Properties

Label 600.3.l.c.401.2
Level $600$
Weight $3$
Character 600.401
Analytic conductor $16.349$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,3,Mod(401,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.401"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 600.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.3488158616\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 401.2
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 600.401
Dual form 600.3.l.c.401.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 2.82843i) q^{3} -1.00000 q^{7} +(-7.00000 + 5.65685i) q^{9} +8.48528i q^{11} -15.0000 q^{13} -19.7990i q^{17} -23.0000 q^{19} +(-1.00000 - 2.82843i) q^{21} -2.82843i q^{23} +(-23.0000 - 14.1421i) q^{27} +25.4558i q^{29} +33.0000 q^{31} +(-24.0000 + 8.48528i) q^{33} -66.0000 q^{37} +(-15.0000 - 42.4264i) q^{39} +36.7696i q^{41} +7.00000 q^{43} +45.2548i q^{47} -48.0000 q^{49} +(56.0000 - 19.7990i) q^{51} -36.7696i q^{53} +(-23.0000 - 65.0538i) q^{57} -101.823i q^{59} +39.0000 q^{61} +(7.00000 - 5.65685i) q^{63} -113.000 q^{67} +(8.00000 - 2.82843i) q^{69} +25.4558i q^{71} -58.0000 q^{73} -8.48528i q^{77} +70.0000 q^{79} +(17.0000 - 79.1960i) q^{81} -152.735i q^{83} +(-72.0000 + 25.4558i) q^{87} +90.5097i q^{89} +15.0000 q^{91} +(33.0000 + 93.3381i) q^{93} +1.00000 q^{97} +(-48.0000 - 59.3970i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{7} - 14 q^{9} - 30 q^{13} - 46 q^{19} - 2 q^{21} - 46 q^{27} + 66 q^{31} - 48 q^{33} - 132 q^{37} - 30 q^{39} + 14 q^{43} - 96 q^{49} + 112 q^{51} - 46 q^{57} + 78 q^{61} + 14 q^{63}+ \cdots - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 + 2.82843i 0.333333 + 0.942809i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.142857 −0.0714286 0.997446i \(-0.522756\pi\)
−0.0714286 + 0.997446i \(0.522756\pi\)
\(8\) 0 0
\(9\) −7.00000 + 5.65685i −0.777778 + 0.628539i
\(10\) 0 0
\(11\) 8.48528i 0.771389i 0.922627 + 0.385695i \(0.126038\pi\)
−0.922627 + 0.385695i \(0.873962\pi\)
\(12\) 0 0
\(13\) −15.0000 −1.15385 −0.576923 0.816798i \(-0.695747\pi\)
−0.576923 + 0.816798i \(0.695747\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 19.7990i 1.16465i −0.812957 0.582323i \(-0.802144\pi\)
0.812957 0.582323i \(-0.197856\pi\)
\(18\) 0 0
\(19\) −23.0000 −1.21053 −0.605263 0.796025i \(-0.706932\pi\)
−0.605263 + 0.796025i \(0.706932\pi\)
\(20\) 0 0
\(21\) −1.00000 2.82843i −0.0476190 0.134687i
\(22\) 0 0
\(23\) 2.82843i 0.122975i −0.998108 0.0614875i \(-0.980416\pi\)
0.998108 0.0614875i \(-0.0195844\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −23.0000 14.1421i −0.851852 0.523783i
\(28\) 0 0
\(29\) 25.4558i 0.877788i 0.898539 + 0.438894i \(0.144630\pi\)
−0.898539 + 0.438894i \(0.855370\pi\)
\(30\) 0 0
\(31\) 33.0000 1.06452 0.532258 0.846582i \(-0.321344\pi\)
0.532258 + 0.846582i \(0.321344\pi\)
\(32\) 0 0
\(33\) −24.0000 + 8.48528i −0.727273 + 0.257130i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −66.0000 −1.78378 −0.891892 0.452249i \(-0.850622\pi\)
−0.891892 + 0.452249i \(0.850622\pi\)
\(38\) 0 0
\(39\) −15.0000 42.4264i −0.384615 1.08786i
\(40\) 0 0
\(41\) 36.7696i 0.896818i 0.893828 + 0.448409i \(0.148009\pi\)
−0.893828 + 0.448409i \(0.851991\pi\)
\(42\) 0 0
\(43\) 7.00000 0.162791 0.0813953 0.996682i \(-0.474062\pi\)
0.0813953 + 0.996682i \(0.474062\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 45.2548i 0.962869i 0.876482 + 0.481434i \(0.159884\pi\)
−0.876482 + 0.481434i \(0.840116\pi\)
\(48\) 0 0
\(49\) −48.0000 −0.979592
\(50\) 0 0
\(51\) 56.0000 19.7990i 1.09804 0.388215i
\(52\) 0 0
\(53\) 36.7696i 0.693765i −0.937909 0.346883i \(-0.887240\pi\)
0.937909 0.346883i \(-0.112760\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −23.0000 65.0538i −0.403509 1.14130i
\(58\) 0 0
\(59\) 101.823i 1.72582i −0.505358 0.862910i \(-0.668639\pi\)
0.505358 0.862910i \(-0.331361\pi\)
\(60\) 0 0
\(61\) 39.0000 0.639344 0.319672 0.947528i \(-0.396427\pi\)
0.319672 + 0.947528i \(0.396427\pi\)
\(62\) 0 0
\(63\) 7.00000 5.65685i 0.111111 0.0897913i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −113.000 −1.68657 −0.843284 0.537469i \(-0.819381\pi\)
−0.843284 + 0.537469i \(0.819381\pi\)
\(68\) 0 0
\(69\) 8.00000 2.82843i 0.115942 0.0409917i
\(70\) 0 0
\(71\) 25.4558i 0.358533i 0.983801 + 0.179267i \(0.0573724\pi\)
−0.983801 + 0.179267i \(0.942628\pi\)
\(72\) 0 0
\(73\) −58.0000 −0.794521 −0.397260 0.917706i \(-0.630039\pi\)
−0.397260 + 0.917706i \(0.630039\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.48528i 0.110198i
\(78\) 0 0
\(79\) 70.0000 0.886076 0.443038 0.896503i \(-0.353901\pi\)
0.443038 + 0.896503i \(0.353901\pi\)
\(80\) 0 0
\(81\) 17.0000 79.1960i 0.209877 0.977728i
\(82\) 0 0
\(83\) 152.735i 1.84018i −0.391705 0.920091i \(-0.628115\pi\)
0.391705 0.920091i \(-0.371885\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −72.0000 + 25.4558i −0.827586 + 0.292596i
\(88\) 0 0
\(89\) 90.5097i 1.01696i 0.861073 + 0.508481i \(0.169793\pi\)
−0.861073 + 0.508481i \(0.830207\pi\)
\(90\) 0 0
\(91\) 15.0000 0.164835
\(92\) 0 0
\(93\) 33.0000 + 93.3381i 0.354839 + 1.00364i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00000 0.0103093 0.00515464 0.999987i \(-0.498359\pi\)
0.00515464 + 0.999987i \(0.498359\pi\)
\(98\) 0 0
\(99\) −48.0000 59.3970i −0.484848 0.599969i
\(100\) 0 0
\(101\) 189.505i 1.87628i 0.346252 + 0.938142i \(0.387454\pi\)
−0.346252 + 0.938142i \(0.612546\pi\)
\(102\) 0 0
\(103\) 26.0000 0.252427 0.126214 0.992003i \(-0.459718\pi\)
0.126214 + 0.992003i \(0.459718\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 48.0833i 0.449376i 0.974431 + 0.224688i \(0.0721363\pi\)
−0.974431 + 0.224688i \(0.927864\pi\)
\(108\) 0 0
\(109\) −145.000 −1.33028 −0.665138 0.746721i \(-0.731627\pi\)
−0.665138 + 0.746721i \(0.731627\pi\)
\(110\) 0 0
\(111\) −66.0000 186.676i −0.594595 1.68177i
\(112\) 0 0
\(113\) 152.735i 1.35164i 0.737068 + 0.675819i \(0.236210\pi\)
−0.737068 + 0.675819i \(0.763790\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 105.000 84.8528i 0.897436 0.725238i
\(118\) 0 0
\(119\) 19.7990i 0.166378i
\(120\) 0 0
\(121\) 49.0000 0.404959
\(122\) 0 0
\(123\) −104.000 + 36.7696i −0.845528 + 0.298939i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 226.000 1.77953 0.889764 0.456421i \(-0.150869\pi\)
0.889764 + 0.456421i \(0.150869\pi\)
\(128\) 0 0
\(129\) 7.00000 + 19.7990i 0.0542636 + 0.153481i
\(130\) 0 0
\(131\) 104.652i 0.798869i 0.916762 + 0.399434i \(0.130793\pi\)
−0.916762 + 0.399434i \(0.869207\pi\)
\(132\) 0 0
\(133\) 23.0000 0.172932
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.9706i 0.123873i 0.998080 + 0.0619364i \(0.0197276\pi\)
−0.998080 + 0.0619364i \(0.980272\pi\)
\(138\) 0 0
\(139\) 102.000 0.733813 0.366906 0.930258i \(-0.380417\pi\)
0.366906 + 0.930258i \(0.380417\pi\)
\(140\) 0 0
\(141\) −128.000 + 45.2548i −0.907801 + 0.320956i
\(142\) 0 0
\(143\) 127.279i 0.890064i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −48.0000 135.765i −0.326531 0.923568i
\(148\) 0 0
\(149\) 288.500i 1.93624i 0.250489 + 0.968119i \(0.419408\pi\)
−0.250489 + 0.968119i \(0.580592\pi\)
\(150\) 0 0
\(151\) −207.000 −1.37086 −0.685430 0.728138i \(-0.740386\pi\)
−0.685430 + 0.728138i \(0.740386\pi\)
\(152\) 0 0
\(153\) 112.000 + 138.593i 0.732026 + 0.905836i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 89.0000 0.566879 0.283439 0.958990i \(-0.408524\pi\)
0.283439 + 0.958990i \(0.408524\pi\)
\(158\) 0 0
\(159\) 104.000 36.7696i 0.654088 0.231255i
\(160\) 0 0
\(161\) 2.82843i 0.0175679i
\(162\) 0 0
\(163\) −17.0000 −0.104294 −0.0521472 0.998639i \(-0.516607\pi\)
−0.0521472 + 0.998639i \(0.516607\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 268.701i 1.60899i 0.593962 + 0.804493i \(0.297563\pi\)
−0.593962 + 0.804493i \(0.702437\pi\)
\(168\) 0 0
\(169\) 56.0000 0.331361
\(170\) 0 0
\(171\) 161.000 130.108i 0.941520 0.760863i
\(172\) 0 0
\(173\) 110.309i 0.637622i −0.947818 0.318811i \(-0.896716\pi\)
0.947818 0.318811i \(-0.103284\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 288.000 101.823i 1.62712 0.575273i
\(178\) 0 0
\(179\) 73.5391i 0.410833i 0.978675 + 0.205416i \(0.0658549\pi\)
−0.978675 + 0.205416i \(0.934145\pi\)
\(180\) 0 0
\(181\) −145.000 −0.801105 −0.400552 0.916274i \(-0.631182\pi\)
−0.400552 + 0.916274i \(0.631182\pi\)
\(182\) 0 0
\(183\) 39.0000 + 110.309i 0.213115 + 0.602780i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 168.000 0.898396
\(188\) 0 0
\(189\) 23.0000 + 14.1421i 0.121693 + 0.0748261i
\(190\) 0 0
\(191\) 53.7401i 0.281362i −0.990055 0.140681i \(-0.955071\pi\)
0.990055 0.140681i \(-0.0449292\pi\)
\(192\) 0 0
\(193\) 57.0000 0.295337 0.147668 0.989037i \(-0.452823\pi\)
0.147668 + 0.989037i \(0.452823\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 226.274i 1.14860i 0.818645 + 0.574300i \(0.194726\pi\)
−0.818645 + 0.574300i \(0.805274\pi\)
\(198\) 0 0
\(199\) 225.000 1.13065 0.565327 0.824867i \(-0.308750\pi\)
0.565327 + 0.824867i \(0.308750\pi\)
\(200\) 0 0
\(201\) −113.000 319.612i −0.562189 1.59011i
\(202\) 0 0
\(203\) 25.4558i 0.125398i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 16.0000 + 19.7990i 0.0772947 + 0.0956473i
\(208\) 0 0
\(209\) 195.161i 0.933787i
\(210\) 0 0
\(211\) −231.000 −1.09479 −0.547393 0.836875i \(-0.684380\pi\)
−0.547393 + 0.836875i \(0.684380\pi\)
\(212\) 0 0
\(213\) −72.0000 + 25.4558i −0.338028 + 0.119511i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −33.0000 −0.152074
\(218\) 0 0
\(219\) −58.0000 164.049i −0.264840 0.749081i
\(220\) 0 0
\(221\) 296.985i 1.34382i
\(222\) 0 0
\(223\) 327.000 1.46637 0.733184 0.680030i \(-0.238033\pi\)
0.733184 + 0.680030i \(0.238033\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 76.3675i 0.336421i 0.985751 + 0.168210i \(0.0537988\pi\)
−0.985751 + 0.168210i \(0.946201\pi\)
\(228\) 0 0
\(229\) 183.000 0.799127 0.399563 0.916706i \(-0.369162\pi\)
0.399563 + 0.916706i \(0.369162\pi\)
\(230\) 0 0
\(231\) 24.0000 8.48528i 0.103896 0.0367328i
\(232\) 0 0
\(233\) 98.9949i 0.424871i −0.977175 0.212436i \(-0.931860\pi\)
0.977175 0.212436i \(-0.0681395\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 70.0000 + 197.990i 0.295359 + 0.835400i
\(238\) 0 0
\(239\) 8.48528i 0.0355033i 0.999842 + 0.0177516i \(0.00565082\pi\)
−0.999842 + 0.0177516i \(0.994349\pi\)
\(240\) 0 0
\(241\) 215.000 0.892116 0.446058 0.895004i \(-0.352827\pi\)
0.446058 + 0.895004i \(0.352827\pi\)
\(242\) 0 0
\(243\) 241.000 31.1127i 0.991770 0.128036i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 345.000 1.39676
\(248\) 0 0
\(249\) 432.000 152.735i 1.73494 0.613394i
\(250\) 0 0
\(251\) 164.049i 0.653581i 0.945097 + 0.326790i \(0.105967\pi\)
−0.945097 + 0.326790i \(0.894033\pi\)
\(252\) 0 0
\(253\) 24.0000 0.0948617
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 152.735i 0.594300i −0.954831 0.297150i \(-0.903964\pi\)
0.954831 0.297150i \(-0.0960361\pi\)
\(258\) 0 0
\(259\) 66.0000 0.254826
\(260\) 0 0
\(261\) −144.000 178.191i −0.551724 0.682724i
\(262\) 0 0
\(263\) 59.3970i 0.225844i 0.993604 + 0.112922i \(0.0360210\pi\)
−0.993604 + 0.112922i \(0.963979\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −256.000 + 90.5097i −0.958801 + 0.338988i
\(268\) 0 0
\(269\) 8.48528i 0.0315438i 0.999876 + 0.0157719i \(0.00502056\pi\)
−0.999876 + 0.0157719i \(0.994979\pi\)
\(270\) 0 0
\(271\) 86.0000 0.317343 0.158672 0.987331i \(-0.449279\pi\)
0.158672 + 0.987331i \(0.449279\pi\)
\(272\) 0 0
\(273\) 15.0000 + 42.4264i 0.0549451 + 0.155408i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −319.000 −1.15162 −0.575812 0.817582i \(-0.695314\pi\)
−0.575812 + 0.817582i \(0.695314\pi\)
\(278\) 0 0
\(279\) −231.000 + 186.676i −0.827957 + 0.669090i
\(280\) 0 0
\(281\) 427.092i 1.51990i −0.649980 0.759951i \(-0.725223\pi\)
0.649980 0.759951i \(-0.274777\pi\)
\(282\) 0 0
\(283\) −1.00000 −0.00353357 −0.00176678 0.999998i \(-0.500562\pi\)
−0.00176678 + 0.999998i \(0.500562\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 36.7696i 0.128117i
\(288\) 0 0
\(289\) −103.000 −0.356401
\(290\) 0 0
\(291\) 1.00000 + 2.82843i 0.00343643 + 0.00971968i
\(292\) 0 0
\(293\) 486.489i 1.66037i −0.557485 0.830187i \(-0.688234\pi\)
0.557485 0.830187i \(-0.311766\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 120.000 195.161i 0.404040 0.657109i
\(298\) 0 0
\(299\) 42.4264i 0.141894i
\(300\) 0 0
\(301\) −7.00000 −0.0232558
\(302\) 0 0
\(303\) −536.000 + 189.505i −1.76898 + 0.625428i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 215.000 0.700326 0.350163 0.936689i \(-0.386126\pi\)
0.350163 + 0.936689i \(0.386126\pi\)
\(308\) 0 0
\(309\) 26.0000 + 73.5391i 0.0841424 + 0.237991i
\(310\) 0 0
\(311\) 214.960i 0.691191i 0.938384 + 0.345596i \(0.112323\pi\)
−0.938384 + 0.345596i \(0.887677\pi\)
\(312\) 0 0
\(313\) −535.000 −1.70927 −0.854633 0.519233i \(-0.826218\pi\)
−0.854633 + 0.519233i \(0.826218\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 469.519i 1.48113i 0.671984 + 0.740566i \(0.265443\pi\)
−0.671984 + 0.740566i \(0.734557\pi\)
\(318\) 0 0
\(319\) −216.000 −0.677116
\(320\) 0 0
\(321\) −136.000 + 48.0833i −0.423676 + 0.149792i
\(322\) 0 0
\(323\) 455.377i 1.40984i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −145.000 410.122i −0.443425 1.25420i
\(328\) 0 0
\(329\) 45.2548i 0.137553i
\(330\) 0 0
\(331\) 94.0000 0.283988 0.141994 0.989868i \(-0.454649\pi\)
0.141994 + 0.989868i \(0.454649\pi\)
\(332\) 0 0
\(333\) 462.000 373.352i 1.38739 1.12118i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −295.000 −0.875371 −0.437685 0.899128i \(-0.644202\pi\)
−0.437685 + 0.899128i \(0.644202\pi\)
\(338\) 0 0
\(339\) −432.000 + 152.735i −1.27434 + 0.450546i
\(340\) 0 0
\(341\) 280.014i 0.821156i
\(342\) 0 0
\(343\) 97.0000 0.282799
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 441.235i 1.27157i −0.771866 0.635785i \(-0.780677\pi\)
0.771866 0.635785i \(-0.219323\pi\)
\(348\) 0 0
\(349\) −374.000 −1.07163 −0.535817 0.844334i \(-0.679996\pi\)
−0.535817 + 0.844334i \(0.679996\pi\)
\(350\) 0 0
\(351\) 345.000 + 212.132i 0.982906 + 0.604365i
\(352\) 0 0
\(353\) 280.014i 0.793242i 0.917983 + 0.396621i \(0.129817\pi\)
−0.917983 + 0.396621i \(0.870183\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −56.0000 + 19.7990i −0.156863 + 0.0554594i
\(358\) 0 0
\(359\) 370.524i 1.03210i 0.856558 + 0.516050i \(0.172598\pi\)
−0.856558 + 0.516050i \(0.827402\pi\)
\(360\) 0 0
\(361\) 168.000 0.465374
\(362\) 0 0
\(363\) 49.0000 + 138.593i 0.134986 + 0.381799i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −241.000 −0.656676 −0.328338 0.944560i \(-0.606488\pi\)
−0.328338 + 0.944560i \(0.606488\pi\)
\(368\) 0 0
\(369\) −208.000 257.387i −0.563686 0.697525i
\(370\) 0 0
\(371\) 36.7696i 0.0991093i
\(372\) 0 0
\(373\) −47.0000 −0.126005 −0.0630027 0.998013i \(-0.520068\pi\)
−0.0630027 + 0.998013i \(0.520068\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 381.838i 1.01283i
\(378\) 0 0
\(379\) 73.0000 0.192612 0.0963061 0.995352i \(-0.469297\pi\)
0.0963061 + 0.995352i \(0.469297\pi\)
\(380\) 0 0
\(381\) 226.000 + 639.225i 0.593176 + 1.67775i
\(382\) 0 0
\(383\) 113.137i 0.295397i 0.989032 + 0.147699i \(0.0471865\pi\)
−0.989032 + 0.147699i \(0.952813\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −49.0000 + 39.5980i −0.126615 + 0.102320i
\(388\) 0 0
\(389\) 534.573i 1.37422i −0.726552 0.687111i \(-0.758878\pi\)
0.726552 0.687111i \(-0.241122\pi\)
\(390\) 0 0
\(391\) −56.0000 −0.143223
\(392\) 0 0
\(393\) −296.000 + 104.652i −0.753181 + 0.266290i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −695.000 −1.75063 −0.875315 0.483553i \(-0.839346\pi\)
−0.875315 + 0.483553i \(0.839346\pi\)
\(398\) 0 0
\(399\) 23.0000 + 65.0538i 0.0576441 + 0.163042i
\(400\) 0 0
\(401\) 721.249i 1.79863i −0.437306 0.899313i \(-0.644067\pi\)
0.437306 0.899313i \(-0.355933\pi\)
\(402\) 0 0
\(403\) −495.000 −1.22829
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 560.029i 1.37599i
\(408\) 0 0
\(409\) −425.000 −1.03912 −0.519560 0.854434i \(-0.673904\pi\)
−0.519560 + 0.854434i \(0.673904\pi\)
\(410\) 0 0
\(411\) −48.0000 + 16.9706i −0.116788 + 0.0412909i
\(412\) 0 0
\(413\) 101.823i 0.246546i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 102.000 + 288.500i 0.244604 + 0.691845i
\(418\) 0 0
\(419\) 659.024i 1.57285i 0.617687 + 0.786424i \(0.288070\pi\)
−0.617687 + 0.786424i \(0.711930\pi\)
\(420\) 0 0
\(421\) 306.000 0.726841 0.363420 0.931625i \(-0.381609\pi\)
0.363420 + 0.931625i \(0.381609\pi\)
\(422\) 0 0
\(423\) −256.000 316.784i −0.605201 0.748898i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −39.0000 −0.0913349
\(428\) 0 0
\(429\) 360.000 127.279i 0.839161 0.296688i
\(430\) 0 0
\(431\) 104.652i 0.242812i 0.992603 + 0.121406i \(0.0387402\pi\)
−0.992603 + 0.121406i \(0.961260\pi\)
\(432\) 0 0
\(433\) 281.000 0.648961 0.324480 0.945892i \(-0.394811\pi\)
0.324480 + 0.945892i \(0.394811\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 65.0538i 0.148865i
\(438\) 0 0
\(439\) −671.000 −1.52847 −0.764237 0.644936i \(-0.776884\pi\)
−0.764237 + 0.644936i \(0.776884\pi\)
\(440\) 0 0
\(441\) 336.000 271.529i 0.761905 0.615712i
\(442\) 0 0
\(443\) 424.264i 0.957707i −0.877895 0.478853i \(-0.841053\pi\)
0.877895 0.478853i \(-0.158947\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −816.000 + 288.500i −1.82550 + 0.645413i
\(448\) 0 0
\(449\) 605.283i 1.34807i −0.738699 0.674035i \(-0.764560\pi\)
0.738699 0.674035i \(-0.235440\pi\)
\(450\) 0 0
\(451\) −312.000 −0.691796
\(452\) 0 0
\(453\) −207.000 585.484i −0.456954 1.29246i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −202.000 −0.442013 −0.221007 0.975272i \(-0.570934\pi\)
−0.221007 + 0.975272i \(0.570934\pi\)
\(458\) 0 0
\(459\) −280.000 + 455.377i −0.610022 + 0.992106i
\(460\) 0 0
\(461\) 336.583i 0.730115i 0.930985 + 0.365057i \(0.118951\pi\)
−0.930985 + 0.365057i \(0.881049\pi\)
\(462\) 0 0
\(463\) −166.000 −0.358531 −0.179266 0.983801i \(-0.557372\pi\)
−0.179266 + 0.983801i \(0.557372\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 121.622i 0.260433i −0.991486 0.130217i \(-0.958433\pi\)
0.991486 0.130217i \(-0.0415673\pi\)
\(468\) 0 0
\(469\) 113.000 0.240938
\(470\) 0 0
\(471\) 89.0000 + 251.730i 0.188960 + 0.534459i
\(472\) 0 0
\(473\) 59.3970i 0.125575i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 208.000 + 257.387i 0.436059 + 0.539595i
\(478\) 0 0
\(479\) 797.616i 1.66517i −0.553897 0.832585i \(-0.686860\pi\)
0.553897 0.832585i \(-0.313140\pi\)
\(480\) 0 0
\(481\) 990.000 2.05821
\(482\) 0 0
\(483\) −8.00000 + 2.82843i −0.0165631 + 0.00585596i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −369.000 −0.757700 −0.378850 0.925458i \(-0.623680\pi\)
−0.378850 + 0.925458i \(0.623680\pi\)
\(488\) 0 0
\(489\) −17.0000 48.0833i −0.0347648 0.0983298i
\(490\) 0 0
\(491\) 588.313i 1.19819i −0.800677 0.599097i \(-0.795527\pi\)
0.800677 0.599097i \(-0.204473\pi\)
\(492\) 0 0
\(493\) 504.000 1.02231
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.4558i 0.0512190i
\(498\) 0 0
\(499\) 785.000 1.57315 0.786573 0.617497i \(-0.211853\pi\)
0.786573 + 0.617497i \(0.211853\pi\)
\(500\) 0 0
\(501\) −760.000 + 268.701i −1.51697 + 0.536328i
\(502\) 0 0
\(503\) 280.014i 0.556688i 0.960481 + 0.278344i \(0.0897856\pi\)
−0.960481 + 0.278344i \(0.910214\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 56.0000 + 158.392i 0.110454 + 0.312410i
\(508\) 0 0
\(509\) 220.617i 0.433433i −0.976235 0.216716i \(-0.930465\pi\)
0.976235 0.216716i \(-0.0695347\pi\)
\(510\) 0 0
\(511\) 58.0000 0.113503
\(512\) 0 0
\(513\) 529.000 + 325.269i 1.03119 + 0.634053i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −384.000 −0.742747
\(518\) 0 0
\(519\) 312.000 110.309i 0.601156 0.212541i
\(520\) 0 0
\(521\) 659.024i 1.26492i −0.774593 0.632460i \(-0.782045\pi\)
0.774593 0.632460i \(-0.217955\pi\)
\(522\) 0 0
\(523\) −129.000 −0.246654 −0.123327 0.992366i \(-0.539356\pi\)
−0.123327 + 0.992366i \(0.539356\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 653.367i 1.23978i
\(528\) 0 0
\(529\) 521.000 0.984877
\(530\) 0 0
\(531\) 576.000 + 712.764i 1.08475 + 1.34230i
\(532\) 0 0
\(533\) 551.543i 1.03479i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −208.000 + 73.5391i −0.387337 + 0.136944i
\(538\) 0 0
\(539\) 407.294i 0.755647i
\(540\) 0 0
\(541\) 119.000 0.219963 0.109982 0.993934i \(-0.464921\pi\)
0.109982 + 0.993934i \(0.464921\pi\)
\(542\) 0 0
\(543\) −145.000 410.122i −0.267035 0.755289i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 650.000 1.18830 0.594150 0.804354i \(-0.297489\pi\)
0.594150 + 0.804354i \(0.297489\pi\)
\(548\) 0 0
\(549\) −273.000 + 220.617i −0.497268 + 0.401853i
\(550\) 0 0
\(551\) 585.484i 1.06259i
\(552\) 0 0
\(553\) −70.0000 −0.126582
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 107.480i 0.192963i 0.995335 + 0.0964814i \(0.0307588\pi\)
−0.995335 + 0.0964814i \(0.969241\pi\)
\(558\) 0 0
\(559\) −105.000 −0.187835
\(560\) 0 0
\(561\) 168.000 + 475.176i 0.299465 + 0.847016i
\(562\) 0 0
\(563\) 789.131i 1.40165i 0.713331 + 0.700827i \(0.247185\pi\)
−0.713331 + 0.700827i \(0.752815\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −17.0000 + 79.1960i −0.0299824 + 0.139675i
\(568\) 0 0
\(569\) 523.259i 0.919612i −0.888019 0.459806i \(-0.847919\pi\)
0.888019 0.459806i \(-0.152081\pi\)
\(570\) 0 0
\(571\) −503.000 −0.880911 −0.440455 0.897775i \(-0.645183\pi\)
−0.440455 + 0.897775i \(0.645183\pi\)
\(572\) 0 0
\(573\) 152.000 53.7401i 0.265271 0.0937873i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 353.000 0.611785 0.305893 0.952066i \(-0.401045\pi\)
0.305893 + 0.952066i \(0.401045\pi\)
\(578\) 0 0
\(579\) 57.0000 + 161.220i 0.0984456 + 0.278446i
\(580\) 0 0
\(581\) 152.735i 0.262883i
\(582\) 0 0
\(583\) 312.000 0.535163
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1077.63i 1.83583i 0.396780 + 0.917914i \(0.370128\pi\)
−0.396780 + 0.917914i \(0.629872\pi\)
\(588\) 0 0
\(589\) −759.000 −1.28862
\(590\) 0 0
\(591\) −640.000 + 226.274i −1.08291 + 0.382867i
\(592\) 0 0
\(593\) 726.906i 1.22581i 0.790156 + 0.612905i \(0.209999\pi\)
−0.790156 + 0.612905i \(0.790001\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 225.000 + 636.396i 0.376884 + 1.06599i
\(598\) 0 0
\(599\) 871.156i 1.45435i 0.686452 + 0.727175i \(0.259167\pi\)
−0.686452 + 0.727175i \(0.740833\pi\)
\(600\) 0 0
\(601\) −1033.00 −1.71880 −0.859401 0.511302i \(-0.829163\pi\)
−0.859401 + 0.511302i \(0.829163\pi\)
\(602\) 0 0
\(603\) 791.000 639.225i 1.31177 1.06007i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 330.000 0.543657 0.271829 0.962346i \(-0.412372\pi\)
0.271829 + 0.962346i \(0.412372\pi\)
\(608\) 0 0
\(609\) 72.0000 25.4558i 0.118227 0.0417994i
\(610\) 0 0
\(611\) 678.823i 1.11100i
\(612\) 0 0
\(613\) −770.000 −1.25612 −0.628059 0.778166i \(-0.716150\pi\)
−0.628059 + 0.778166i \(0.716150\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 630.739i 1.02227i −0.859501 0.511134i \(-0.829226\pi\)
0.859501 0.511134i \(-0.170774\pi\)
\(618\) 0 0
\(619\) 401.000 0.647819 0.323910 0.946088i \(-0.395003\pi\)
0.323910 + 0.946088i \(0.395003\pi\)
\(620\) 0 0
\(621\) −40.0000 + 65.0538i −0.0644122 + 0.104757i
\(622\) 0 0
\(623\) 90.5097i 0.145280i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 552.000 195.161i 0.880383 0.311262i
\(628\) 0 0
\(629\) 1306.73i 2.07748i
\(630\) 0 0
\(631\) 889.000 1.40887 0.704437 0.709766i \(-0.251199\pi\)
0.704437 + 0.709766i \(0.251199\pi\)
\(632\) 0 0
\(633\) −231.000 653.367i −0.364929 1.03217i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 720.000 1.13030
\(638\) 0 0
\(639\) −144.000 178.191i −0.225352 0.278859i
\(640\) 0 0
\(641\) 678.823i 1.05901i −0.848308 0.529503i \(-0.822379\pi\)
0.848308 0.529503i \(-0.177621\pi\)
\(642\) 0 0
\(643\) 42.0000 0.0653188 0.0326594 0.999467i \(-0.489602\pi\)
0.0326594 + 0.999467i \(0.489602\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 458.205i 0.708200i −0.935208 0.354100i \(-0.884787\pi\)
0.935208 0.354100i \(-0.115213\pi\)
\(648\) 0 0
\(649\) 864.000 1.33128
\(650\) 0 0
\(651\) −33.0000 93.3381i −0.0506912 0.143376i
\(652\) 0 0
\(653\) 1001.26i 1.53333i 0.642049 + 0.766664i \(0.278085\pi\)
−0.642049 + 0.766664i \(0.721915\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 406.000 328.098i 0.617960 0.499387i
\(658\) 0 0
\(659\) 376.181i 0.570836i −0.958403 0.285418i \(-0.907868\pi\)
0.958403 0.285418i \(-0.0921324\pi\)
\(660\) 0 0
\(661\) −974.000 −1.47352 −0.736762 0.676152i \(-0.763646\pi\)
−0.736762 + 0.676152i \(0.763646\pi\)
\(662\) 0 0
\(663\) −840.000 + 296.985i −1.26697 + 0.447941i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 72.0000 0.107946
\(668\) 0 0
\(669\) 327.000 + 924.896i 0.488789 + 1.38250i
\(670\) 0 0
\(671\) 330.926i 0.493183i
\(672\) 0 0
\(673\) −26.0000 −0.0386330 −0.0193165 0.999813i \(-0.506149\pi\)
−0.0193165 + 0.999813i \(0.506149\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 93.3381i 0.137870i −0.997621 0.0689351i \(-0.978040\pi\)
0.997621 0.0689351i \(-0.0219601\pi\)
\(678\) 0 0
\(679\) −1.00000 −0.00147275
\(680\) 0 0
\(681\) −216.000 + 76.3675i −0.317181 + 0.112140i
\(682\) 0 0
\(683\) 16.9706i 0.0248471i 0.999923 + 0.0124235i \(0.00395464\pi\)
−0.999923 + 0.0124235i \(0.996045\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 183.000 + 517.602i 0.266376 + 0.753424i
\(688\) 0 0
\(689\) 551.543i 0.800498i
\(690\) 0 0
\(691\) −722.000 −1.04486 −0.522431 0.852681i \(-0.674975\pi\)
−0.522431 + 0.852681i \(0.674975\pi\)
\(692\) 0 0
\(693\) 48.0000 + 59.3970i 0.0692641 + 0.0857099i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 728.000 1.04448
\(698\) 0 0
\(699\) 280.000 98.9949i 0.400572 0.141624i
\(700\) 0 0
\(701\) 65.0538i 0.0928015i −0.998923 0.0464007i \(-0.985225\pi\)
0.998923 0.0464007i \(-0.0147751\pi\)
\(702\) 0 0
\(703\) 1518.00 2.15932
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 189.505i 0.268040i
\(708\) 0 0
\(709\) 103.000 0.145275 0.0726375 0.997358i \(-0.476858\pi\)
0.0726375 + 0.997358i \(0.476858\pi\)
\(710\) 0 0
\(711\) −490.000 + 395.980i −0.689170 + 0.556934i
\(712\) 0 0
\(713\) 93.3381i 0.130909i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 + 8.48528i −0.0334728 + 0.0118344i
\(718\) 0 0
\(719\) 670.337i 0.932319i −0.884701 0.466159i \(-0.845637\pi\)
0.884701 0.466159i \(-0.154363\pi\)
\(720\) 0 0
\(721\) −26.0000 −0.0360610
\(722\) 0 0
\(723\) 215.000 + 608.112i 0.297372 + 0.841095i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 895.000 1.23109 0.615543 0.788103i \(-0.288937\pi\)
0.615543 + 0.788103i \(0.288937\pi\)
\(728\) 0 0
\(729\) 329.000 + 650.538i 0.451303 + 0.892371i
\(730\) 0 0
\(731\) 138.593i 0.189594i
\(732\) 0 0
\(733\) 406.000 0.553888 0.276944 0.960886i \(-0.410678\pi\)
0.276944 + 0.960886i \(0.410678\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 958.837i 1.30100i
\(738\) 0 0
\(739\) −578.000 −0.782138 −0.391069 0.920361i \(-0.627895\pi\)
−0.391069 + 0.920361i \(0.627895\pi\)
\(740\) 0 0
\(741\) 345.000 + 975.807i 0.465587 + 1.31688i
\(742\) 0 0
\(743\) 492.146i 0.662377i 0.943565 + 0.331189i \(0.107450\pi\)
−0.943565 + 0.331189i \(0.892550\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 864.000 + 1069.15i 1.15663 + 1.43125i
\(748\) 0 0
\(749\) 48.0833i 0.0641966i
\(750\) 0 0
\(751\) 30.0000 0.0399467 0.0199734 0.999801i \(-0.493642\pi\)
0.0199734 + 0.999801i \(0.493642\pi\)
\(752\) 0 0
\(753\) −464.000 + 164.049i −0.616202 + 0.217860i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 897.000 1.18494 0.592470 0.805592i \(-0.298153\pi\)
0.592470 + 0.805592i \(0.298153\pi\)
\(758\) 0 0
\(759\) 24.0000 + 67.8823i 0.0316206 + 0.0894364i
\(760\) 0 0
\(761\) 164.049i 0.215570i −0.994174 0.107785i \(-0.965624\pi\)
0.994174 0.107785i \(-0.0343758\pi\)
\(762\) 0 0
\(763\) 145.000 0.190039
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1527.35i 1.99133i
\(768\) 0 0
\(769\) −465.000 −0.604681 −0.302341 0.953200i \(-0.597768\pi\)
−0.302341 + 0.953200i \(0.597768\pi\)
\(770\) 0 0
\(771\) 432.000 152.735i 0.560311 0.198100i
\(772\) 0 0
\(773\) 172.534i 0.223201i −0.993753 0.111600i \(-0.964402\pi\)
0.993753 0.111600i \(-0.0355976\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 66.0000 + 186.676i 0.0849421 + 0.240252i
\(778\) 0 0
\(779\) 845.700i 1.08562i
\(780\) 0 0
\(781\) −216.000 −0.276569
\(782\) 0 0
\(783\) 360.000 585.484i 0.459770 0.747745i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −801.000 −1.01779 −0.508895 0.860829i \(-0.669946\pi\)
−0.508895 + 0.860829i \(0.669946\pi\)
\(788\) 0 0
\(789\) −168.000 + 59.3970i −0.212928 + 0.0752813i
\(790\) 0 0
\(791\) 152.735i 0.193091i
\(792\) 0 0
\(793\) −585.000 −0.737705
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 197.990i 0.248419i −0.992256 0.124209i \(-0.960361\pi\)
0.992256 0.124209i \(-0.0396395\pi\)
\(798\) 0 0
\(799\) 896.000 1.12140
\(800\) 0 0
\(801\) −512.000 633.568i −0.639201 0.790971i
\(802\) 0 0
\(803\) 492.146i 0.612885i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −24.0000 + 8.48528i −0.0297398 + 0.0105146i
\(808\) 0 0
\(809\) 670.337i 0.828600i 0.910140 + 0.414300i \(0.135974\pi\)
−0.910140 + 0.414300i \(0.864026\pi\)
\(810\) 0 0
\(811\) −879.000 −1.08385 −0.541924 0.840428i \(-0.682304\pi\)
−0.541924 + 0.840428i \(0.682304\pi\)
\(812\) 0 0
\(813\) 86.0000 + 243.245i 0.105781 + 0.299194i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −161.000 −0.197062
\(818\) 0 0
\(819\) −105.000 + 84.8528i −0.128205 + 0.103605i
\(820\) 0 0
\(821\) 842.871i 1.02664i −0.858197 0.513320i \(-0.828415\pi\)
0.858197 0.513320i \(-0.171585\pi\)
\(822\) 0 0
\(823\) −521.000 −0.633050 −0.316525 0.948584i \(-0.602516\pi\)
−0.316525 + 0.948584i \(0.602516\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 172.534i 0.208626i −0.994544 0.104313i \(-0.966736\pi\)
0.994544 0.104313i \(-0.0332644\pi\)
\(828\) 0 0
\(829\) 818.000 0.986731 0.493366 0.869822i \(-0.335767\pi\)
0.493366 + 0.869822i \(0.335767\pi\)
\(830\) 0 0
\(831\) −319.000 902.268i −0.383875 1.08576i
\(832\) 0 0
\(833\) 950.352i 1.14088i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −759.000 466.690i −0.906810 0.557575i
\(838\) 0 0
\(839\) 1309.56i 1.56086i −0.625243 0.780430i \(-0.715000\pi\)
0.625243 0.780430i \(-0.285000\pi\)
\(840\) 0 0
\(841\) 193.000 0.229489
\(842\) 0 0
\(843\) 1208.00 427.092i 1.43298 0.506634i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −49.0000 −0.0578512
\(848\) 0 0
\(849\) −1.00000 2.82843i −0.00117786 0.00333148i
\(850\) 0 0
\(851\) 186.676i 0.219361i
\(852\) 0 0
\(853\) 233.000 0.273154 0.136577 0.990629i \(-0.456390\pi\)
0.136577 + 0.990629i \(0.456390\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 808.930i 0.943909i 0.881623 + 0.471955i \(0.156451\pi\)
−0.881623 + 0.471955i \(0.843549\pi\)
\(858\) 0 0
\(859\) 1230.00 1.43190 0.715949 0.698153i \(-0.245994\pi\)
0.715949 + 0.698153i \(0.245994\pi\)
\(860\) 0 0
\(861\) 104.000 36.7696i 0.120790 0.0427056i
\(862\) 0 0
\(863\) 1284.11i 1.48796i −0.668204 0.743978i \(-0.732937\pi\)
0.668204 0.743978i \(-0.267063\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −103.000 291.328i −0.118800 0.336018i
\(868\) 0 0
\(869\) 593.970i 0.683509i
\(870\) 0 0
\(871\) 1695.00 1.94604
\(872\) 0 0
\(873\) −7.00000 + 5.65685i −0.00801833 + 0.00647979i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 113.000 0.128848 0.0644242 0.997923i \(-0.479479\pi\)
0.0644242 + 0.997923i \(0.479479\pi\)
\(878\) 0 0
\(879\) 1376.00 486.489i 1.56542 0.553458i
\(880\) 0 0
\(881\) 1295.42i 1.47040i 0.677852 + 0.735198i \(0.262911\pi\)
−0.677852 + 0.735198i \(0.737089\pi\)
\(882\) 0 0
\(883\) −793.000 −0.898075 −0.449037 0.893513i \(-0.648233\pi\)
−0.449037 + 0.893513i \(0.648233\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 67.8823i 0.0765302i 0.999268 + 0.0382651i \(0.0121831\pi\)
−0.999268 + 0.0382651i \(0.987817\pi\)
\(888\) 0 0
\(889\) −226.000 −0.254218
\(890\) 0 0
\(891\) 672.000 + 144.250i 0.754209 + 0.161897i
\(892\) 0 0
\(893\) 1040.86i 1.16558i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −120.000 + 42.4264i −0.133779 + 0.0472981i
\(898\) 0 0
\(899\) 840.043i 0.934419i
\(900\) 0 0
\(901\) −728.000 −0.807991
\(902\) 0 0
\(903\) −7.00000 19.7990i −0.00775194 0.0219258i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −1678.00 −1.85006 −0.925028 0.379900i \(-0.875958\pi\)
−0.925028 + 0.379900i \(0.875958\pi\)
\(908\) 0 0
\(909\) −1072.00 1326.53i −1.17932 1.45933i
\(910\) 0 0
\(911\) 1702.71i 1.86906i −0.355885 0.934530i \(-0.615821\pi\)
0.355885 0.934530i \(-0.384179\pi\)
\(912\) 0 0
\(913\) 1296.00 1.41950
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 104.652i 0.114124i
\(918\) 0 0
\(919\) −1079.00 −1.17410 −0.587051 0.809550i \(-0.699711\pi\)
−0.587051 + 0.809550i \(0.699711\pi\)
\(920\) 0 0
\(921\) 215.000 + 608.112i 0.233442 + 0.660273i
\(922\) 0 0
\(923\) 381.838i 0.413692i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −182.000 + 147.078i −0.196332 + 0.158660i
\(928\) 0 0
\(929\) 144.250i 0.155274i −0.996982 0.0776371i \(-0.975262\pi\)
0.996982 0.0776371i \(-0.0247376\pi\)
\(930\) 0 0
\(931\) 1104.00 1.18582
\(932\) 0 0
\(933\) −608.000 + 214.960i −0.651661 + 0.230397i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 73.0000 0.0779082 0.0389541 0.999241i \(-0.487597\pi\)
0.0389541 + 0.999241i \(0.487597\pi\)
\(938\) 0 0
\(939\) −535.000 1513.21i −0.569755 1.61151i
\(940\) 0 0
\(941\) 1368.96i 1.45479i 0.686218 + 0.727396i \(0.259269\pi\)
−0.686218 + 0.727396i \(0.740731\pi\)
\(942\) 0 0
\(943\) 104.000 0.110286
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 596.798i 0.630199i −0.949059 0.315099i \(-0.897962\pi\)
0.949059 0.315099i \(-0.102038\pi\)
\(948\) 0 0
\(949\) 870.000 0.916754
\(950\) 0 0
\(951\) −1328.00 + 469.519i −1.39642 + 0.493711i
\(952\) 0 0
\(953\) 763.675i 0.801338i 0.916223 + 0.400669i \(0.131222\pi\)
−0.916223 + 0.400669i \(0.868778\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −216.000 610.940i −0.225705 0.638391i
\(958\) 0 0
\(959\) 16.9706i 0.0176961i
\(960\) 0 0
\(961\) 128.000 0.133195
\(962\) 0 0
\(963\) −272.000 336.583i −0.282451 0.349515i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 10.0000 0.0103413 0.00517063 0.999987i \(-0.498354\pi\)
0.00517063 + 0.999987i \(0.498354\pi\)
\(968\) 0 0
\(969\) −1288.00 + 455.377i −1.32921 + 0.469945i
\(970\) 0 0
\(971\) 486.489i 0.501019i 0.968114 + 0.250510i \(0.0805981\pi\)
−0.968114 + 0.250510i \(0.919402\pi\)
\(972\) 0 0
\(973\) −102.000 −0.104830
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 820.244i 0.839554i 0.907627 + 0.419777i \(0.137892\pi\)
−0.907627 + 0.419777i \(0.862108\pi\)
\(978\) 0 0
\(979\) −768.000 −0.784474
\(980\) 0 0
\(981\) 1015.00 820.244i 1.03466 0.836130i
\(982\) 0 0
\(983\) 135.765i 0.138112i 0.997613 + 0.0690562i \(0.0219988\pi\)
−0.997613 + 0.0690562i \(0.978001\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 128.000 45.2548i 0.129686 0.0458509i
\(988\) 0 0
\(989\) 19.7990i 0.0200192i
\(990\) 0 0
\(991\) −79.0000 −0.0797175 −0.0398587 0.999205i \(-0.512691\pi\)
−0.0398587 + 0.999205i \(0.512691\pi\)
\(992\) 0 0
\(993\) 94.0000 + 265.872i 0.0946626 + 0.267746i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −378.000 −0.379137 −0.189569 0.981867i \(-0.560709\pi\)
−0.189569 + 0.981867i \(0.560709\pi\)
\(998\) 0 0
\(999\) 1518.00 + 933.381i 1.51952 + 0.934315i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.3.l.c.401.2 yes 2
3.2 odd 2 inner 600.3.l.c.401.1 yes 2
4.3 odd 2 1200.3.l.j.401.1 2
5.2 odd 4 600.3.c.b.449.3 4
5.3 odd 4 600.3.c.b.449.2 4
5.4 even 2 600.3.l.a.401.1 2
12.11 even 2 1200.3.l.j.401.2 2
15.2 even 4 600.3.c.b.449.1 4
15.8 even 4 600.3.c.b.449.4 4
15.14 odd 2 600.3.l.a.401.2 yes 2
20.3 even 4 1200.3.c.g.449.3 4
20.7 even 4 1200.3.c.g.449.2 4
20.19 odd 2 1200.3.l.o.401.2 2
60.23 odd 4 1200.3.c.g.449.1 4
60.47 odd 4 1200.3.c.g.449.4 4
60.59 even 2 1200.3.l.o.401.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.3.c.b.449.1 4 15.2 even 4
600.3.c.b.449.2 4 5.3 odd 4
600.3.c.b.449.3 4 5.2 odd 4
600.3.c.b.449.4 4 15.8 even 4
600.3.l.a.401.1 2 5.4 even 2
600.3.l.a.401.2 yes 2 15.14 odd 2
600.3.l.c.401.1 yes 2 3.2 odd 2 inner
600.3.l.c.401.2 yes 2 1.1 even 1 trivial
1200.3.c.g.449.1 4 60.23 odd 4
1200.3.c.g.449.2 4 20.7 even 4
1200.3.c.g.449.3 4 20.3 even 4
1200.3.c.g.449.4 4 60.47 odd 4
1200.3.l.j.401.1 2 4.3 odd 2
1200.3.l.j.401.2 2 12.11 even 2
1200.3.l.o.401.1 2 60.59 even 2
1200.3.l.o.401.2 2 20.19 odd 2