Properties

Label 600.6.f.m
Level $600$
Weight $6$
Character orbit 600.f
Analytic conductor $96.230$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,6,Mod(49,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.49"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-324,0,976] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(96.2302918878\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{2161})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1081x^{2} + 291600 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{37}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 9 \beta_1 q^{3} + (\beta_{2} - 4 \beta_1) q^{7} - 81 q^{9} + ( - 2 \beta_{3} + 244) q^{11} + (3 \beta_{2} - 306 \beta_1) q^{13} + ( - \beta_{2} + 430 \beta_1) q^{17} + ( - 11 \beta_{3} + 48) q^{19}+ \cdots + (162 \beta_{3} - 19764) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 324 q^{9} + 976 q^{11} + 192 q^{19} - 144 q^{21} - 4472 q^{29} + 18704 q^{31} - 11016 q^{39} + 34312 q^{41} - 71140 q^{49} + 15480 q^{51} + 122928 q^{59} + 103192 q^{61} - 53712 q^{69} - 194912 q^{71}+ \cdots - 79056 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 1081x^{2} + 291600 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 541\nu ) / 540 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1621\nu ) / 135 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 8\nu^{2} + 4324 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 4\beta_1 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 4324 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -541\beta_{2} + 6484\beta_1 ) / 8 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
23.7433i
22.7433i
22.7433i
23.7433i
0 9.00000i 0 0 0 189.946i 0 −81.0000 0
49.2 0 9.00000i 0 0 0 181.946i 0 −81.0000 0
49.3 0 9.00000i 0 0 0 181.946i 0 −81.0000 0
49.4 0 9.00000i 0 0 0 189.946i 0 −81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 600.6.f.m 4
5.b even 2 1 inner 600.6.f.m 4
5.c odd 4 1 120.6.a.h 2
5.c odd 4 1 600.6.a.l 2
15.e even 4 1 360.6.a.k 2
20.e even 4 1 240.6.a.p 2
40.i odd 4 1 960.6.a.be 2
40.k even 4 1 960.6.a.bk 2
60.l odd 4 1 720.6.a.ba 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.6.a.h 2 5.c odd 4 1
240.6.a.p 2 20.e even 4 1
360.6.a.k 2 15.e even 4 1
600.6.a.l 2 5.c odd 4 1
600.6.f.m 4 1.a even 1 1 trivial
600.6.f.m 4 5.b even 2 1 inner
720.6.a.ba 2 60.l odd 4 1
960.6.a.be 2 40.i odd 4 1
960.6.a.bk 2 40.k even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 69184T_{7}^{2} + 1194393600 \) acting on \(S_{6}^{\mathrm{new}}(600, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 1194393600 \) Copy content Toggle raw display
$11$ \( (T^{2} - 488 T - 78768)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 47327132304 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 22597304976 \) Copy content Toggle raw display
$19$ \( (T^{2} - 96 T - 4181392)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 13084714598400 \) Copy content Toggle raw display
$29$ \( (T^{2} + 2236 T - 12580476)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 9352 T - 11362560)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 25744461210000 \) Copy content Toggle raw display
$41$ \( (T^{2} - 17156 T + 66805188)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 85\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 234749587971600 \) Copy content Toggle raw display
$59$ \( (T^{2} - 61464 T + 843632208)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 51596 T + 360023268)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T^{2} + 97456 T + 2265987648)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 79\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( (T^{2} - 116776 T + 2779010944)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 21\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( (T^{2} - 124924 T + 2197457860)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 51\!\cdots\!76 \) Copy content Toggle raw display
show more
show less