Properties

Label 600.3.l.d.401.6
Level $600$
Weight $3$
Character 600.401
Analytic conductor $16.349$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(401,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-4,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.574198272.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} - 34x^{3} + 81x^{2} + 156x + 198 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.6
Root \(3.56627 - 0.139571i\) of defining polynomial
Character \(\chi\) \(=\) 600.401
Dual form 600.3.l.d.401.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.56627 + 1.55378i) q^{3} -1.34301 q^{7} +(4.17150 + 7.97487i) q^{9} -3.66586i q^{11} +7.34301 q^{13} +6.31089i q^{17} +30.7406 q^{19} +(-3.44653 - 2.08675i) q^{21} +26.2426i q^{23} +(-1.68602 + 26.9473i) q^{27} +40.9060i q^{29} -9.97097 q^{31} +(5.69595 - 9.40758i) q^{33} +39.4232 q^{37} +(18.8442 + 11.4095i) q^{39} -68.1695i q^{41} +24.0802 q^{43} +79.7705i q^{47} -47.1963 q^{49} +(-9.80576 + 16.1955i) q^{51} +38.9657i q^{53} +(78.8888 + 47.7643i) q^{57} -39.9648i q^{59} -64.2475 q^{61} +(-5.60237 - 10.7103i) q^{63} +53.9454 q^{67} +(-40.7754 + 67.3457i) q^{69} -136.706i q^{71} -74.6196 q^{73} +4.92328i q^{77} +79.6417 q^{79} +(-46.1971 + 66.5344i) q^{81} +0.0506471i q^{83} +(-63.5592 + 104.976i) q^{87} +22.6492i q^{89} -9.86173 q^{91} +(-25.5882 - 15.4927i) q^{93} +35.0428 q^{97} +(29.2347 - 15.2921i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{3} + 10 q^{7} + 16 q^{9} + 26 q^{13} + 50 q^{19} - 18 q^{21} + 26 q^{27} - 114 q^{31} + 82 q^{33} + 76 q^{37} - 6 q^{39} + 2 q^{43} + 76 q^{49} - 6 q^{51} + 172 q^{57} + 62 q^{61} - 150 q^{63}+ \cdots - 250 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56627 + 1.55378i 0.855424 + 0.517928i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.34301 −0.191858 −0.0959292 0.995388i \(-0.530582\pi\)
−0.0959292 + 0.995388i \(0.530582\pi\)
\(8\) 0 0
\(9\) 4.17150 + 7.97487i 0.463500 + 0.886097i
\(10\) 0 0
\(11\) 3.66586i 0.333260i −0.986020 0.166630i \(-0.946712\pi\)
0.986020 0.166630i \(-0.0532885\pi\)
\(12\) 0 0
\(13\) 7.34301 0.564847 0.282423 0.959290i \(-0.408862\pi\)
0.282423 + 0.959290i \(0.408862\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.31089i 0.371229i 0.982623 + 0.185614i \(0.0594275\pi\)
−0.982623 + 0.185614i \(0.940572\pi\)
\(18\) 0 0
\(19\) 30.7406 1.61793 0.808964 0.587858i \(-0.200029\pi\)
0.808964 + 0.587858i \(0.200029\pi\)
\(20\) 0 0
\(21\) −3.44653 2.08675i −0.164120 0.0993689i
\(22\) 0 0
\(23\) 26.2426i 1.14098i 0.821303 + 0.570492i \(0.193247\pi\)
−0.821303 + 0.570492i \(0.806753\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −1.68602 + 26.9473i −0.0624451 + 0.998048i
\(28\) 0 0
\(29\) 40.9060i 1.41055i 0.708932 + 0.705277i \(0.249177\pi\)
−0.708932 + 0.705277i \(0.750823\pi\)
\(30\) 0 0
\(31\) −9.97097 −0.321644 −0.160822 0.986983i \(-0.551415\pi\)
−0.160822 + 0.986983i \(0.551415\pi\)
\(32\) 0 0
\(33\) 5.69595 9.40758i 0.172605 0.285078i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 39.4232 1.06549 0.532746 0.846275i \(-0.321160\pi\)
0.532746 + 0.846275i \(0.321160\pi\)
\(38\) 0 0
\(39\) 18.8442 + 11.4095i 0.483184 + 0.292550i
\(40\) 0 0
\(41\) 68.1695i 1.66267i −0.555771 0.831335i \(-0.687577\pi\)
0.555771 0.831335i \(-0.312423\pi\)
\(42\) 0 0
\(43\) 24.0802 0.560005 0.280003 0.959999i \(-0.409665\pi\)
0.280003 + 0.959999i \(0.409665\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 79.7705i 1.69724i 0.529000 + 0.848622i \(0.322567\pi\)
−0.529000 + 0.848622i \(0.677433\pi\)
\(48\) 0 0
\(49\) −47.1963 −0.963190
\(50\) 0 0
\(51\) −9.80576 + 16.1955i −0.192270 + 0.317558i
\(52\) 0 0
\(53\) 38.9657i 0.735202i 0.929984 + 0.367601i \(0.119821\pi\)
−0.929984 + 0.367601i \(0.880179\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 78.8888 + 47.7643i 1.38401 + 0.837971i
\(58\) 0 0
\(59\) 39.9648i 0.677369i −0.940900 0.338684i \(-0.890018\pi\)
0.940900 0.338684i \(-0.109982\pi\)
\(60\) 0 0
\(61\) −64.2475 −1.05324 −0.526619 0.850101i \(-0.676541\pi\)
−0.526619 + 0.850101i \(0.676541\pi\)
\(62\) 0 0
\(63\) −5.60237 10.7103i −0.0889265 0.170005i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 53.9454 0.805155 0.402577 0.915386i \(-0.368114\pi\)
0.402577 + 0.915386i \(0.368114\pi\)
\(68\) 0 0
\(69\) −40.7754 + 67.3457i −0.590948 + 0.976025i
\(70\) 0 0
\(71\) 136.706i 1.92543i −0.270511 0.962717i \(-0.587193\pi\)
0.270511 0.962717i \(-0.412807\pi\)
\(72\) 0 0
\(73\) −74.6196 −1.02219 −0.511093 0.859526i \(-0.670759\pi\)
−0.511093 + 0.859526i \(0.670759\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.92328i 0.0639387i
\(78\) 0 0
\(79\) 79.6417 1.00812 0.504062 0.863668i \(-0.331838\pi\)
0.504062 + 0.863668i \(0.331838\pi\)
\(80\) 0 0
\(81\) −46.1971 + 66.5344i −0.570335 + 0.821412i
\(82\) 0 0
\(83\) 0.0506471i 0.000610206i 1.00000 0.000305103i \(9.71174e-5\pi\)
−1.00000 0.000305103i \(0.999903\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −63.5592 + 104.976i −0.730566 + 1.20662i
\(88\) 0 0
\(89\) 22.6492i 0.254485i 0.991872 + 0.127243i \(0.0406126\pi\)
−0.991872 + 0.127243i \(0.959387\pi\)
\(90\) 0 0
\(91\) −9.86173 −0.108371
\(92\) 0 0
\(93\) −25.5882 15.4927i −0.275142 0.166589i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 35.0428 0.361266 0.180633 0.983551i \(-0.442185\pi\)
0.180633 + 0.983551i \(0.442185\pi\)
\(98\) 0 0
\(99\) 29.2347 15.2921i 0.295300 0.154466i
\(100\) 0 0
\(101\) 10.2711i 0.101694i −0.998706 0.0508472i \(-0.983808\pi\)
0.998706 0.0508472i \(-0.0161921\pi\)
\(102\) 0 0
\(103\) 108.963 1.05789 0.528944 0.848656i \(-0.322588\pi\)
0.528944 + 0.848656i \(0.322588\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 113.251i 1.05842i −0.848492 0.529209i \(-0.822489\pi\)
0.848492 0.529209i \(-0.177511\pi\)
\(108\) 0 0
\(109\) −105.722 −0.969926 −0.484963 0.874535i \(-0.661167\pi\)
−0.484963 + 0.874535i \(0.661167\pi\)
\(110\) 0 0
\(111\) 101.171 + 61.2552i 0.911448 + 0.551849i
\(112\) 0 0
\(113\) 168.318i 1.48954i 0.667321 + 0.744770i \(0.267441\pi\)
−0.667321 + 0.744770i \(0.732559\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 30.6314 + 58.5595i 0.261807 + 0.500509i
\(118\) 0 0
\(119\) 8.47558i 0.0712234i
\(120\) 0 0
\(121\) 107.562 0.888938
\(122\) 0 0
\(123\) 105.921 174.941i 0.861144 1.42229i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −97.8159 −0.770204 −0.385102 0.922874i \(-0.625834\pi\)
−0.385102 + 0.922874i \(0.625834\pi\)
\(128\) 0 0
\(129\) 61.7964 + 37.4155i 0.479042 + 0.290043i
\(130\) 0 0
\(131\) 88.9361i 0.678902i −0.940624 0.339451i \(-0.889759\pi\)
0.940624 0.339451i \(-0.110241\pi\)
\(132\) 0 0
\(133\) −41.2850 −0.310413
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 241.635i 1.76376i −0.471474 0.881880i \(-0.656278\pi\)
0.471474 0.881880i \(-0.343722\pi\)
\(138\) 0 0
\(139\) 215.214 1.54830 0.774149 0.633003i \(-0.218178\pi\)
0.774149 + 0.633003i \(0.218178\pi\)
\(140\) 0 0
\(141\) −123.946 + 204.713i −0.879051 + 1.45186i
\(142\) 0 0
\(143\) 26.9184i 0.188241i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −121.119 73.3329i −0.823936 0.498864i
\(148\) 0 0
\(149\) 104.338i 0.700257i −0.936702 0.350128i \(-0.886138\pi\)
0.936702 0.350128i \(-0.113862\pi\)
\(150\) 0 0
\(151\) 92.1895 0.610526 0.305263 0.952268i \(-0.401256\pi\)
0.305263 + 0.952268i \(0.401256\pi\)
\(152\) 0 0
\(153\) −50.3285 + 26.3259i −0.328945 + 0.172065i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −250.985 −1.59863 −0.799314 0.600913i \(-0.794804\pi\)
−0.799314 + 0.600913i \(0.794804\pi\)
\(158\) 0 0
\(159\) −60.5443 + 99.9966i −0.380782 + 0.628909i
\(160\) 0 0
\(161\) 35.2441i 0.218907i
\(162\) 0 0
\(163\) 87.6008 0.537428 0.268714 0.963220i \(-0.413401\pi\)
0.268714 + 0.963220i \(0.413401\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 116.164i 0.695590i −0.937571 0.347795i \(-0.886931\pi\)
0.937571 0.347795i \(-0.113069\pi\)
\(168\) 0 0
\(169\) −115.080 −0.680948
\(170\) 0 0
\(171\) 128.235 + 245.153i 0.749911 + 1.43364i
\(172\) 0 0
\(173\) 76.7440i 0.443607i 0.975091 + 0.221804i \(0.0711944\pi\)
−0.975091 + 0.221804i \(0.928806\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 62.0967 102.560i 0.350829 0.579438i
\(178\) 0 0
\(179\) 281.899i 1.57486i −0.616406 0.787428i \(-0.711412\pi\)
0.616406 0.787428i \(-0.288588\pi\)
\(180\) 0 0
\(181\) −37.8892 −0.209333 −0.104666 0.994507i \(-0.533377\pi\)
−0.104666 + 0.994507i \(0.533377\pi\)
\(182\) 0 0
\(183\) −164.877 99.8268i −0.900965 0.545502i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 23.1348 0.123716
\(188\) 0 0
\(189\) 2.26434 36.1905i 0.0119806 0.191484i
\(190\) 0 0
\(191\) 62.1819i 0.325560i −0.986662 0.162780i \(-0.947954\pi\)
0.986662 0.162780i \(-0.0520460\pi\)
\(192\) 0 0
\(193\) −263.150 −1.36347 −0.681737 0.731597i \(-0.738775\pi\)
−0.681737 + 0.731597i \(0.738775\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 180.658i 0.917044i −0.888683 0.458522i \(-0.848379\pi\)
0.888683 0.458522i \(-0.151621\pi\)
\(198\) 0 0
\(199\) −136.985 −0.688365 −0.344183 0.938903i \(-0.611844\pi\)
−0.344183 + 0.938903i \(0.611844\pi\)
\(200\) 0 0
\(201\) 138.439 + 83.8195i 0.688749 + 0.417013i
\(202\) 0 0
\(203\) 54.9372i 0.270627i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −209.282 + 109.471i −1.01102 + 0.528847i
\(208\) 0 0
\(209\) 112.691i 0.539190i
\(210\) 0 0
\(211\) −139.434 −0.660822 −0.330411 0.943837i \(-0.607187\pi\)
−0.330411 + 0.943837i \(0.607187\pi\)
\(212\) 0 0
\(213\) 212.411 350.824i 0.997237 1.64706i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 13.3911 0.0617102
\(218\) 0 0
\(219\) −191.494 115.943i −0.874402 0.529419i
\(220\) 0 0
\(221\) 46.3409i 0.209687i
\(222\) 0 0
\(223\) −4.94040 −0.0221543 −0.0110771 0.999939i \(-0.503526\pi\)
−0.0110771 + 0.999939i \(0.503526\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 334.372i 1.47301i −0.676434 0.736503i \(-0.736476\pi\)
0.676434 0.736503i \(-0.263524\pi\)
\(228\) 0 0
\(229\) −337.101 −1.47206 −0.736028 0.676951i \(-0.763301\pi\)
−0.736028 + 0.676951i \(0.763301\pi\)
\(230\) 0 0
\(231\) −7.64971 + 12.6345i −0.0331156 + 0.0546947i
\(232\) 0 0
\(233\) 113.099i 0.485402i −0.970101 0.242701i \(-0.921967\pi\)
0.970101 0.242701i \(-0.0780334\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 204.382 + 123.746i 0.862373 + 0.522135i
\(238\) 0 0
\(239\) 130.740i 0.547029i −0.961868 0.273514i \(-0.911814\pi\)
0.961868 0.273514i \(-0.0881862\pi\)
\(240\) 0 0
\(241\) 336.727 1.39721 0.698604 0.715508i \(-0.253805\pi\)
0.698604 + 0.715508i \(0.253805\pi\)
\(242\) 0 0
\(243\) −221.934 + 98.9650i −0.913311 + 0.407264i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 225.729 0.913882
\(248\) 0 0
\(249\) −0.0786948 + 0.129974i −0.000316043 + 0.000521985i
\(250\) 0 0
\(251\) 135.453i 0.539655i 0.962909 + 0.269828i \(0.0869667\pi\)
−0.962909 + 0.269828i \(0.913033\pi\)
\(252\) 0 0
\(253\) 96.2017 0.380244
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 104.440i 0.406379i −0.979139 0.203190i \(-0.934869\pi\)
0.979139 0.203190i \(-0.0651308\pi\)
\(258\) 0 0
\(259\) −52.9457 −0.204424
\(260\) 0 0
\(261\) −326.220 + 170.640i −1.24989 + 0.653792i
\(262\) 0 0
\(263\) 326.365i 1.24093i 0.784234 + 0.620466i \(0.213056\pi\)
−0.784234 + 0.620466i \(0.786944\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −35.1919 + 58.1239i −0.131805 + 0.217693i
\(268\) 0 0
\(269\) 56.9353i 0.211656i −0.994384 0.105828i \(-0.966251\pi\)
0.994384 0.105828i \(-0.0337492\pi\)
\(270\) 0 0
\(271\) −110.853 −0.409053 −0.204526 0.978861i \(-0.565565\pi\)
−0.204526 + 0.978861i \(0.565565\pi\)
\(272\) 0 0
\(273\) −25.3079 15.3230i −0.0927028 0.0561282i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −492.842 −1.77921 −0.889606 0.456728i \(-0.849021\pi\)
−0.889606 + 0.456728i \(0.849021\pi\)
\(278\) 0 0
\(279\) −41.5940 79.5172i −0.149082 0.285008i
\(280\) 0 0
\(281\) 428.705i 1.52564i −0.646611 0.762820i \(-0.723814\pi\)
0.646611 0.762820i \(-0.276186\pi\)
\(282\) 0 0
\(283\) −289.871 −1.02428 −0.512139 0.858903i \(-0.671147\pi\)
−0.512139 + 0.858903i \(0.671147\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 91.5522i 0.318997i
\(288\) 0 0
\(289\) 249.173 0.862189
\(290\) 0 0
\(291\) 89.9293 + 54.4490i 0.309035 + 0.187110i
\(292\) 0 0
\(293\) 407.033i 1.38919i −0.719400 0.694596i \(-0.755583\pi\)
0.719400 0.694596i \(-0.244417\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 98.7849 + 6.18070i 0.332609 + 0.0208104i
\(298\) 0 0
\(299\) 192.700i 0.644481i
\(300\) 0 0
\(301\) −32.3400 −0.107442
\(302\) 0 0
\(303\) 15.9591 26.3585i 0.0526704 0.0869918i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 284.594 0.927016 0.463508 0.886093i \(-0.346590\pi\)
0.463508 + 0.886093i \(0.346590\pi\)
\(308\) 0 0
\(309\) 279.628 + 169.304i 0.904944 + 0.547911i
\(310\) 0 0
\(311\) 32.0008i 0.102896i 0.998676 + 0.0514482i \(0.0163837\pi\)
−0.998676 + 0.0514482i \(0.983616\pi\)
\(312\) 0 0
\(313\) 142.954 0.456722 0.228361 0.973576i \(-0.426663\pi\)
0.228361 + 0.973576i \(0.426663\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 248.052i 0.782500i 0.920284 + 0.391250i \(0.127957\pi\)
−0.920284 + 0.391250i \(0.872043\pi\)
\(318\) 0 0
\(319\) 149.956 0.470080
\(320\) 0 0
\(321\) 175.967 290.632i 0.548184 0.905395i
\(322\) 0 0
\(323\) 194.001i 0.600622i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −271.311 164.269i −0.829698 0.502352i
\(328\) 0 0
\(329\) 107.132i 0.325630i
\(330\) 0 0
\(331\) −377.660 −1.14097 −0.570484 0.821309i \(-0.693244\pi\)
−0.570484 + 0.821309i \(0.693244\pi\)
\(332\) 0 0
\(333\) 164.454 + 314.395i 0.493856 + 0.944129i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 30.2254 0.0896896 0.0448448 0.998994i \(-0.485721\pi\)
0.0448448 + 0.998994i \(0.485721\pi\)
\(338\) 0 0
\(339\) −261.530 + 431.950i −0.771475 + 1.27419i
\(340\) 0 0
\(341\) 36.5521i 0.107191i
\(342\) 0 0
\(343\) 129.193 0.376655
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 424.938i 1.22460i 0.790624 + 0.612302i \(0.209756\pi\)
−0.790624 + 0.612302i \(0.790244\pi\)
\(348\) 0 0
\(349\) 263.069 0.753779 0.376889 0.926258i \(-0.376994\pi\)
0.376889 + 0.926258i \(0.376994\pi\)
\(350\) 0 0
\(351\) −12.3804 + 197.874i −0.0352719 + 0.563744i
\(352\) 0 0
\(353\) 352.772i 0.999353i 0.866212 + 0.499677i \(0.166548\pi\)
−0.866212 + 0.499677i \(0.833452\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 13.1692 21.7506i 0.0368886 0.0609262i
\(358\) 0 0
\(359\) 421.619i 1.17443i 0.809432 + 0.587214i \(0.199775\pi\)
−0.809432 + 0.587214i \(0.800225\pi\)
\(360\) 0 0
\(361\) 583.987 1.61769
\(362\) 0 0
\(363\) 276.032 + 167.127i 0.760419 + 0.460406i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 605.435 1.64969 0.824844 0.565361i \(-0.191263\pi\)
0.824844 + 0.565361i \(0.191263\pi\)
\(368\) 0 0
\(369\) 543.643 284.369i 1.47329 0.770649i
\(370\) 0 0
\(371\) 52.3313i 0.141055i
\(372\) 0 0
\(373\) 691.549 1.85402 0.927009 0.375040i \(-0.122371\pi\)
0.927009 + 0.375040i \(0.122371\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 300.373i 0.796747i
\(378\) 0 0
\(379\) 179.894 0.474655 0.237327 0.971430i \(-0.423729\pi\)
0.237327 + 0.971430i \(0.423729\pi\)
\(380\) 0 0
\(381\) −251.022 151.985i −0.658851 0.398910i
\(382\) 0 0
\(383\) 137.087i 0.357929i −0.983856 0.178965i \(-0.942725\pi\)
0.983856 0.178965i \(-0.0572747\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 100.451 + 192.037i 0.259563 + 0.496219i
\(388\) 0 0
\(389\) 682.795i 1.75526i 0.479341 + 0.877629i \(0.340876\pi\)
−0.479341 + 0.877629i \(0.659124\pi\)
\(390\) 0 0
\(391\) −165.614 −0.423566
\(392\) 0 0
\(393\) 138.188 228.234i 0.351622 0.580749i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −538.381 −1.35612 −0.678062 0.735005i \(-0.737180\pi\)
−0.678062 + 0.735005i \(0.737180\pi\)
\(398\) 0 0
\(399\) −105.948 64.1479i −0.265535 0.160772i
\(400\) 0 0
\(401\) 113.772i 0.283720i −0.989887 0.141860i \(-0.954692\pi\)
0.989887 0.141860i \(-0.0453083\pi\)
\(402\) 0 0
\(403\) −73.2169 −0.181680
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 144.520i 0.355086i
\(408\) 0 0
\(409\) 438.806 1.07288 0.536438 0.843940i \(-0.319770\pi\)
0.536438 + 0.843940i \(0.319770\pi\)
\(410\) 0 0
\(411\) 375.449 620.101i 0.913501 1.50876i
\(412\) 0 0
\(413\) 53.6730i 0.129959i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 552.296 + 334.396i 1.32445 + 0.801908i
\(418\) 0 0
\(419\) 544.982i 1.30067i 0.759646 + 0.650337i \(0.225372\pi\)
−0.759646 + 0.650337i \(0.774628\pi\)
\(420\) 0 0
\(421\) −557.806 −1.32495 −0.662477 0.749082i \(-0.730495\pi\)
−0.662477 + 0.749082i \(0.730495\pi\)
\(422\) 0 0
\(423\) −636.159 + 332.763i −1.50392 + 0.786673i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 86.2850 0.202073
\(428\) 0 0
\(429\) 41.8254 69.0800i 0.0974952 0.161026i
\(430\) 0 0
\(431\) 41.0366i 0.0952124i −0.998866 0.0476062i \(-0.984841\pi\)
0.998866 0.0476062i \(-0.0151593\pi\)
\(432\) 0 0
\(433\) −589.338 −1.36106 −0.680529 0.732721i \(-0.738250\pi\)
−0.680529 + 0.732721i \(0.738250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 806.715i 1.84603i
\(438\) 0 0
\(439\) −363.125 −0.827165 −0.413582 0.910467i \(-0.635723\pi\)
−0.413582 + 0.910467i \(0.635723\pi\)
\(440\) 0 0
\(441\) −196.880 376.385i −0.446439 0.853480i
\(442\) 0 0
\(443\) 142.457i 0.321573i 0.986989 + 0.160786i \(0.0514030\pi\)
−0.986989 + 0.160786i \(0.948597\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 162.119 267.760i 0.362683 0.599016i
\(448\) 0 0
\(449\) 613.747i 1.36692i −0.729988 0.683460i \(-0.760474\pi\)
0.729988 0.683460i \(-0.239526\pi\)
\(450\) 0 0
\(451\) −249.900 −0.554101
\(452\) 0 0
\(453\) 236.583 + 143.243i 0.522259 + 0.316209i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 66.7594 0.146082 0.0730409 0.997329i \(-0.476730\pi\)
0.0730409 + 0.997329i \(0.476730\pi\)
\(458\) 0 0
\(459\) −170.061 10.6403i −0.370504 0.0231814i
\(460\) 0 0
\(461\) 891.544i 1.93393i 0.254900 + 0.966967i \(0.417957\pi\)
−0.254900 + 0.966967i \(0.582043\pi\)
\(462\) 0 0
\(463\) 381.895 0.824826 0.412413 0.910997i \(-0.364686\pi\)
0.412413 + 0.910997i \(0.364686\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 546.640i 1.17054i 0.810840 + 0.585268i \(0.199011\pi\)
−0.810840 + 0.585268i \(0.800989\pi\)
\(468\) 0 0
\(469\) −72.4491 −0.154476
\(470\) 0 0
\(471\) −644.095 389.976i −1.36751 0.827975i
\(472\) 0 0
\(473\) 88.2746i 0.186627i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −310.746 + 162.546i −0.651460 + 0.340766i
\(478\) 0 0
\(479\) 227.312i 0.474555i 0.971442 + 0.237277i \(0.0762550\pi\)
−0.971442 + 0.237277i \(0.923745\pi\)
\(480\) 0 0
\(481\) 289.485 0.601840
\(482\) 0 0
\(483\) 54.7617 90.4459i 0.113378 0.187259i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 896.798 1.84147 0.920737 0.390185i \(-0.127589\pi\)
0.920737 + 0.390185i \(0.127589\pi\)
\(488\) 0 0
\(489\) 224.808 + 136.113i 0.459729 + 0.278349i
\(490\) 0 0
\(491\) 368.073i 0.749639i −0.927098 0.374819i \(-0.877705\pi\)
0.927098 0.374819i \(-0.122295\pi\)
\(492\) 0 0
\(493\) −258.154 −0.523638
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 183.597i 0.369411i
\(498\) 0 0
\(499\) −471.446 −0.944782 −0.472391 0.881389i \(-0.656609\pi\)
−0.472391 + 0.881389i \(0.656609\pi\)
\(500\) 0 0
\(501\) 180.493 298.107i 0.360266 0.595024i
\(502\) 0 0
\(503\) 601.673i 1.19617i −0.801433 0.598085i \(-0.795929\pi\)
0.801433 0.598085i \(-0.204071\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −295.327 178.810i −0.582499 0.352682i
\(508\) 0 0
\(509\) 471.175i 0.925687i −0.886440 0.462844i \(-0.846829\pi\)
0.886440 0.462844i \(-0.153171\pi\)
\(510\) 0 0
\(511\) 100.215 0.196115
\(512\) 0 0
\(513\) −51.8293 + 828.377i −0.101032 + 1.61477i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 292.427 0.565623
\(518\) 0 0
\(519\) −119.244 + 196.946i −0.229757 + 0.379472i
\(520\) 0 0
\(521\) 324.027i 0.621932i −0.950421 0.310966i \(-0.899347\pi\)
0.950421 0.310966i \(-0.100653\pi\)
\(522\) 0 0
\(523\) −88.5290 −0.169272 −0.0846358 0.996412i \(-0.526973\pi\)
−0.0846358 + 0.996412i \(0.526973\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 62.9257i 0.119404i
\(528\) 0 0
\(529\) −159.675 −0.301844
\(530\) 0 0
\(531\) 318.714 166.713i 0.600214 0.313961i
\(532\) 0 0
\(533\) 500.569i 0.939154i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 438.011 723.431i 0.815663 1.34717i
\(538\) 0 0
\(539\) 173.015i 0.320992i
\(540\) 0 0
\(541\) −566.555 −1.04724 −0.523619 0.851953i \(-0.675418\pi\)
−0.523619 + 0.851953i \(0.675418\pi\)
\(542\) 0 0
\(543\) −97.2341 58.8717i −0.179068 0.108419i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.15550 0.0149095 0.00745475 0.999972i \(-0.497627\pi\)
0.00745475 + 0.999972i \(0.497627\pi\)
\(548\) 0 0
\(549\) −268.009 512.366i −0.488176 0.933271i
\(550\) 0 0
\(551\) 1257.48i 2.28217i
\(552\) 0 0
\(553\) −106.960 −0.193417
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 403.842i 0.725031i 0.931978 + 0.362516i \(0.118082\pi\)
−0.931978 + 0.362516i \(0.881918\pi\)
\(558\) 0 0
\(559\) 176.821 0.316317
\(560\) 0 0
\(561\) 59.3702 + 35.9465i 0.105829 + 0.0640758i
\(562\) 0 0
\(563\) 319.709i 0.567867i −0.958844 0.283933i \(-0.908361\pi\)
0.958844 0.283933i \(-0.0916395\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 62.0431 89.3563i 0.109423 0.157595i
\(568\) 0 0
\(569\) 705.574i 1.24003i 0.784592 + 0.620013i \(0.212873\pi\)
−0.784592 + 0.620013i \(0.787127\pi\)
\(570\) 0 0
\(571\) −13.6020 −0.0238214 −0.0119107 0.999929i \(-0.503791\pi\)
−0.0119107 + 0.999929i \(0.503791\pi\)
\(572\) 0 0
\(573\) 96.6173 159.576i 0.168617 0.278492i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −426.416 −0.739023 −0.369512 0.929226i \(-0.620475\pi\)
−0.369512 + 0.929226i \(0.620475\pi\)
\(578\) 0 0
\(579\) −675.316 408.879i −1.16635 0.706182i
\(580\) 0 0
\(581\) 0.0680196i 0.000117073i
\(582\) 0 0
\(583\) 142.843 0.245013
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 178.246i 0.303656i 0.988407 + 0.151828i \(0.0485160\pi\)
−0.988407 + 0.151828i \(0.951484\pi\)
\(588\) 0 0
\(589\) −306.514 −0.520397
\(590\) 0 0
\(591\) 280.703 463.617i 0.474963 0.784461i
\(592\) 0 0
\(593\) 122.209i 0.206086i 0.994677 + 0.103043i \(0.0328579\pi\)
−0.994677 + 0.103043i \(0.967142\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −351.540 212.845i −0.588844 0.356524i
\(598\) 0 0
\(599\) 874.960i 1.46070i −0.683072 0.730351i \(-0.739357\pi\)
0.683072 0.730351i \(-0.260643\pi\)
\(600\) 0 0
\(601\) 976.356 1.62455 0.812276 0.583273i \(-0.198228\pi\)
0.812276 + 0.583273i \(0.198228\pi\)
\(602\) 0 0
\(603\) 225.033 + 430.207i 0.373190 + 0.713445i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −728.093 −1.19949 −0.599747 0.800189i \(-0.704732\pi\)
−0.599747 + 0.800189i \(0.704732\pi\)
\(608\) 0 0
\(609\) 85.3606 140.984i 0.140165 0.231500i
\(610\) 0 0
\(611\) 585.755i 0.958683i
\(612\) 0 0
\(613\) 368.041 0.600394 0.300197 0.953877i \(-0.402948\pi\)
0.300197 + 0.953877i \(0.402948\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 550.637i 0.892442i −0.894923 0.446221i \(-0.852769\pi\)
0.894923 0.446221i \(-0.147231\pi\)
\(618\) 0 0
\(619\) 757.081 1.22307 0.611536 0.791217i \(-0.290552\pi\)
0.611536 + 0.791217i \(0.290552\pi\)
\(620\) 0 0
\(621\) −707.168 44.2455i −1.13876 0.0712488i
\(622\) 0 0
\(623\) 30.4180i 0.0488251i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 175.097 289.195i 0.279262 0.461236i
\(628\) 0 0
\(629\) 248.796i 0.395541i
\(630\) 0 0
\(631\) 101.694 0.161164 0.0805820 0.996748i \(-0.474322\pi\)
0.0805820 + 0.996748i \(0.474322\pi\)
\(632\) 0 0
\(633\) −357.824 216.650i −0.565283 0.342259i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −346.563 −0.544055
\(638\) 0 0
\(639\) 1090.21 570.269i 1.70612 0.892439i
\(640\) 0 0
\(641\) 1008.28i 1.57298i 0.617601 + 0.786491i \(0.288105\pi\)
−0.617601 + 0.786491i \(0.711895\pi\)
\(642\) 0 0
\(643\) −1126.32 −1.75167 −0.875833 0.482615i \(-0.839687\pi\)
−0.875833 + 0.482615i \(0.839687\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 410.296i 0.634152i −0.948400 0.317076i \(-0.897299\pi\)
0.948400 0.317076i \(-0.102701\pi\)
\(648\) 0 0
\(649\) −146.505 −0.225740
\(650\) 0 0
\(651\) 34.3652 + 20.8069i 0.0527884 + 0.0319614i
\(652\) 0 0
\(653\) 393.103i 0.601996i −0.953625 0.300998i \(-0.902680\pi\)
0.953625 0.300998i \(-0.0973197\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −311.276 595.081i −0.473784 0.905755i
\(658\) 0 0
\(659\) 882.684i 1.33943i 0.742618 + 0.669715i \(0.233584\pi\)
−0.742618 + 0.669715i \(0.766416\pi\)
\(660\) 0 0
\(661\) 260.491 0.394087 0.197043 0.980395i \(-0.436866\pi\)
0.197043 + 0.980395i \(0.436866\pi\)
\(662\) 0 0
\(663\) −72.0038 + 118.923i −0.108603 + 0.179372i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1073.48 −1.60942
\(668\) 0 0
\(669\) −12.6784 7.67632i −0.0189513 0.0114743i
\(670\) 0 0
\(671\) 235.522i 0.351002i
\(672\) 0 0
\(673\) −69.6242 −0.103454 −0.0517268 0.998661i \(-0.516472\pi\)
−0.0517268 + 0.998661i \(0.516472\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1148.22i 1.69604i −0.529967 0.848019i \(-0.677796\pi\)
0.529967 0.848019i \(-0.322204\pi\)
\(678\) 0 0
\(679\) −47.0628 −0.0693119
\(680\) 0 0
\(681\) 519.543 858.091i 0.762912 1.26004i
\(682\) 0 0
\(683\) 205.570i 0.300981i −0.988611 0.150490i \(-0.951915\pi\)
0.988611 0.150490i \(-0.0480852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −865.092 523.782i −1.25923 0.762420i
\(688\) 0 0
\(689\) 286.125i 0.415276i
\(690\) 0 0
\(691\) −45.2341 −0.0654618 −0.0327309 0.999464i \(-0.510420\pi\)
−0.0327309 + 0.999464i \(0.510420\pi\)
\(692\) 0 0
\(693\) −39.2625 + 20.5375i −0.0566558 + 0.0296356i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 430.210 0.617231
\(698\) 0 0
\(699\) 175.731 290.242i 0.251404 0.415225i
\(700\) 0 0
\(701\) 743.766i 1.06101i 0.847683 + 0.530504i \(0.177997\pi\)
−0.847683 + 0.530504i \(0.822003\pi\)
\(702\) 0 0
\(703\) 1211.90 1.72389
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 13.7942i 0.0195109i
\(708\) 0 0
\(709\) −283.784 −0.400259 −0.200130 0.979769i \(-0.564136\pi\)
−0.200130 + 0.979769i \(0.564136\pi\)
\(710\) 0 0
\(711\) 332.226 + 635.132i 0.467266 + 0.893294i
\(712\) 0 0
\(713\) 261.665i 0.366991i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 203.142 335.514i 0.283322 0.467942i
\(718\) 0 0
\(719\) 1088.15i 1.51343i −0.653747 0.756713i \(-0.726804\pi\)
0.653747 0.756713i \(-0.273196\pi\)
\(720\) 0 0
\(721\) −146.338 −0.202965
\(722\) 0 0
\(723\) 864.134 + 523.202i 1.19521 + 0.723654i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −248.930 −0.342407 −0.171203 0.985236i \(-0.554766\pi\)
−0.171203 + 0.985236i \(0.554766\pi\)
\(728\) 0 0
\(729\) −723.315 90.8673i −0.992201 0.124646i
\(730\) 0 0
\(731\) 151.968i 0.207890i
\(732\) 0 0
\(733\) 235.310 0.321023 0.160512 0.987034i \(-0.448686\pi\)
0.160512 + 0.987034i \(0.448686\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 197.756i 0.268326i
\(738\) 0 0
\(739\) 356.976 0.483053 0.241527 0.970394i \(-0.422352\pi\)
0.241527 + 0.970394i \(0.422352\pi\)
\(740\) 0 0
\(741\) 579.282 + 350.734i 0.781756 + 0.473325i
\(742\) 0 0
\(743\) 230.874i 0.310732i −0.987857 0.155366i \(-0.950344\pi\)
0.987857 0.155366i \(-0.0496557\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −0.403904 + 0.211275i −0.000540702 + 0.000282831i
\(748\) 0 0
\(749\) 152.097i 0.203066i
\(750\) 0 0
\(751\) 620.963 0.826848 0.413424 0.910539i \(-0.364333\pi\)
0.413424 + 0.910539i \(0.364333\pi\)
\(752\) 0 0
\(753\) −210.466 + 347.610i −0.279503 + 0.461634i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 28.7800 0.0380184 0.0190092 0.999819i \(-0.493949\pi\)
0.0190092 + 0.999819i \(0.493949\pi\)
\(758\) 0 0
\(759\) 246.880 + 149.477i 0.325270 + 0.196939i
\(760\) 0 0
\(761\) 439.052i 0.576940i 0.957489 + 0.288470i \(0.0931466\pi\)
−0.957489 + 0.288470i \(0.906853\pi\)
\(762\) 0 0
\(763\) 141.986 0.186088
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 293.462i 0.382610i
\(768\) 0 0
\(769\) −354.830 −0.461417 −0.230709 0.973023i \(-0.574104\pi\)
−0.230709 + 0.973023i \(0.574104\pi\)
\(770\) 0 0
\(771\) 162.277 268.020i 0.210475 0.347627i
\(772\) 0 0
\(773\) 954.595i 1.23492i −0.786601 0.617461i \(-0.788161\pi\)
0.786601 0.617461i \(-0.211839\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −135.873 82.2663i −0.174869 0.105877i
\(778\) 0 0
\(779\) 2095.57i 2.69008i
\(780\) 0 0
\(781\) −501.144 −0.641669
\(782\) 0 0
\(783\) −1102.31 68.9683i −1.40780 0.0880822i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −679.060 −0.862846 −0.431423 0.902150i \(-0.641988\pi\)
−0.431423 + 0.902150i \(0.641988\pi\)
\(788\) 0 0
\(789\) −507.101 + 837.541i −0.642713 + 1.06152i
\(790\) 0 0
\(791\) 226.053i 0.285781i
\(792\) 0 0
\(793\) −471.770 −0.594918
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 284.382i 0.356815i 0.983957 + 0.178408i \(0.0570946\pi\)
−0.983957 + 0.178408i \(0.942905\pi\)
\(798\) 0 0
\(799\) −503.422 −0.630066
\(800\) 0 0
\(801\) −180.624 + 94.4811i −0.225498 + 0.117954i
\(802\) 0 0
\(803\) 273.545i 0.340653i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 88.4653 146.112i 0.109622 0.181055i
\(808\) 0 0
\(809\) 33.2847i 0.0411431i −0.999788 0.0205715i \(-0.993451\pi\)
0.999788 0.0205715i \(-0.00654859\pi\)
\(810\) 0 0
\(811\) 930.829 1.14775 0.573877 0.818941i \(-0.305439\pi\)
0.573877 + 0.818941i \(0.305439\pi\)
\(812\) 0 0
\(813\) −284.480 172.242i −0.349914 0.211860i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 740.241 0.906048
\(818\) 0 0
\(819\) −41.1382 78.6460i −0.0502298 0.0960268i
\(820\) 0 0
\(821\) 192.628i 0.234626i −0.993095 0.117313i \(-0.962572\pi\)
0.993095 0.117313i \(-0.0374281\pi\)
\(822\) 0 0
\(823\) −326.743 −0.397015 −0.198507 0.980099i \(-0.563609\pi\)
−0.198507 + 0.980099i \(0.563609\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 225.268i 0.272392i 0.990682 + 0.136196i \(0.0434876\pi\)
−0.990682 + 0.136196i \(0.956512\pi\)
\(828\) 0 0
\(829\) −875.339 −1.05590 −0.527949 0.849276i \(-0.677039\pi\)
−0.527949 + 0.849276i \(0.677039\pi\)
\(830\) 0 0
\(831\) −1264.77 765.770i −1.52198 0.921505i
\(832\) 0 0
\(833\) 297.851i 0.357564i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 16.8112 268.691i 0.0200851 0.321017i
\(838\) 0 0
\(839\) 1614.70i 1.92456i 0.272064 + 0.962279i \(0.412294\pi\)
−0.272064 + 0.962279i \(0.587706\pi\)
\(840\) 0 0
\(841\) −832.305 −0.989661
\(842\) 0 0
\(843\) 666.115 1100.17i 0.790172 1.30507i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −144.456 −0.170550
\(848\) 0 0
\(849\) −743.887 450.396i −0.876191 0.530502i
\(850\) 0 0
\(851\) 1034.57i 1.21571i
\(852\) 0 0
\(853\) −1133.27 −1.32856 −0.664282 0.747482i \(-0.731263\pi\)
−0.664282 + 0.747482i \(0.731263\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 800.665i 0.934264i −0.884187 0.467132i \(-0.845287\pi\)
0.884187 0.467132i \(-0.154713\pi\)
\(858\) 0 0
\(859\) 1156.84 1.34672 0.673362 0.739313i \(-0.264850\pi\)
0.673362 + 0.739313i \(0.264850\pi\)
\(860\) 0 0
\(861\) −142.252 + 234.948i −0.165218 + 0.272878i
\(862\) 0 0
\(863\) 178.321i 0.206629i −0.994649 0.103315i \(-0.967055\pi\)
0.994649 0.103315i \(-0.0329448\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 639.445 + 387.161i 0.737537 + 0.446552i
\(868\) 0 0
\(869\) 291.955i 0.335967i
\(870\) 0 0
\(871\) 396.121 0.454789
\(872\) 0 0
\(873\) 146.181 + 279.462i 0.167447 + 0.320116i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 354.008 0.403658 0.201829 0.979421i \(-0.435311\pi\)
0.201829 + 0.979421i \(0.435311\pi\)
\(878\) 0 0
\(879\) 632.442 1044.56i 0.719502 1.18835i
\(880\) 0 0
\(881\) 828.055i 0.939903i −0.882692 0.469951i \(-0.844271\pi\)
0.882692 0.469951i \(-0.155729\pi\)
\(882\) 0 0
\(883\) −943.554 −1.06858 −0.534289 0.845302i \(-0.679420\pi\)
−0.534289 + 0.845302i \(0.679420\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1503.35i 1.69487i 0.530896 + 0.847437i \(0.321856\pi\)
−0.530896 + 0.847437i \(0.678144\pi\)
\(888\) 0 0
\(889\) 131.368 0.147770
\(890\) 0 0
\(891\) 243.906 + 169.352i 0.273744 + 0.190069i
\(892\) 0 0
\(893\) 2452.19i 2.74602i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −299.414 + 494.520i −0.333795 + 0.551305i
\(898\) 0 0
\(899\) 407.873i 0.453696i
\(900\) 0 0
\(901\) −245.908 −0.272928
\(902\) 0 0
\(903\) −82.9931 50.2493i −0.0919082 0.0556471i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −268.683 −0.296233 −0.148116 0.988970i \(-0.547321\pi\)
−0.148116 + 0.988970i \(0.547321\pi\)
\(908\) 0 0
\(909\) 81.9110 42.8461i 0.0901111 0.0471354i
\(910\) 0 0
\(911\) 807.241i 0.886104i −0.896496 0.443052i \(-0.853896\pi\)
0.896496 0.443052i \(-0.146104\pi\)
\(912\) 0 0
\(913\) 0.185665 0.000203357
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 119.442i 0.130253i
\(918\) 0 0
\(919\) −1359.86 −1.47972 −0.739860 0.672761i \(-0.765108\pi\)
−0.739860 + 0.672761i \(0.765108\pi\)
\(920\) 0 0
\(921\) 730.346 + 442.198i 0.792992 + 0.480128i
\(922\) 0 0
\(923\) 1003.83i 1.08758i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 454.538 + 868.962i 0.490332 + 0.937392i
\(928\) 0 0
\(929\) 294.426i 0.316928i 0.987365 + 0.158464i \(0.0506542\pi\)
−0.987365 + 0.158464i \(0.949346\pi\)
\(930\) 0 0
\(931\) −1450.85 −1.55837
\(932\) 0 0
\(933\) −49.7223 + 82.1227i −0.0532929 + 0.0880200i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1449.73 1.54721 0.773603 0.633671i \(-0.218453\pi\)
0.773603 + 0.633671i \(0.218453\pi\)
\(938\) 0 0
\(939\) 366.859 + 222.120i 0.390691 + 0.236549i
\(940\) 0 0
\(941\) 386.698i 0.410944i −0.978663 0.205472i \(-0.934127\pi\)
0.978663 0.205472i \(-0.0658729\pi\)
\(942\) 0 0
\(943\) 1788.95 1.89708
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1187.76i 1.25423i −0.778927 0.627115i \(-0.784236\pi\)
0.778927 0.627115i \(-0.215764\pi\)
\(948\) 0 0
\(949\) −547.932 −0.577378
\(950\) 0 0
\(951\) −385.420 + 636.570i −0.405279 + 0.669369i
\(952\) 0 0
\(953\) 127.552i 0.133842i −0.997758 0.0669211i \(-0.978682\pi\)
0.997758 0.0669211i \(-0.0213176\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 384.827 + 232.999i 0.402118 + 0.243468i
\(958\) 0 0
\(959\) 324.518i 0.338392i
\(960\) 0 0
\(961\) −861.580 −0.896545
\(962\) 0 0
\(963\) 903.159 472.426i 0.937860 0.490577i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −68.0305 −0.0703521 −0.0351760 0.999381i \(-0.511199\pi\)
−0.0351760 + 0.999381i \(0.511199\pi\)
\(968\) 0 0
\(969\) −301.435 + 497.859i −0.311079 + 0.513786i
\(970\) 0 0
\(971\) 1507.80i 1.55283i −0.630220 0.776417i \(-0.717035\pi\)
0.630220 0.776417i \(-0.282965\pi\)
\(972\) 0 0
\(973\) −289.034 −0.297054
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1349.37i 1.38113i 0.723269 + 0.690566i \(0.242639\pi\)
−0.723269 + 0.690566i \(0.757361\pi\)
\(978\) 0 0
\(979\) 83.0286 0.0848096
\(980\) 0 0
\(981\) −441.020 843.119i −0.449561 0.859448i
\(982\) 0 0
\(983\) 710.166i 0.722448i 0.932479 + 0.361224i \(0.117641\pi\)
−0.932479 + 0.361224i \(0.882359\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 166.461 274.931i 0.168653 0.278552i
\(988\) 0 0
\(989\) 631.928i 0.638957i
\(990\) 0 0
\(991\) 1736.30 1.75207 0.876034 0.482249i \(-0.160180\pi\)
0.876034 + 0.482249i \(0.160180\pi\)
\(992\) 0 0
\(993\) −969.179 586.803i −0.976012 0.590940i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 812.058 0.814502 0.407251 0.913316i \(-0.366488\pi\)
0.407251 + 0.913316i \(0.366488\pi\)
\(998\) 0 0
\(999\) −66.4683 + 1062.35i −0.0665348 + 1.06341i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.l.d.401.6 yes 6
3.2 odd 2 inner 600.3.l.d.401.5 6
4.3 odd 2 1200.3.l.w.401.1 6
5.2 odd 4 600.3.c.c.449.9 12
5.3 odd 4 600.3.c.c.449.4 12
5.4 even 2 600.3.l.e.401.1 yes 6
12.11 even 2 1200.3.l.w.401.2 6
15.2 even 4 600.3.c.c.449.3 12
15.8 even 4 600.3.c.c.449.10 12
15.14 odd 2 600.3.l.e.401.2 yes 6
20.3 even 4 1200.3.c.l.449.9 12
20.7 even 4 1200.3.c.l.449.4 12
20.19 odd 2 1200.3.l.v.401.6 6
60.23 odd 4 1200.3.c.l.449.3 12
60.47 odd 4 1200.3.c.l.449.10 12
60.59 even 2 1200.3.l.v.401.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.3.c.c.449.3 12 15.2 even 4
600.3.c.c.449.4 12 5.3 odd 4
600.3.c.c.449.9 12 5.2 odd 4
600.3.c.c.449.10 12 15.8 even 4
600.3.l.d.401.5 6 3.2 odd 2 inner
600.3.l.d.401.6 yes 6 1.1 even 1 trivial
600.3.l.e.401.1 yes 6 5.4 even 2
600.3.l.e.401.2 yes 6 15.14 odd 2
1200.3.c.l.449.3 12 60.23 odd 4
1200.3.c.l.449.4 12 20.7 even 4
1200.3.c.l.449.9 12 20.3 even 4
1200.3.c.l.449.10 12 60.47 odd 4
1200.3.l.v.401.5 6 60.59 even 2
1200.3.l.v.401.6 6 20.19 odd 2
1200.3.l.w.401.1 6 4.3 odd 2
1200.3.l.w.401.2 6 12.11 even 2