3025.2.a.ba.1.1 4
55.29 odd 10 605.2.j.j.9.4 16
55.38 odd 20 275.2.a.h.1.4 4
55.39 odd 10 605.2.b.c.364.4 4
55.49 even 10 55.2.b.a.34.1 4
55.54 odd 2 605.2.j.j.444.4 16
165.38 even 20 2475.2.a.bi.1.1 4
165.104 odd 10 495.2.c.a.199.4 4
165.137 even 20 2475.2.a.bi.1.4 4
220.27 even 20 4400.2.a.cc.1.3 4
220.159 odd 10 880.2.b.h.529.2 4
220.203 even 20 4400.2.a.cc.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.b.a.34.1 4 55.49 even 10
55.2.b.a.34.4 yes 4 11.5 even 5
275.2.a.h.1.1 4 55.27 odd 20
275.2.a.h.1.4 4 55.38 odd 20
495.2.c.a.199.1 4 33.5 odd 10
495.2.c.a.199.4 4 165.104 odd 10
605.2.b.c.364.1 4 11.6 odd 10
605.2.b.c.364.4 4 55.39 odd 10
605.2.j.i.9.1 16 55.4 even 10 inner
605.2.j.i.9.4 16 11.4 even 5 inner
605.2.j.i.124.1 16 11.3 even 5 inner
605.2.j.i.124.4 16 55.14 even 10 inner
605.2.j.i.269.1 16 11.9 even 5 inner
605.2.j.i.269.4 16 55.9 even 10 inner
605.2.j.i.444.1 16 5.4 even 2 inner
605.2.j.i.444.4 16 1.1 even 1 trivial
605.2.j.j.9.1 16 11.7 odd 10
605.2.j.j.9.4 16 55.29 odd 10
605.2.j.j.124.1 16 55.19 odd 10
605.2.j.j.124.4 16 11.8 odd 10
605.2.j.j.269.1 16 55.24 odd 10
605.2.j.j.269.4 16 11.2 odd 10
605.2.j.j.444.1 16 11.10 odd 2
605.2.j.j.444.4 16 55.54 odd 2
880.2.b.h.529.2 4 220.159 odd 10
880.2.b.h.529.3 4 44.27 odd 10
2475.2.a.bi.1.1 4 165.38 even 20
2475.2.a.bi.1.4 4 165.137 even 20
3025.2.a.ba.1.1 4 55.28 even 20
3025.2.a.ba.1.4 4 55.17 even 20
4400.2.a.cc.1.2 4 220.203 even 20
4400.2.a.cc.1.3 4 220.27 even 20