Properties

Label 600.8.a.q
Level $600$
Weight $8$
Character orbit 600.a
Self dual yes
Analytic conductor $187.431$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,8,Mod(1,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 600.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-108,0,0,0,548] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(187.431015290\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 1845x^{2} + 1542x + 205929 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3\cdot 5^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 27 q^{3} + ( - \beta_1 + 137) q^{7} + 729 q^{9} + ( - \beta_{3} + \beta_{2} + \beta_1 - 792) q^{11} + (\beta_{3} + 6 \beta_{2} - \beta_1 + 665) q^{13} + ( - 3 \beta_{3} + 9 \beta_{2} + \cdots + 1076) q^{17}+ \cdots + ( - 729 \beta_{3} + 729 \beta_{2} + \cdots - 577368) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 108 q^{3} + 548 q^{7} + 2916 q^{9} - 3168 q^{11} + 2660 q^{13} + 4304 q^{17} + 40508 q^{19} - 14796 q^{21} + 72528 q^{23} - 78732 q^{27} + 12448 q^{29} - 45036 q^{31} + 85536 q^{33} - 69608 q^{37}+ \cdots - 2309472 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 1845x^{2} + 1542x + 205929 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 1836\nu - 4389 ) / 15 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 4\nu^{2} - 1116\nu - 4749 ) / 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 56\nu^{2} + 1656\nu - 50931 ) / 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta _1 + 24 ) / 48 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 4\beta_{3} + \beta_{2} + 3\beta _1 + 14776 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 38\beta_{2} - 24\beta _1 + 1613 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−10.5228
−40.9633
42.1524
11.3337
0 −27.0000 0 0 0 −810.235 0 729.000 0
1.2 0 −27.0000 0 0 0 −449.363 0 729.000 0
1.3 0 −27.0000 0 0 0 122.068 0 729.000 0
1.4 0 −27.0000 0 0 0 1685.53 0 729.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.8.a.q 4
5.b even 2 1 600.8.a.r yes 4
5.c odd 4 2 600.8.f.n 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.8.a.q 4 1.a even 1 1 trivial
600.8.a.r yes 4 5.b even 2 1
600.8.f.n 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 548T_{7}^{3} - 1707010T_{7}^{2} - 398967700T_{7} + 74911031625 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(600))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T + 27)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 74911031625 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots - 56231212418160 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots - 890690873316543 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 81\!\cdots\!76 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 11\!\cdots\!11 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 28\!\cdots\!44 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 13\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 28\!\cdots\!85 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 99\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 29\!\cdots\!60 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 28\!\cdots\!39 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 21\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 26\!\cdots\!60 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 57\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 23\!\cdots\!37 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 60\!\cdots\!89 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 16\!\cdots\!60 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 11\!\cdots\!48 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 26\!\cdots\!28 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots - 31\!\cdots\!12 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 19\!\cdots\!51 \) Copy content Toggle raw display
show more
show less