Properties

Label 6000.2.f.h.1249.1
Level $6000$
Weight $2$
Character 6000.1249
Analytic conductor $47.910$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6000,2,Mod(1249,6000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6000.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6000 = 2^{4} \cdot 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6000.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-4,0,2,0,0,0,0,0,0,0,10,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(21)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(47.9102412128\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 750)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.1
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 6000.1249
Dual form 6000.2.f.h.1249.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} -0.618034i q^{7} -1.00000 q^{9} +1.61803 q^{11} +4.85410i q^{13} -0.763932i q^{17} +5.85410 q^{19} -0.618034 q^{21} -4.85410i q^{23} +1.00000i q^{27} +2.76393 q^{29} +2.47214 q^{31} -1.61803i q^{33} +9.56231i q^{37} +4.85410 q^{39} -9.38197 q^{41} -5.70820i q^{43} +1.61803i q^{47} +6.61803 q^{49} -0.763932 q^{51} +5.38197i q^{53} -5.85410i q^{57} -13.0902 q^{59} -9.70820 q^{61} +0.618034i q^{63} -3.70820i q^{67} -4.85410 q^{69} +3.52786 q^{71} +12.9443i q^{73} -1.00000i q^{77} +13.4164 q^{79} +1.00000 q^{81} +14.9443i q^{83} -2.76393i q^{87} +18.0902 q^{89} +3.00000 q^{91} -2.47214i q^{93} -9.70820i q^{97} -1.61803 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{9} + 2 q^{11} + 10 q^{19} + 2 q^{21} + 20 q^{29} - 8 q^{31} + 6 q^{39} - 42 q^{41} + 22 q^{49} - 12 q^{51} - 30 q^{59} - 12 q^{61} - 6 q^{69} + 32 q^{71} + 4 q^{81} + 50 q^{89} + 12 q^{91} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/6000\mathbb{Z}\right)^\times\).

\(n\) \(751\) \(4001\) \(4501\) \(5377\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 0.618034i − 0.233595i −0.993156 0.116797i \(-0.962737\pi\)
0.993156 0.116797i \(-0.0372628\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 1.61803 0.487856 0.243928 0.969793i \(-0.421564\pi\)
0.243928 + 0.969793i \(0.421564\pi\)
\(12\) 0 0
\(13\) 4.85410i 1.34629i 0.739512 + 0.673143i \(0.235056\pi\)
−0.739512 + 0.673143i \(0.764944\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 0.763932i − 0.185281i −0.995700 0.0926404i \(-0.970469\pi\)
0.995700 0.0926404i \(-0.0295307\pi\)
\(18\) 0 0
\(19\) 5.85410 1.34302 0.671512 0.740994i \(-0.265645\pi\)
0.671512 + 0.740994i \(0.265645\pi\)
\(20\) 0 0
\(21\) −0.618034 −0.134866
\(22\) 0 0
\(23\) − 4.85410i − 1.01215i −0.862489 0.506075i \(-0.831096\pi\)
0.862489 0.506075i \(-0.168904\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.76393 0.513249 0.256625 0.966511i \(-0.417390\pi\)
0.256625 + 0.966511i \(0.417390\pi\)
\(30\) 0 0
\(31\) 2.47214 0.444009 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(32\) 0 0
\(33\) − 1.61803i − 0.281664i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.56231i 1.57203i 0.618205 + 0.786017i \(0.287860\pi\)
−0.618205 + 0.786017i \(0.712140\pi\)
\(38\) 0 0
\(39\) 4.85410 0.777278
\(40\) 0 0
\(41\) −9.38197 −1.46522 −0.732608 0.680650i \(-0.761697\pi\)
−0.732608 + 0.680650i \(0.761697\pi\)
\(42\) 0 0
\(43\) − 5.70820i − 0.870493i −0.900311 0.435246i \(-0.856661\pi\)
0.900311 0.435246i \(-0.143339\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.61803i 0.236015i 0.993013 + 0.118007i \(0.0376506\pi\)
−0.993013 + 0.118007i \(0.962349\pi\)
\(48\) 0 0
\(49\) 6.61803 0.945433
\(50\) 0 0
\(51\) −0.763932 −0.106972
\(52\) 0 0
\(53\) 5.38197i 0.739270i 0.929177 + 0.369635i \(0.120517\pi\)
−0.929177 + 0.369635i \(0.879483\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 5.85410i − 0.775395i
\(58\) 0 0
\(59\) −13.0902 −1.70419 −0.852097 0.523383i \(-0.824670\pi\)
−0.852097 + 0.523383i \(0.824670\pi\)
\(60\) 0 0
\(61\) −9.70820 −1.24301 −0.621504 0.783411i \(-0.713478\pi\)
−0.621504 + 0.783411i \(0.713478\pi\)
\(62\) 0 0
\(63\) 0.618034i 0.0778650i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 3.70820i − 0.453029i −0.974008 0.226515i \(-0.927267\pi\)
0.974008 0.226515i \(-0.0727331\pi\)
\(68\) 0 0
\(69\) −4.85410 −0.584365
\(70\) 0 0
\(71\) 3.52786 0.418680 0.209340 0.977843i \(-0.432868\pi\)
0.209340 + 0.977843i \(0.432868\pi\)
\(72\) 0 0
\(73\) 12.9443i 1.51501i 0.652828 + 0.757506i \(0.273582\pi\)
−0.652828 + 0.757506i \(0.726418\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1.00000i − 0.113961i
\(78\) 0 0
\(79\) 13.4164 1.50946 0.754732 0.656033i \(-0.227767\pi\)
0.754732 + 0.656033i \(0.227767\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 14.9443i 1.64035i 0.572115 + 0.820173i \(0.306123\pi\)
−0.572115 + 0.820173i \(0.693877\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 2.76393i − 0.296325i
\(88\) 0 0
\(89\) 18.0902 1.91755 0.958777 0.284159i \(-0.0917144\pi\)
0.958777 + 0.284159i \(0.0917144\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 0 0
\(93\) − 2.47214i − 0.256349i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 9.70820i − 0.985719i −0.870109 0.492859i \(-0.835952\pi\)
0.870109 0.492859i \(-0.164048\pi\)
\(98\) 0 0
\(99\) −1.61803 −0.162619
\(100\) 0 0
\(101\) 12.6525 1.25897 0.629484 0.777013i \(-0.283266\pi\)
0.629484 + 0.777013i \(0.283266\pi\)
\(102\) 0 0
\(103\) 8.56231i 0.843669i 0.906673 + 0.421835i \(0.138614\pi\)
−0.906673 + 0.421835i \(0.861386\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.94427i 0.671328i 0.941982 + 0.335664i \(0.108961\pi\)
−0.941982 + 0.335664i \(0.891039\pi\)
\(108\) 0 0
\(109\) 6.18034 0.591969 0.295985 0.955193i \(-0.404352\pi\)
0.295985 + 0.955193i \(0.404352\pi\)
\(110\) 0 0
\(111\) 9.56231 0.907614
\(112\) 0 0
\(113\) − 3.23607i − 0.304424i −0.988348 0.152212i \(-0.951360\pi\)
0.988348 0.152212i \(-0.0486396\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 4.85410i − 0.448762i
\(118\) 0 0
\(119\) −0.472136 −0.0432806
\(120\) 0 0
\(121\) −8.38197 −0.761997
\(122\) 0 0
\(123\) 9.38197i 0.845943i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 11.4164i 1.01304i 0.862228 + 0.506521i \(0.169069\pi\)
−0.862228 + 0.506521i \(0.830931\pi\)
\(128\) 0 0
\(129\) −5.70820 −0.502579
\(130\) 0 0
\(131\) −3.90983 −0.341603 −0.170802 0.985305i \(-0.554636\pi\)
−0.170802 + 0.985305i \(0.554636\pi\)
\(132\) 0 0
\(133\) − 3.61803i − 0.313723i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.05573i 0.261068i 0.991444 + 0.130534i \(0.0416692\pi\)
−0.991444 + 0.130534i \(0.958331\pi\)
\(138\) 0 0
\(139\) 12.5623 1.06552 0.532760 0.846266i \(-0.321155\pi\)
0.532760 + 0.846266i \(0.321155\pi\)
\(140\) 0 0
\(141\) 1.61803 0.136263
\(142\) 0 0
\(143\) 7.85410i 0.656793i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 6.61803i − 0.545846i
\(148\) 0 0
\(149\) 13.4164 1.09911 0.549557 0.835456i \(-0.314796\pi\)
0.549557 + 0.835456i \(0.314796\pi\)
\(150\) 0 0
\(151\) −10.2918 −0.837534 −0.418767 0.908094i \(-0.637538\pi\)
−0.418767 + 0.908094i \(0.637538\pi\)
\(152\) 0 0
\(153\) 0.763932i 0.0617602i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 10.9443i 0.873448i 0.899596 + 0.436724i \(0.143861\pi\)
−0.899596 + 0.436724i \(0.856139\pi\)
\(158\) 0 0
\(159\) 5.38197 0.426818
\(160\) 0 0
\(161\) −3.00000 −0.236433
\(162\) 0 0
\(163\) 4.94427i 0.387265i 0.981074 + 0.193633i \(0.0620270\pi\)
−0.981074 + 0.193633i \(0.937973\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 7.85410i − 0.607769i −0.952709 0.303884i \(-0.901716\pi\)
0.952709 0.303884i \(-0.0982836\pi\)
\(168\) 0 0
\(169\) −10.5623 −0.812485
\(170\) 0 0
\(171\) −5.85410 −0.447674
\(172\) 0 0
\(173\) − 14.6180i − 1.11139i −0.831387 0.555694i \(-0.812453\pi\)
0.831387 0.555694i \(-0.187547\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.0902i 0.983917i
\(178\) 0 0
\(179\) 22.0344 1.64693 0.823466 0.567366i \(-0.192038\pi\)
0.823466 + 0.567366i \(0.192038\pi\)
\(180\) 0 0
\(181\) 25.4164 1.88919 0.944593 0.328243i \(-0.106456\pi\)
0.944593 + 0.328243i \(0.106456\pi\)
\(182\) 0 0
\(183\) 9.70820i 0.717651i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 1.23607i − 0.0903902i
\(188\) 0 0
\(189\) 0.618034 0.0449554
\(190\) 0 0
\(191\) 16.9443 1.22604 0.613022 0.790066i \(-0.289954\pi\)
0.613022 + 0.790066i \(0.289954\pi\)
\(192\) 0 0
\(193\) − 4.29180i − 0.308930i −0.987998 0.154465i \(-0.950635\pi\)
0.987998 0.154465i \(-0.0493654\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 6.94427i − 0.494759i −0.968919 0.247379i \(-0.920431\pi\)
0.968919 0.247379i \(-0.0795694\pi\)
\(198\) 0 0
\(199\) −6.18034 −0.438113 −0.219056 0.975712i \(-0.570298\pi\)
−0.219056 + 0.975712i \(0.570298\pi\)
\(200\) 0 0
\(201\) −3.70820 −0.261557
\(202\) 0 0
\(203\) − 1.70820i − 0.119892i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.85410i 0.337383i
\(208\) 0 0
\(209\) 9.47214 0.655201
\(210\) 0 0
\(211\) 17.2705 1.18895 0.594475 0.804114i \(-0.297360\pi\)
0.594475 + 0.804114i \(0.297360\pi\)
\(212\) 0 0
\(213\) − 3.52786i − 0.241725i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1.52786i − 0.103718i
\(218\) 0 0
\(219\) 12.9443 0.874693
\(220\) 0 0
\(221\) 3.70820 0.249441
\(222\) 0 0
\(223\) − 24.0000i − 1.60716i −0.595198 0.803579i \(-0.702926\pi\)
0.595198 0.803579i \(-0.297074\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 28.1803i − 1.87039i −0.354127 0.935197i \(-0.615222\pi\)
0.354127 0.935197i \(-0.384778\pi\)
\(228\) 0 0
\(229\) −1.70820 −0.112881 −0.0564406 0.998406i \(-0.517975\pi\)
−0.0564406 + 0.998406i \(0.517975\pi\)
\(230\) 0 0
\(231\) −1.00000 −0.0657952
\(232\) 0 0
\(233\) − 19.4164i − 1.27201i −0.771684 0.636006i \(-0.780586\pi\)
0.771684 0.636006i \(-0.219414\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 13.4164i − 0.871489i
\(238\) 0 0
\(239\) 8.94427 0.578557 0.289278 0.957245i \(-0.406585\pi\)
0.289278 + 0.957245i \(0.406585\pi\)
\(240\) 0 0
\(241\) −7.14590 −0.460308 −0.230154 0.973154i \(-0.573923\pi\)
−0.230154 + 0.973154i \(0.573923\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 28.4164i 1.80809i
\(248\) 0 0
\(249\) 14.9443 0.947055
\(250\) 0 0
\(251\) −20.9443 −1.32199 −0.660995 0.750390i \(-0.729866\pi\)
−0.660995 + 0.750390i \(0.729866\pi\)
\(252\) 0 0
\(253\) − 7.85410i − 0.493783i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 13.5279i − 0.843845i −0.906632 0.421922i \(-0.861355\pi\)
0.906632 0.421922i \(-0.138645\pi\)
\(258\) 0 0
\(259\) 5.90983 0.367219
\(260\) 0 0
\(261\) −2.76393 −0.171083
\(262\) 0 0
\(263\) 14.6180i 0.901387i 0.892679 + 0.450693i \(0.148823\pi\)
−0.892679 + 0.450693i \(0.851177\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 18.0902i − 1.10710i
\(268\) 0 0
\(269\) 13.4164 0.818013 0.409006 0.912532i \(-0.365875\pi\)
0.409006 + 0.912532i \(0.365875\pi\)
\(270\) 0 0
\(271\) −25.4164 −1.54394 −0.771968 0.635661i \(-0.780728\pi\)
−0.771968 + 0.635661i \(0.780728\pi\)
\(272\) 0 0
\(273\) − 3.00000i − 0.181568i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 12.8541i 0.772328i 0.922430 + 0.386164i \(0.126200\pi\)
−0.922430 + 0.386164i \(0.873800\pi\)
\(278\) 0 0
\(279\) −2.47214 −0.148003
\(280\) 0 0
\(281\) −6.09017 −0.363309 −0.181655 0.983362i \(-0.558145\pi\)
−0.181655 + 0.983362i \(0.558145\pi\)
\(282\) 0 0
\(283\) − 30.1803i − 1.79403i −0.441995 0.897017i \(-0.645729\pi\)
0.441995 0.897017i \(-0.354271\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.79837i 0.342267i
\(288\) 0 0
\(289\) 16.4164 0.965671
\(290\) 0 0
\(291\) −9.70820 −0.569105
\(292\) 0 0
\(293\) 22.0902i 1.29052i 0.763962 + 0.645261i \(0.223251\pi\)
−0.763962 + 0.645261i \(0.776749\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.61803i 0.0938879i
\(298\) 0 0
\(299\) 23.5623 1.36264
\(300\) 0 0
\(301\) −3.52786 −0.203343
\(302\) 0 0
\(303\) − 12.6525i − 0.726866i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 20.7639i 1.18506i 0.805548 + 0.592530i \(0.201871\pi\)
−0.805548 + 0.592530i \(0.798129\pi\)
\(308\) 0 0
\(309\) 8.56231 0.487093
\(310\) 0 0
\(311\) −12.0000 −0.680458 −0.340229 0.940343i \(-0.610505\pi\)
−0.340229 + 0.940343i \(0.610505\pi\)
\(312\) 0 0
\(313\) 2.29180i 0.129540i 0.997900 + 0.0647700i \(0.0206314\pi\)
−0.997900 + 0.0647700i \(0.979369\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.14590i 0.0643600i 0.999482 + 0.0321800i \(0.0102450\pi\)
−0.999482 + 0.0321800i \(0.989755\pi\)
\(318\) 0 0
\(319\) 4.47214 0.250392
\(320\) 0 0
\(321\) 6.94427 0.387591
\(322\) 0 0
\(323\) − 4.47214i − 0.248836i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 6.18034i − 0.341774i
\(328\) 0 0
\(329\) 1.00000 0.0551318
\(330\) 0 0
\(331\) 2.47214 0.135881 0.0679404 0.997689i \(-0.478357\pi\)
0.0679404 + 0.997689i \(0.478357\pi\)
\(332\) 0 0
\(333\) − 9.56231i − 0.524011i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 19.8885i 1.08340i 0.840573 + 0.541699i \(0.182219\pi\)
−0.840573 + 0.541699i \(0.817781\pi\)
\(338\) 0 0
\(339\) −3.23607 −0.175759
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) − 8.41641i − 0.454443i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 26.0689i − 1.39945i −0.714412 0.699726i \(-0.753306\pi\)
0.714412 0.699726i \(-0.246694\pi\)
\(348\) 0 0
\(349\) 26.8328 1.43633 0.718164 0.695874i \(-0.244983\pi\)
0.718164 + 0.695874i \(0.244983\pi\)
\(350\) 0 0
\(351\) −4.85410 −0.259093
\(352\) 0 0
\(353\) 15.7082i 0.836063i 0.908432 + 0.418032i \(0.137280\pi\)
−0.908432 + 0.418032i \(0.862720\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0.472136i 0.0249881i
\(358\) 0 0
\(359\) 4.47214 0.236030 0.118015 0.993012i \(-0.462347\pi\)
0.118015 + 0.993012i \(0.462347\pi\)
\(360\) 0 0
\(361\) 15.2705 0.803711
\(362\) 0 0
\(363\) 8.38197i 0.439939i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.58359i 0.239262i 0.992818 + 0.119631i \(0.0381711\pi\)
−0.992818 + 0.119631i \(0.961829\pi\)
\(368\) 0 0
\(369\) 9.38197 0.488406
\(370\) 0 0
\(371\) 3.32624 0.172690
\(372\) 0 0
\(373\) 30.5066i 1.57957i 0.613383 + 0.789785i \(0.289808\pi\)
−0.613383 + 0.789785i \(0.710192\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13.4164i 0.690980i
\(378\) 0 0
\(379\) −15.9787 −0.820771 −0.410386 0.911912i \(-0.634606\pi\)
−0.410386 + 0.911912i \(0.634606\pi\)
\(380\) 0 0
\(381\) 11.4164 0.584880
\(382\) 0 0
\(383\) − 37.0902i − 1.89522i −0.319431 0.947610i \(-0.603492\pi\)
0.319431 0.947610i \(-0.396508\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 5.70820i 0.290164i
\(388\) 0 0
\(389\) −12.7639 −0.647157 −0.323579 0.946201i \(-0.604886\pi\)
−0.323579 + 0.946201i \(0.604886\pi\)
\(390\) 0 0
\(391\) −3.70820 −0.187532
\(392\) 0 0
\(393\) 3.90983i 0.197225i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 17.2705i − 0.866782i −0.901206 0.433391i \(-0.857317\pi\)
0.901206 0.433391i \(-0.142683\pi\)
\(398\) 0 0
\(399\) −3.61803 −0.181128
\(400\) 0 0
\(401\) 2.32624 0.116167 0.0580834 0.998312i \(-0.481501\pi\)
0.0580834 + 0.998312i \(0.481501\pi\)
\(402\) 0 0
\(403\) 12.0000i 0.597763i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 15.4721i 0.766925i
\(408\) 0 0
\(409\) 14.1459 0.699470 0.349735 0.936849i \(-0.386272\pi\)
0.349735 + 0.936849i \(0.386272\pi\)
\(410\) 0 0
\(411\) 3.05573 0.150728
\(412\) 0 0
\(413\) 8.09017i 0.398091i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 12.5623i − 0.615179i
\(418\) 0 0
\(419\) 11.0557 0.540108 0.270054 0.962845i \(-0.412958\pi\)
0.270054 + 0.962845i \(0.412958\pi\)
\(420\) 0 0
\(421\) 18.1803 0.886056 0.443028 0.896508i \(-0.353904\pi\)
0.443028 + 0.896508i \(0.353904\pi\)
\(422\) 0 0
\(423\) − 1.61803i − 0.0786715i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6.00000i 0.290360i
\(428\) 0 0
\(429\) 7.85410 0.379200
\(430\) 0 0
\(431\) −15.8197 −0.762006 −0.381003 0.924574i \(-0.624421\pi\)
−0.381003 + 0.924574i \(0.624421\pi\)
\(432\) 0 0
\(433\) 17.4164i 0.836979i 0.908222 + 0.418490i \(0.137440\pi\)
−0.908222 + 0.418490i \(0.862560\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 28.4164i − 1.35934i
\(438\) 0 0
\(439\) 1.70820 0.0815281 0.0407641 0.999169i \(-0.487021\pi\)
0.0407641 + 0.999169i \(0.487021\pi\)
\(440\) 0 0
\(441\) −6.61803 −0.315144
\(442\) 0 0
\(443\) − 13.5967i − 0.646001i −0.946399 0.323000i \(-0.895308\pi\)
0.946399 0.323000i \(-0.104692\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 13.4164i − 0.634574i
\(448\) 0 0
\(449\) −28.2148 −1.33154 −0.665769 0.746158i \(-0.731896\pi\)
−0.665769 + 0.746158i \(0.731896\pi\)
\(450\) 0 0
\(451\) −15.1803 −0.714814
\(452\) 0 0
\(453\) 10.2918i 0.483551i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 38.8328i 1.81652i 0.418404 + 0.908261i \(0.362590\pi\)
−0.418404 + 0.908261i \(0.637410\pi\)
\(458\) 0 0
\(459\) 0.763932 0.0356573
\(460\) 0 0
\(461\) 38.1803 1.77824 0.889118 0.457678i \(-0.151319\pi\)
0.889118 + 0.457678i \(0.151319\pi\)
\(462\) 0 0
\(463\) 31.7771i 1.47681i 0.674359 + 0.738403i \(0.264420\pi\)
−0.674359 + 0.738403i \(0.735580\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15.2361i 0.705041i 0.935804 + 0.352521i \(0.114675\pi\)
−0.935804 + 0.352521i \(0.885325\pi\)
\(468\) 0 0
\(469\) −2.29180 −0.105825
\(470\) 0 0
\(471\) 10.9443 0.504285
\(472\) 0 0
\(473\) − 9.23607i − 0.424675i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 5.38197i − 0.246423i
\(478\) 0 0
\(479\) 8.29180 0.378862 0.189431 0.981894i \(-0.439336\pi\)
0.189431 + 0.981894i \(0.439336\pi\)
\(480\) 0 0
\(481\) −46.4164 −2.11641
\(482\) 0 0
\(483\) 3.00000i 0.136505i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 17.3262i − 0.785127i −0.919725 0.392563i \(-0.871588\pi\)
0.919725 0.392563i \(-0.128412\pi\)
\(488\) 0 0
\(489\) 4.94427 0.223588
\(490\) 0 0
\(491\) 18.9787 0.856497 0.428249 0.903661i \(-0.359131\pi\)
0.428249 + 0.903661i \(0.359131\pi\)
\(492\) 0 0
\(493\) − 2.11146i − 0.0950952i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 2.18034i − 0.0978016i
\(498\) 0 0
\(499\) −5.72949 −0.256487 −0.128244 0.991743i \(-0.540934\pi\)
−0.128244 + 0.991743i \(0.540934\pi\)
\(500\) 0 0
\(501\) −7.85410 −0.350895
\(502\) 0 0
\(503\) 13.0344i 0.581177i 0.956848 + 0.290589i \(0.0938511\pi\)
−0.956848 + 0.290589i \(0.906149\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 10.5623i 0.469088i
\(508\) 0 0
\(509\) −30.6525 −1.35865 −0.679324 0.733839i \(-0.737727\pi\)
−0.679324 + 0.733839i \(0.737727\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 5.85410i 0.258465i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.61803i 0.115141i
\(518\) 0 0
\(519\) −14.6180 −0.641660
\(520\) 0 0
\(521\) −38.4508 −1.68456 −0.842281 0.539038i \(-0.818788\pi\)
−0.842281 + 0.539038i \(0.818788\pi\)
\(522\) 0 0
\(523\) − 29.5279i − 1.29116i −0.763691 0.645582i \(-0.776615\pi\)
0.763691 0.645582i \(-0.223385\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 1.88854i − 0.0822663i
\(528\) 0 0
\(529\) −0.562306 −0.0244481
\(530\) 0 0
\(531\) 13.0902 0.568065
\(532\) 0 0
\(533\) − 45.5410i − 1.97260i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 22.0344i − 0.950856i
\(538\) 0 0
\(539\) 10.7082 0.461235
\(540\) 0 0
\(541\) 45.4164 1.95260 0.976302 0.216413i \(-0.0694357\pi\)
0.976302 + 0.216413i \(0.0694357\pi\)
\(542\) 0 0
\(543\) − 25.4164i − 1.09072i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 23.1246i 0.988737i 0.869252 + 0.494369i \(0.164601\pi\)
−0.869252 + 0.494369i \(0.835399\pi\)
\(548\) 0 0
\(549\) 9.70820 0.414336
\(550\) 0 0
\(551\) 16.1803 0.689306
\(552\) 0 0
\(553\) − 8.29180i − 0.352603i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 11.6180i − 0.492272i −0.969235 0.246136i \(-0.920839\pi\)
0.969235 0.246136i \(-0.0791610\pi\)
\(558\) 0 0
\(559\) 27.7082 1.17193
\(560\) 0 0
\(561\) −1.23607 −0.0521868
\(562\) 0 0
\(563\) − 2.94427i − 0.124086i −0.998073 0.0620431i \(-0.980238\pi\)
0.998073 0.0620431i \(-0.0197616\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 0.618034i − 0.0259550i
\(568\) 0 0
\(569\) 14.6738 0.615156 0.307578 0.951523i \(-0.400481\pi\)
0.307578 + 0.951523i \(0.400481\pi\)
\(570\) 0 0
\(571\) 26.2148 1.09705 0.548527 0.836133i \(-0.315189\pi\)
0.548527 + 0.836133i \(0.315189\pi\)
\(572\) 0 0
\(573\) − 16.9443i − 0.707857i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 33.7082i 1.40329i 0.712526 + 0.701645i \(0.247551\pi\)
−0.712526 + 0.701645i \(0.752449\pi\)
\(578\) 0 0
\(579\) −4.29180 −0.178361
\(580\) 0 0
\(581\) 9.23607 0.383177
\(582\) 0 0
\(583\) 8.70820i 0.360657i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 15.8197i − 0.652947i −0.945206 0.326474i \(-0.894140\pi\)
0.945206 0.326474i \(-0.105860\pi\)
\(588\) 0 0
\(589\) 14.4721 0.596314
\(590\) 0 0
\(591\) −6.94427 −0.285649
\(592\) 0 0
\(593\) 1.63932i 0.0673188i 0.999433 + 0.0336594i \(0.0107161\pi\)
−0.999433 + 0.0336594i \(0.989284\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.18034i 0.252944i
\(598\) 0 0
\(599\) 48.5410 1.98333 0.991666 0.128834i \(-0.0411235\pi\)
0.991666 + 0.128834i \(0.0411235\pi\)
\(600\) 0 0
\(601\) −32.2705 −1.31634 −0.658171 0.752869i \(-0.728670\pi\)
−0.658171 + 0.752869i \(0.728670\pi\)
\(602\) 0 0
\(603\) 3.70820i 0.151010i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 20.6869i 0.839656i 0.907604 + 0.419828i \(0.137910\pi\)
−0.907604 + 0.419828i \(0.862090\pi\)
\(608\) 0 0
\(609\) −1.70820 −0.0692199
\(610\) 0 0
\(611\) −7.85410 −0.317743
\(612\) 0 0
\(613\) − 22.3820i − 0.903999i −0.892018 0.452000i \(-0.850711\pi\)
0.892018 0.452000i \(-0.149289\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 29.3050i − 1.17977i −0.807486 0.589886i \(-0.799172\pi\)
0.807486 0.589886i \(-0.200828\pi\)
\(618\) 0 0
\(619\) −18.0902 −0.727105 −0.363553 0.931574i \(-0.618436\pi\)
−0.363553 + 0.931574i \(0.618436\pi\)
\(620\) 0 0
\(621\) 4.85410 0.194788
\(622\) 0 0
\(623\) − 11.1803i − 0.447931i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 9.47214i − 0.378281i
\(628\) 0 0
\(629\) 7.30495 0.291267
\(630\) 0 0
\(631\) 1.81966 0.0724395 0.0362198 0.999344i \(-0.488468\pi\)
0.0362198 + 0.999344i \(0.488468\pi\)
\(632\) 0 0
\(633\) − 17.2705i − 0.686441i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 32.1246i 1.27282i
\(638\) 0 0
\(639\) −3.52786 −0.139560
\(640\) 0 0
\(641\) −1.74265 −0.0688304 −0.0344152 0.999408i \(-0.510957\pi\)
−0.0344152 + 0.999408i \(0.510957\pi\)
\(642\) 0 0
\(643\) 7.05573i 0.278251i 0.990275 + 0.139125i \(0.0444291\pi\)
−0.990275 + 0.139125i \(0.955571\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 5.09017i − 0.200115i −0.994982 0.100058i \(-0.968097\pi\)
0.994982 0.100058i \(-0.0319027\pi\)
\(648\) 0 0
\(649\) −21.1803 −0.831401
\(650\) 0 0
\(651\) −1.52786 −0.0598817
\(652\) 0 0
\(653\) 13.1459i 0.514439i 0.966353 + 0.257219i \(0.0828063\pi\)
−0.966353 + 0.257219i \(0.917194\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 12.9443i − 0.505004i
\(658\) 0 0
\(659\) −1.25735 −0.0489796 −0.0244898 0.999700i \(-0.507796\pi\)
−0.0244898 + 0.999700i \(0.507796\pi\)
\(660\) 0 0
\(661\) 2.65248 0.103169 0.0515847 0.998669i \(-0.483573\pi\)
0.0515847 + 0.998669i \(0.483573\pi\)
\(662\) 0 0
\(663\) − 3.70820i − 0.144015i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 13.4164i − 0.519485i
\(668\) 0 0
\(669\) −24.0000 −0.927894
\(670\) 0 0
\(671\) −15.7082 −0.606408
\(672\) 0 0
\(673\) − 21.5279i − 0.829838i −0.909858 0.414919i \(-0.863810\pi\)
0.909858 0.414919i \(-0.136190\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.85410i 0.301858i 0.988545 + 0.150929i \(0.0482264\pi\)
−0.988545 + 0.150929i \(0.951774\pi\)
\(678\) 0 0
\(679\) −6.00000 −0.230259
\(680\) 0 0
\(681\) −28.1803 −1.07987
\(682\) 0 0
\(683\) 24.9443i 0.954466i 0.878777 + 0.477233i \(0.158360\pi\)
−0.878777 + 0.477233i \(0.841640\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 1.70820i 0.0651720i
\(688\) 0 0
\(689\) −26.1246 −0.995268
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 1.00000i 0.0379869i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 7.16718i 0.271476i
\(698\) 0 0
\(699\) −19.4164 −0.734396
\(700\) 0 0
\(701\) −25.2361 −0.953153 −0.476577 0.879133i \(-0.658122\pi\)
−0.476577 + 0.879133i \(0.658122\pi\)
\(702\) 0 0
\(703\) 55.9787i 2.11128i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 7.81966i − 0.294089i
\(708\) 0 0
\(709\) 2.76393 0.103802 0.0519008 0.998652i \(-0.483472\pi\)
0.0519008 + 0.998652i \(0.483472\pi\)
\(710\) 0 0
\(711\) −13.4164 −0.503155
\(712\) 0 0
\(713\) − 12.0000i − 0.449404i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 8.94427i − 0.334030i
\(718\) 0 0
\(719\) −27.8885 −1.04007 −0.520034 0.854146i \(-0.674081\pi\)
−0.520034 + 0.854146i \(0.674081\pi\)
\(720\) 0 0
\(721\) 5.29180 0.197077
\(722\) 0 0
\(723\) 7.14590i 0.265759i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 44.1033i 1.63570i 0.575430 + 0.817851i \(0.304835\pi\)
−0.575430 + 0.817851i \(0.695165\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −4.36068 −0.161286
\(732\) 0 0
\(733\) − 31.3262i − 1.15706i −0.815661 0.578530i \(-0.803626\pi\)
0.815661 0.578530i \(-0.196374\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 6.00000i − 0.221013i
\(738\) 0 0
\(739\) 10.7295 0.394691 0.197345 0.980334i \(-0.436768\pi\)
0.197345 + 0.980334i \(0.436768\pi\)
\(740\) 0 0
\(741\) 28.4164 1.04390
\(742\) 0 0
\(743\) − 4.85410i − 0.178080i −0.996028 0.0890399i \(-0.971620\pi\)
0.996028 0.0890399i \(-0.0283799\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 14.9443i − 0.546782i
\(748\) 0 0
\(749\) 4.29180 0.156819
\(750\) 0 0
\(751\) 47.5967 1.73683 0.868415 0.495838i \(-0.165139\pi\)
0.868415 + 0.495838i \(0.165139\pi\)
\(752\) 0 0
\(753\) 20.9443i 0.763252i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 21.7984i 0.792275i 0.918191 + 0.396138i \(0.129650\pi\)
−0.918191 + 0.396138i \(0.870350\pi\)
\(758\) 0 0
\(759\) −7.85410 −0.285086
\(760\) 0 0
\(761\) −10.0344 −0.363748 −0.181874 0.983322i \(-0.558216\pi\)
−0.181874 + 0.983322i \(0.558216\pi\)
\(762\) 0 0
\(763\) − 3.81966i − 0.138281i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 63.5410i − 2.29433i
\(768\) 0 0
\(769\) 15.7295 0.567220 0.283610 0.958940i \(-0.408468\pi\)
0.283610 + 0.958940i \(0.408468\pi\)
\(770\) 0 0
\(771\) −13.5279 −0.487194
\(772\) 0 0
\(773\) 2.94427i 0.105898i 0.998597 + 0.0529491i \(0.0168621\pi\)
−0.998597 + 0.0529491i \(0.983138\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 5.90983i − 0.212014i
\(778\) 0 0
\(779\) −54.9230 −1.96782
\(780\) 0 0
\(781\) 5.70820 0.204256
\(782\) 0 0
\(783\) 2.76393i 0.0987749i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 25.4164i − 0.905997i −0.891511 0.452999i \(-0.850354\pi\)
0.891511 0.452999i \(-0.149646\pi\)
\(788\) 0 0
\(789\) 14.6180 0.520416
\(790\) 0 0
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) − 47.1246i − 1.67344i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 5.09017i 0.180303i 0.995928 + 0.0901515i \(0.0287351\pi\)
−0.995928 + 0.0901515i \(0.971265\pi\)
\(798\) 0 0
\(799\) 1.23607 0.0437289
\(800\) 0 0
\(801\) −18.0902 −0.639185
\(802\) 0 0
\(803\) 20.9443i 0.739107i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 13.4164i − 0.472280i
\(808\) 0 0
\(809\) −15.9787 −0.561782 −0.280891 0.959740i \(-0.590630\pi\)
−0.280891 + 0.959740i \(0.590630\pi\)
\(810\) 0 0
\(811\) −53.1033 −1.86471 −0.932355 0.361544i \(-0.882250\pi\)
−0.932355 + 0.361544i \(0.882250\pi\)
\(812\) 0 0
\(813\) 25.4164i 0.891392i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 33.4164i − 1.16909i
\(818\) 0 0
\(819\) −3.00000 −0.104828
\(820\) 0 0
\(821\) −16.9443 −0.591359 −0.295680 0.955287i \(-0.595546\pi\)
−0.295680 + 0.955287i \(0.595546\pi\)
\(822\) 0 0
\(823\) 8.03444i 0.280063i 0.990147 + 0.140032i \(0.0447204\pi\)
−0.990147 + 0.140032i \(0.955280\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.5410i 1.27066i 0.772243 + 0.635328i \(0.219135\pi\)
−0.772243 + 0.635328i \(0.780865\pi\)
\(828\) 0 0
\(829\) 40.2492 1.39791 0.698957 0.715164i \(-0.253648\pi\)
0.698957 + 0.715164i \(0.253648\pi\)
\(830\) 0 0
\(831\) 12.8541 0.445904
\(832\) 0 0
\(833\) − 5.05573i − 0.175171i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 2.47214i 0.0854495i
\(838\) 0 0
\(839\) −16.1803 −0.558607 −0.279304 0.960203i \(-0.590104\pi\)
−0.279304 + 0.960203i \(0.590104\pi\)
\(840\) 0 0
\(841\) −21.3607 −0.736575
\(842\) 0 0
\(843\) 6.09017i 0.209757i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.18034i 0.177999i
\(848\) 0 0
\(849\) −30.1803 −1.03579
\(850\) 0 0
\(851\) 46.4164 1.59113
\(852\) 0 0
\(853\) 6.43769i 0.220422i 0.993908 + 0.110211i \(0.0351527\pi\)
−0.993908 + 0.110211i \(0.964847\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 8.18034i 0.279435i 0.990191 + 0.139718i \(0.0446195\pi\)
−0.990191 + 0.139718i \(0.955381\pi\)
\(858\) 0 0
\(859\) 0.978714 0.0333933 0.0166966 0.999861i \(-0.494685\pi\)
0.0166966 + 0.999861i \(0.494685\pi\)
\(860\) 0 0
\(861\) 5.79837 0.197608
\(862\) 0 0
\(863\) 2.90983i 0.0990518i 0.998773 + 0.0495259i \(0.0157710\pi\)
−0.998773 + 0.0495259i \(0.984229\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 16.4164i − 0.557530i
\(868\) 0 0
\(869\) 21.7082 0.736400
\(870\) 0 0
\(871\) 18.0000 0.609907
\(872\) 0 0
\(873\) 9.70820i 0.328573i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 7.72949i 0.261006i 0.991448 + 0.130503i \(0.0416593\pi\)
−0.991448 + 0.130503i \(0.958341\pi\)
\(878\) 0 0
\(879\) 22.0902 0.745083
\(880\) 0 0
\(881\) −8.72949 −0.294104 −0.147052 0.989129i \(-0.546978\pi\)
−0.147052 + 0.989129i \(0.546978\pi\)
\(882\) 0 0
\(883\) − 38.4721i − 1.29469i −0.762197 0.647345i \(-0.775879\pi\)
0.762197 0.647345i \(-0.224121\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 34.9098i 1.17216i 0.810254 + 0.586079i \(0.199329\pi\)
−0.810254 + 0.586079i \(0.800671\pi\)
\(888\) 0 0
\(889\) 7.05573 0.236642
\(890\) 0 0
\(891\) 1.61803 0.0542062
\(892\) 0 0
\(893\) 9.47214i 0.316973i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 23.5623i − 0.786722i
\(898\) 0 0
\(899\) 6.83282 0.227887
\(900\) 0 0
\(901\) 4.11146 0.136972
\(902\) 0 0
\(903\) 3.52786i 0.117400i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13.1246i 0.435796i 0.975972 + 0.217898i \(0.0699199\pi\)
−0.975972 + 0.217898i \(0.930080\pi\)
\(908\) 0 0
\(909\) −12.6525 −0.419656
\(910\) 0 0
\(911\) 35.8885 1.18904 0.594520 0.804081i \(-0.297342\pi\)
0.594520 + 0.804081i \(0.297342\pi\)
\(912\) 0 0
\(913\) 24.1803i 0.800252i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.41641i 0.0797968i
\(918\) 0 0
\(919\) −29.5967 −0.976307 −0.488153 0.872758i \(-0.662329\pi\)
−0.488153 + 0.872758i \(0.662329\pi\)
\(920\) 0 0
\(921\) 20.7639 0.684195
\(922\) 0 0
\(923\) 17.1246i 0.563663i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 8.56231i − 0.281223i
\(928\) 0 0
\(929\) 30.4508 0.999060 0.499530 0.866297i \(-0.333506\pi\)
0.499530 + 0.866297i \(0.333506\pi\)
\(930\) 0 0
\(931\) 38.7426 1.26974
\(932\) 0 0
\(933\) 12.0000i 0.392862i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27.1246i 0.886122i 0.896491 + 0.443061i \(0.146108\pi\)
−0.896491 + 0.443061i \(0.853892\pi\)
\(938\) 0 0
\(939\) 2.29180 0.0747899
\(940\) 0 0
\(941\) 17.1246 0.558246 0.279123 0.960255i \(-0.409956\pi\)
0.279123 + 0.960255i \(0.409956\pi\)
\(942\) 0 0
\(943\) 45.5410i 1.48302i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 29.8885i − 0.971247i −0.874168 0.485624i \(-0.838593\pi\)
0.874168 0.485624i \(-0.161407\pi\)
\(948\) 0 0
\(949\) −62.8328 −2.03964
\(950\) 0 0
\(951\) 1.14590 0.0371583
\(952\) 0 0
\(953\) 60.1803i 1.94943i 0.223446 + 0.974716i \(0.428269\pi\)
−0.223446 + 0.974716i \(0.571731\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 4.47214i − 0.144564i
\(958\) 0 0
\(959\) 1.88854 0.0609843
\(960\) 0 0
\(961\) −24.8885 −0.802856
\(962\) 0 0
\(963\) − 6.94427i − 0.223776i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 13.3262i 0.428543i 0.976774 + 0.214271i \(0.0687377\pi\)
−0.976774 + 0.214271i \(0.931262\pi\)
\(968\) 0 0
\(969\) −4.47214 −0.143666
\(970\) 0 0
\(971\) 2.02129 0.0648662 0.0324331 0.999474i \(-0.489674\pi\)
0.0324331 + 0.999474i \(0.489674\pi\)
\(972\) 0 0
\(973\) − 7.76393i − 0.248900i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 4.58359i − 0.146642i −0.997308 0.0733211i \(-0.976640\pi\)
0.997308 0.0733211i \(-0.0233598\pi\)
\(978\) 0 0
\(979\) 29.2705 0.935490
\(980\) 0 0
\(981\) −6.18034 −0.197323
\(982\) 0 0
\(983\) − 24.4508i − 0.779861i −0.920844 0.389930i \(-0.872499\pi\)
0.920844 0.389930i \(-0.127501\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1.00000i − 0.0318304i
\(988\) 0 0
\(989\) −27.7082 −0.881070
\(990\) 0 0
\(991\) −42.0000 −1.33417 −0.667087 0.744980i \(-0.732459\pi\)
−0.667087 + 0.744980i \(0.732459\pi\)
\(992\) 0 0
\(993\) − 2.47214i − 0.0784509i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 22.1459i − 0.701368i −0.936494 0.350684i \(-0.885949\pi\)
0.936494 0.350684i \(-0.114051\pi\)
\(998\) 0 0
\(999\) −9.56231 −0.302538
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6000.2.f.h.1249.1 4
4.3 odd 2 750.2.c.d.499.2 4
5.2 odd 4 6000.2.a.f.1.2 2
5.3 odd 4 6000.2.a.w.1.1 2
5.4 even 2 inner 6000.2.f.h.1249.4 4
12.11 even 2 2250.2.c.d.1999.4 4
20.3 even 4 750.2.a.b.1.2 2
20.7 even 4 750.2.a.g.1.1 yes 2
20.19 odd 2 750.2.c.d.499.3 4
60.23 odd 4 2250.2.a.l.1.2 2
60.47 odd 4 2250.2.a.e.1.1 2
60.59 even 2 2250.2.c.d.1999.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
750.2.a.b.1.2 2 20.3 even 4
750.2.a.g.1.1 yes 2 20.7 even 4
750.2.c.d.499.2 4 4.3 odd 2
750.2.c.d.499.3 4 20.19 odd 2
2250.2.a.e.1.1 2 60.47 odd 4
2250.2.a.l.1.2 2 60.23 odd 4
2250.2.c.d.1999.1 4 60.59 even 2
2250.2.c.d.1999.4 4 12.11 even 2
6000.2.a.f.1.2 2 5.2 odd 4
6000.2.a.w.1.1 2 5.3 odd 4
6000.2.f.h.1249.1 4 1.1 even 1 trivial
6000.2.f.h.1249.4 4 5.4 even 2 inner