Properties

Label 600.2.w.k.557.11
Level $600$
Weight $2$
Character 600.557
Analytic conductor $4.791$
Analytic rank $0$
Dimension $64$
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [600,2,Mod(293,600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(600, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("600.293"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 600 = 2^{3} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 600.w (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.79102412128\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 557.11
Character \(\chi\) \(=\) 600.557
Dual form 600.2.w.k.293.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.722477 + 1.21574i) q^{2} +(-1.48597 + 0.889875i) q^{3} +(-0.956054 - 1.75669i) q^{4} +(-0.00827553 - 2.44948i) q^{6} +(-2.09015 - 2.09015i) q^{7} +(2.82641 + 0.106854i) q^{8} +(1.41624 - 2.64467i) q^{9} +2.65514 q^{11} +(2.98391 + 1.75963i) q^{12} +(4.21638 + 4.21638i) q^{13} +(4.05116 - 1.03099i) q^{14} +(-2.17192 + 3.35898i) q^{16} +(-3.84954 + 3.84954i) q^{17} +(2.19203 + 3.63250i) q^{18} -3.15804 q^{19} +(4.96588 + 1.24594i) q^{21} +(-1.91827 + 3.22796i) q^{22} +(-1.60962 - 1.60962i) q^{23} +(-4.29506 + 2.35637i) q^{24} +(-8.17226 + 2.07979i) q^{26} +(0.248921 + 5.19019i) q^{27} +(-1.67345 + 5.67003i) q^{28} +4.35078i q^{29} +1.56789 q^{31} +(-2.51449 - 5.06728i) q^{32} +(-3.94546 + 2.36274i) q^{33} +(-1.89884 - 7.46125i) q^{34} +(-5.99986 + 0.0405414i) q^{36} +(4.94127 - 4.94127i) q^{37} +(2.28161 - 3.83936i) q^{38} +(-10.0175 - 2.51338i) q^{39} +10.6056i q^{41} +(-5.10247 + 5.13706i) q^{42} +(0.219791 + 0.219791i) q^{43} +(-2.53845 - 4.66425i) q^{44} +(3.11979 - 0.793968i) q^{46} +(1.83256 - 1.83256i) q^{47} +(0.238347 - 6.92410i) q^{48} +1.73743i q^{49} +(2.29471 - 9.14594i) q^{51} +(3.37579 - 11.4380i) q^{52} +(-4.64119 + 4.64119i) q^{53} +(-6.48976 - 3.44717i) q^{54} +(-5.68427 - 6.13095i) q^{56} +(4.69277 - 2.81027i) q^{57} +(-5.28942 - 3.14334i) q^{58} +9.93175i q^{59} +11.9159i q^{61} +(-1.13277 + 1.90615i) q^{62} +(-8.48790 + 2.56758i) q^{63} +(7.97716 + 0.604028i) q^{64} +(-0.0219726 - 6.50369i) q^{66} +(-8.80906 + 8.80906i) q^{67} +(10.4428 + 3.08208i) q^{68} +(3.82422 + 0.959493i) q^{69} -2.89837i q^{71} +(4.28548 - 7.32357i) q^{72} +(2.29779 - 2.29779i) q^{73} +(2.43735 + 9.57725i) q^{74} +(3.01926 + 5.54770i) q^{76} +(-5.54962 - 5.54962i) q^{77} +(10.2930 - 10.3628i) q^{78} +9.02676i q^{79} +(-4.98851 - 7.49098i) q^{81} +(-12.8936 - 7.66227i) q^{82} +(-9.78801 + 9.78801i) q^{83} +(-2.55892 - 9.91469i) q^{84} +(-0.426003 + 0.108415i) q^{86} +(-3.87165 - 6.46515i) q^{87} +(7.50450 + 0.283713i) q^{88} -2.83249 q^{89} -17.6257i q^{91} +(-1.28872 + 4.36649i) q^{92} +(-2.32985 + 1.39523i) q^{93} +(0.903936 + 3.55190i) q^{94} +(8.24572 + 5.29227i) q^{96} +(9.26375 + 9.26375i) q^{97} +(-2.11227 - 1.25525i) q^{98} +(3.76032 - 7.02194i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 12 q^{6} - 40 q^{16} + 32 q^{31} - 84 q^{36} - 128 q^{46} - 180 q^{66} + 168 q^{76} + 48 q^{81} + 228 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/600\mathbb{Z}\right)^\times\).

\(n\) \(151\) \(301\) \(401\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.722477 + 1.21574i −0.510868 + 0.859659i
\(3\) −1.48597 + 0.889875i −0.857928 + 0.513770i
\(4\) −0.956054 1.75669i −0.478027 0.878345i
\(5\) 0 0
\(6\) −0.00827553 2.44948i −0.00337847 0.999994i
\(7\) −2.09015 2.09015i −0.790001 0.790001i 0.191493 0.981494i \(-0.438667\pi\)
−0.981494 + 0.191493i \(0.938667\pi\)
\(8\) 2.82641 + 0.106854i 0.999286 + 0.0377787i
\(9\) 1.41624 2.64467i 0.472081 0.881555i
\(10\) 0 0
\(11\) 2.65514 0.800553 0.400277 0.916394i \(-0.368914\pi\)
0.400277 + 0.916394i \(0.368914\pi\)
\(12\) 2.98391 + 1.75963i 0.861380 + 0.507961i
\(13\) 4.21638 + 4.21638i 1.16941 + 1.16941i 0.982347 + 0.187065i \(0.0598976\pi\)
0.187065 + 0.982347i \(0.440102\pi\)
\(14\) 4.05116 1.03099i 1.08272 0.275545i
\(15\) 0 0
\(16\) −2.17192 + 3.35898i −0.542981 + 0.839745i
\(17\) −3.84954 + 3.84954i −0.933651 + 0.933651i −0.997932 0.0642808i \(-0.979525\pi\)
0.0642808 + 0.997932i \(0.479525\pi\)
\(18\) 2.19203 + 3.63250i 0.516665 + 0.856187i
\(19\) −3.15804 −0.724505 −0.362252 0.932080i \(-0.617992\pi\)
−0.362252 + 0.932080i \(0.617992\pi\)
\(20\) 0 0
\(21\) 4.96588 + 1.24594i 1.08364 + 0.271885i
\(22\) −1.91827 + 3.22796i −0.408977 + 0.688203i
\(23\) −1.60962 1.60962i −0.335629 0.335629i 0.519090 0.854719i \(-0.326271\pi\)
−0.854719 + 0.519090i \(0.826271\pi\)
\(24\) −4.29506 + 2.35637i −0.876725 + 0.480992i
\(25\) 0 0
\(26\) −8.17226 + 2.07979i −1.60271 + 0.407880i
\(27\) 0.248921 + 5.19019i 0.0479048 + 0.998852i
\(28\) −1.67345 + 5.67003i −0.316252 + 1.07154i
\(29\) 4.35078i 0.807919i 0.914777 + 0.403959i \(0.132366\pi\)
−0.914777 + 0.403959i \(0.867634\pi\)
\(30\) 0 0
\(31\) 1.56789 0.281602 0.140801 0.990038i \(-0.455032\pi\)
0.140801 + 0.990038i \(0.455032\pi\)
\(32\) −2.51449 5.06728i −0.444503 0.895777i
\(33\) −3.94546 + 2.36274i −0.686817 + 0.411300i
\(34\) −1.89884 7.46125i −0.325649 1.27959i
\(35\) 0 0
\(36\) −5.99986 + 0.0405414i −0.999977 + 0.00675690i
\(37\) 4.94127 4.94127i 0.812339 0.812339i −0.172645 0.984984i \(-0.555231\pi\)
0.984984 + 0.172645i \(0.0552313\pi\)
\(38\) 2.28161 3.83936i 0.370127 0.622827i
\(39\) −10.0175 2.51338i −1.60408 0.402463i
\(40\) 0 0
\(41\) 10.6056i 1.65631i 0.560500 + 0.828154i \(0.310609\pi\)
−0.560500 + 0.828154i \(0.689391\pi\)
\(42\) −5.10247 + 5.13706i −0.787328 + 0.792666i
\(43\) 0.219791 + 0.219791i 0.0335178 + 0.0335178i 0.723667 0.690149i \(-0.242455\pi\)
−0.690149 + 0.723667i \(0.742455\pi\)
\(44\) −2.53845 4.66425i −0.382686 0.703162i
\(45\) 0 0
\(46\) 3.11979 0.793968i 0.459989 0.117064i
\(47\) 1.83256 1.83256i 0.267306 0.267306i −0.560708 0.828014i \(-0.689471\pi\)
0.828014 + 0.560708i \(0.189471\pi\)
\(48\) 0.238347 6.92410i 0.0344024 0.999408i
\(49\) 1.73743i 0.248204i
\(50\) 0 0
\(51\) 2.29471 9.14594i 0.321324 1.28069i
\(52\) 3.37579 11.4380i 0.468137 1.58616i
\(53\) −4.64119 + 4.64119i −0.637516 + 0.637516i −0.949942 0.312426i \(-0.898858\pi\)
0.312426 + 0.949942i \(0.398858\pi\)
\(54\) −6.48976 3.44717i −0.883145 0.469100i
\(55\) 0 0
\(56\) −5.68427 6.13095i −0.759592 0.819283i
\(57\) 4.69277 2.81027i 0.621573 0.372229i
\(58\) −5.28942 3.14334i −0.694535 0.412740i
\(59\) 9.93175i 1.29300i 0.762912 + 0.646502i \(0.223769\pi\)
−0.762912 + 0.646502i \(0.776231\pi\)
\(60\) 0 0
\(61\) 11.9159i 1.52568i 0.646590 + 0.762838i \(0.276195\pi\)
−0.646590 + 0.762838i \(0.723805\pi\)
\(62\) −1.13277 + 1.90615i −0.143862 + 0.242082i
\(63\) −8.48790 + 2.56758i −1.06937 + 0.323485i
\(64\) 7.97716 + 0.604028i 0.997146 + 0.0755035i
\(65\) 0 0
\(66\) −0.0219726 6.50369i −0.00270465 0.800549i
\(67\) −8.80906 + 8.80906i −1.07620 + 1.07620i −0.0793517 + 0.996847i \(0.525285\pi\)
−0.996847 + 0.0793517i \(0.974715\pi\)
\(68\) 10.4428 + 3.08208i 1.26638 + 0.373758i
\(69\) 3.82422 + 0.959493i 0.460381 + 0.115509i
\(70\) 0 0
\(71\) 2.89837i 0.343973i −0.985099 0.171986i \(-0.944982\pi\)
0.985099 0.171986i \(-0.0550185\pi\)
\(72\) 4.28548 7.32357i 0.505048 0.863091i
\(73\) 2.29779 2.29779i 0.268936 0.268936i −0.559736 0.828671i \(-0.689097\pi\)
0.828671 + 0.559736i \(0.189097\pi\)
\(74\) 2.43735 + 9.57725i 0.283336 + 1.11333i
\(75\) 0 0
\(76\) 3.01926 + 5.54770i 0.346333 + 0.636365i
\(77\) −5.54962 5.54962i −0.632438 0.632438i
\(78\) 10.2930 10.3628i 1.16546 1.17336i
\(79\) 9.02676i 1.01559i 0.861478 + 0.507795i \(0.169539\pi\)
−0.861478 + 0.507795i \(0.830461\pi\)
\(80\) 0 0
\(81\) −4.98851 7.49098i −0.554279 0.832331i
\(82\) −12.8936 7.66227i −1.42386 0.846156i
\(83\) −9.78801 + 9.78801i −1.07437 + 1.07437i −0.0773719 + 0.997002i \(0.524653\pi\)
−0.997002 + 0.0773719i \(0.975347\pi\)
\(84\) −2.55892 9.91469i −0.279201 1.08178i
\(85\) 0 0
\(86\) −0.426003 + 0.108415i −0.0459371 + 0.0116907i
\(87\) −3.87165 6.46515i −0.415084 0.693136i
\(88\) 7.50450 + 0.283713i 0.799982 + 0.0302439i
\(89\) −2.83249 −0.300243 −0.150121 0.988668i \(-0.547966\pi\)
−0.150121 + 0.988668i \(0.547966\pi\)
\(90\) 0 0
\(91\) 17.6257i 1.84768i
\(92\) −1.28872 + 4.36649i −0.134358 + 0.455238i
\(93\) −2.32985 + 1.39523i −0.241594 + 0.144679i
\(94\) 0.903936 + 3.55190i 0.0932339 + 0.366351i
\(95\) 0 0
\(96\) 8.24572 + 5.29227i 0.841575 + 0.540140i
\(97\) 9.26375 + 9.26375i 0.940592 + 0.940592i 0.998332 0.0577400i \(-0.0183894\pi\)
−0.0577400 + 0.998332i \(0.518389\pi\)
\(98\) −2.11227 1.25525i −0.213371 0.126800i
\(99\) 3.76032 7.02194i 0.377926 0.705732i
\(100\) 0 0
\(101\) 10.6797 1.06267 0.531337 0.847160i \(-0.321690\pi\)
0.531337 + 0.847160i \(0.321690\pi\)
\(102\) 9.46122 + 9.39750i 0.936800 + 0.930491i
\(103\) 10.3368 10.3368i 1.01851 1.01851i 0.0186893 0.999825i \(-0.494051\pi\)
0.999825 0.0186893i \(-0.00594934\pi\)
\(104\) 11.4667 + 12.3677i 1.12440 + 1.21276i
\(105\) 0 0
\(106\) −2.28933 8.99563i −0.222359 0.873733i
\(107\) 3.47289 + 3.47289i 0.335737 + 0.335737i 0.854760 0.519023i \(-0.173704\pi\)
−0.519023 + 0.854760i \(0.673704\pi\)
\(108\) 8.87957 5.39937i 0.854437 0.519555i
\(109\) 2.67954 0.256654 0.128327 0.991732i \(-0.459039\pi\)
0.128327 + 0.991732i \(0.459039\pi\)
\(110\) 0 0
\(111\) −2.94549 + 11.7397i −0.279573 + 1.11428i
\(112\) 11.5604 2.48113i 1.09236 0.234445i
\(113\) −6.11636 6.11636i −0.575379 0.575379i 0.358248 0.933627i \(-0.383374\pi\)
−0.933627 + 0.358248i \(0.883374\pi\)
\(114\) 0.0261345 + 7.73555i 0.00244772 + 0.724501i
\(115\) 0 0
\(116\) 7.64297 4.15958i 0.709632 0.386207i
\(117\) 17.1223 5.17949i 1.58296 0.478844i
\(118\) −12.0744 7.17546i −1.11154 0.660555i
\(119\) 16.0922 1.47517
\(120\) 0 0
\(121\) −3.95026 −0.359114
\(122\) −14.4867 8.60897i −1.31156 0.779420i
\(123\) −9.43762 15.7596i −0.850962 1.42099i
\(124\) −1.49899 2.75430i −0.134613 0.247344i
\(125\) 0 0
\(126\) 3.01079 12.1741i 0.268223 1.08456i
\(127\) 11.2254 + 11.2254i 0.996089 + 0.996089i 0.999992 0.00390306i \(-0.00124239\pi\)
−0.00390306 + 0.999992i \(0.501242\pi\)
\(128\) −6.49766 + 9.26177i −0.574317 + 0.818633i
\(129\) −0.522191 0.131017i −0.0459763 0.0115354i
\(130\) 0 0
\(131\) −6.55577 −0.572780 −0.286390 0.958113i \(-0.592455\pi\)
−0.286390 + 0.958113i \(0.592455\pi\)
\(132\) 7.92268 + 4.67205i 0.689581 + 0.406650i
\(133\) 6.60078 + 6.60078i 0.572360 + 0.572360i
\(134\) −4.34520 17.0739i −0.375368 1.47496i
\(135\) 0 0
\(136\) −11.2917 + 10.4690i −0.968257 + 0.897712i
\(137\) 1.63651 1.63651i 0.139817 0.139817i −0.633734 0.773551i \(-0.718479\pi\)
0.773551 + 0.633734i \(0.218479\pi\)
\(138\) −3.92940 + 3.95604i −0.334493 + 0.336761i
\(139\) 1.03173 0.0875104 0.0437552 0.999042i \(-0.486068\pi\)
0.0437552 + 0.999042i \(0.486068\pi\)
\(140\) 0 0
\(141\) −1.09239 + 4.35389i −0.0919956 + 0.366663i
\(142\) 3.52366 + 2.09400i 0.295699 + 0.175725i
\(143\) 11.1951 + 11.1951i 0.936177 + 0.936177i
\(144\) 5.80741 + 10.5011i 0.483951 + 0.875095i
\(145\) 0 0
\(146\) 1.13342 + 4.45361i 0.0938022 + 0.368583i
\(147\) −1.54610 2.58178i −0.127520 0.212942i
\(148\) −13.4044 3.95616i −1.10183 0.325194i
\(149\) 3.60278i 0.295151i −0.989051 0.147576i \(-0.952853\pi\)
0.989051 0.147576i \(-0.0471470\pi\)
\(150\) 0 0
\(151\) 13.6985 1.11476 0.557382 0.830256i \(-0.311806\pi\)
0.557382 + 0.830256i \(0.311806\pi\)
\(152\) −8.92592 0.337451i −0.723988 0.0273709i
\(153\) 4.72886 + 15.6326i 0.382306 + 1.26382i
\(154\) 10.7564 2.73743i 0.866774 0.220588i
\(155\) 0 0
\(156\) 5.16202 + 20.0005i 0.413292 + 1.60132i
\(157\) 7.26828 7.26828i 0.580072 0.580072i −0.354851 0.934923i \(-0.615468\pi\)
0.934923 + 0.354851i \(0.115468\pi\)
\(158\) −10.9742 6.52163i −0.873061 0.518833i
\(159\) 2.76661 11.0268i 0.219406 0.874479i
\(160\) 0 0
\(161\) 6.72868i 0.530295i
\(162\) 12.7112 0.652676i 0.998684 0.0512791i
\(163\) −9.50622 9.50622i −0.744585 0.744585i 0.228872 0.973457i \(-0.426496\pi\)
−0.973457 + 0.228872i \(0.926496\pi\)
\(164\) 18.6307 10.1395i 1.45481 0.791760i
\(165\) 0 0
\(166\) −4.82808 18.9713i −0.374732 1.47246i
\(167\) −14.4143 + 14.4143i −1.11541 + 1.11541i −0.123005 + 0.992406i \(0.539253\pi\)
−0.992406 + 0.123005i \(0.960747\pi\)
\(168\) 13.9025 + 4.05215i 1.07260 + 0.312630i
\(169\) 22.5557i 1.73505i
\(170\) 0 0
\(171\) −4.47256 + 8.35197i −0.342025 + 0.638691i
\(172\) 0.175973 0.596237i 0.0134178 0.0454626i
\(173\) 18.0907 18.0907i 1.37541 1.37541i 0.523202 0.852209i \(-0.324738\pi\)
0.852209 0.523202i \(-0.175262\pi\)
\(174\) 10.6571 0.0360050i 0.807914 0.00272953i
\(175\) 0 0
\(176\) −5.76675 + 8.91855i −0.434685 + 0.672261i
\(177\) −8.83802 14.7583i −0.664307 1.10930i
\(178\) 2.04641 3.44357i 0.153385 0.258107i
\(179\) 5.81962i 0.434979i −0.976063 0.217489i \(-0.930213\pi\)
0.976063 0.217489i \(-0.0697868\pi\)
\(180\) 0 0
\(181\) 3.58348i 0.266358i 0.991092 + 0.133179i \(0.0425185\pi\)
−0.991092 + 0.133179i \(0.957481\pi\)
\(182\) 21.4283 + 12.7342i 1.58837 + 0.943919i
\(183\) −10.6037 17.7067i −0.783846 1.30892i
\(184\) −4.37745 4.72144i −0.322710 0.348069i
\(185\) 0 0
\(186\) −0.0129752 3.84052i −0.000951384 0.281601i
\(187\) −10.2211 + 10.2211i −0.747437 + 0.747437i
\(188\) −4.97126 1.46721i −0.362567 0.107008i
\(189\) 10.3280 11.3685i 0.751250 0.826939i
\(190\) 0 0
\(191\) 11.6034i 0.839591i −0.907619 0.419796i \(-0.862102\pi\)
0.907619 0.419796i \(-0.137898\pi\)
\(192\) −12.3914 + 6.20111i −0.894271 + 0.447527i
\(193\) 9.83073 9.83073i 0.707632 0.707632i −0.258405 0.966037i \(-0.583197\pi\)
0.966037 + 0.258405i \(0.0831969\pi\)
\(194\) −17.9552 + 4.56948i −1.28911 + 0.328069i
\(195\) 0 0
\(196\) 3.05213 1.66108i 0.218009 0.118648i
\(197\) −1.97306 1.97306i −0.140574 0.140574i 0.633318 0.773892i \(-0.281693\pi\)
−0.773892 + 0.633318i \(0.781693\pi\)
\(198\) 5.82012 + 9.64477i 0.413618 + 0.685424i
\(199\) 4.09303i 0.290147i −0.989421 0.145074i \(-0.953658\pi\)
0.989421 0.145074i \(-0.0463419\pi\)
\(200\) 0 0
\(201\) 5.25108 20.9290i 0.370383 1.47622i
\(202\) −7.71587 + 12.9838i −0.542887 + 0.913538i
\(203\) 9.09376 9.09376i 0.638257 0.638257i
\(204\) −18.2604 + 4.71291i −1.27849 + 0.329970i
\(205\) 0 0
\(206\) 5.09877 + 20.0350i 0.355248 + 1.39590i
\(207\) −6.53652 + 1.97729i −0.454319 + 0.137431i
\(208\) −23.3204 + 5.00509i −1.61698 + 0.347040i
\(209\) −8.38503 −0.580005
\(210\) 0 0
\(211\) 5.39432i 0.371361i 0.982610 + 0.185680i \(0.0594489\pi\)
−0.982610 + 0.185680i \(0.940551\pi\)
\(212\) 12.5903 + 3.71590i 0.864709 + 0.255209i
\(213\) 2.57918 + 4.30690i 0.176723 + 0.295104i
\(214\) −6.73123 + 1.71305i −0.460137 + 0.117102i
\(215\) 0 0
\(216\) 0.148957 + 14.6962i 0.0101353 + 0.999949i
\(217\) −3.27713 3.27713i −0.222466 0.222466i
\(218\) −1.93591 + 3.25763i −0.131116 + 0.220635i
\(219\) −1.36971 + 5.45920i −0.0925564 + 0.368898i
\(220\) 0 0
\(221\) −32.4622 −2.18365
\(222\) −12.1444 12.0626i −0.815079 0.809590i
\(223\) 2.63896 2.63896i 0.176718 0.176718i −0.613206 0.789923i \(-0.710120\pi\)
0.789923 + 0.613206i \(0.210120\pi\)
\(224\) −5.33572 + 15.8470i −0.356507 + 1.05882i
\(225\) 0 0
\(226\) 11.8548 3.01698i 0.788572 0.200687i
\(227\) −5.62771 5.62771i −0.373524 0.373524i 0.495235 0.868759i \(-0.335082\pi\)
−0.868759 + 0.495235i \(0.835082\pi\)
\(228\) −9.42331 5.55699i −0.624074 0.368020i
\(229\) −11.2319 −0.742225 −0.371113 0.928588i \(-0.621024\pi\)
−0.371113 + 0.928588i \(0.621024\pi\)
\(230\) 0 0
\(231\) 13.1851 + 3.30813i 0.867514 + 0.217659i
\(232\) −0.464899 + 12.2971i −0.0305221 + 0.807342i
\(233\) −15.0715 15.0715i −0.987366 0.987366i 0.0125551 0.999921i \(-0.496003\pi\)
−0.999921 + 0.0125551i \(0.996003\pi\)
\(234\) −6.07357 + 24.5584i −0.397041 + 1.60543i
\(235\) 0 0
\(236\) 17.4470 9.49529i 1.13570 0.618091i
\(237\) −8.03269 13.4135i −0.521780 0.871303i
\(238\) −11.6263 + 19.5640i −0.753618 + 1.26814i
\(239\) 2.89837 0.187480 0.0937398 0.995597i \(-0.470118\pi\)
0.0937398 + 0.995597i \(0.470118\pi\)
\(240\) 0 0
\(241\) 0.551900 0.0355510 0.0177755 0.999842i \(-0.494342\pi\)
0.0177755 + 0.999842i \(0.494342\pi\)
\(242\) 2.85397 4.80249i 0.183460 0.308716i
\(243\) 14.0788 + 6.69226i 0.903158 + 0.429308i
\(244\) 20.9326 11.3923i 1.34007 0.729314i
\(245\) 0 0
\(246\) 25.9780 0.0877665i 1.65630 0.00559579i
\(247\) −13.3155 13.3155i −0.847245 0.847245i
\(248\) 4.43151 + 0.167536i 0.281401 + 0.0106386i
\(249\) 5.83463 23.2549i 0.369755 1.47372i
\(250\) 0 0
\(251\) −6.29691 −0.397457 −0.198729 0.980055i \(-0.563681\pi\)
−0.198729 + 0.980055i \(0.563681\pi\)
\(252\) 12.6253 + 12.4559i 0.795321 + 0.784645i
\(253\) −4.27376 4.27376i −0.268689 0.268689i
\(254\) −21.7572 + 5.53707i −1.36517 + 0.347426i
\(255\) 0 0
\(256\) −6.56551 14.5909i −0.410344 0.911931i
\(257\) 10.9183 10.9183i 0.681066 0.681066i −0.279174 0.960240i \(-0.590061\pi\)
0.960240 + 0.279174i \(0.0900607\pi\)
\(258\) 0.536554 0.540192i 0.0334044 0.0336309i
\(259\) −20.6559 −1.28350
\(260\) 0 0
\(261\) 11.5063 + 6.16176i 0.712225 + 0.381403i
\(262\) 4.73639 7.97012i 0.292615 0.492396i
\(263\) 21.0955 + 21.0955i 1.30081 + 1.30081i 0.927848 + 0.372959i \(0.121657\pi\)
0.372959 + 0.927848i \(0.378343\pi\)
\(264\) −11.4040 + 6.25648i −0.701865 + 0.385059i
\(265\) 0 0
\(266\) −12.7937 + 3.25593i −0.784435 + 0.199634i
\(267\) 4.20900 2.52056i 0.257587 0.154256i
\(268\) 23.8967 + 7.05286i 1.45973 + 0.430822i
\(269\) 20.6115i 1.25671i −0.777929 0.628353i \(-0.783729\pi\)
0.777929 0.628353i \(-0.216271\pi\)
\(270\) 0 0
\(271\) −24.2931 −1.47570 −0.737851 0.674964i \(-0.764159\pi\)
−0.737851 + 0.674964i \(0.764159\pi\)
\(272\) −4.56963 21.2914i −0.277075 1.29098i
\(273\) 15.6847 + 26.1913i 0.949280 + 1.58517i
\(274\) 0.807234 + 3.17192i 0.0487668 + 0.191623i
\(275\) 0 0
\(276\) −1.97062 7.63529i −0.118618 0.459590i
\(277\) −12.6491 + 12.6491i −0.760013 + 0.760013i −0.976324 0.216312i \(-0.930597\pi\)
0.216312 + 0.976324i \(0.430597\pi\)
\(278\) −0.745403 + 1.25432i −0.0447063 + 0.0752291i
\(279\) 2.22052 4.14656i 0.132939 0.248248i
\(280\) 0 0
\(281\) 8.81745i 0.526005i −0.964795 0.263002i \(-0.915287\pi\)
0.964795 0.263002i \(-0.0847127\pi\)
\(282\) −4.50397 4.47364i −0.268208 0.266402i
\(283\) 13.4928 + 13.4928i 0.802061 + 0.802061i 0.983417 0.181357i \(-0.0580488\pi\)
−0.181357 + 0.983417i \(0.558049\pi\)
\(284\) −5.09153 + 2.77099i −0.302127 + 0.164428i
\(285\) 0 0
\(286\) −21.6985 + 5.52212i −1.28306 + 0.326530i
\(287\) 22.1672 22.1672i 1.30849 1.30849i
\(288\) −16.9624 0.526525i −0.999519 0.0310258i
\(289\) 12.6379i 0.743409i
\(290\) 0 0
\(291\) −22.0093 5.52212i −1.29021 0.323712i
\(292\) −6.23331 1.83969i −0.364777 0.107660i
\(293\) −6.84294 + 6.84294i −0.399769 + 0.399769i −0.878151 0.478383i \(-0.841223\pi\)
0.478383 + 0.878151i \(0.341223\pi\)
\(294\) 4.25579 0.0143782i 0.248203 0.000838551i
\(295\) 0 0
\(296\) 14.4940 13.4380i 0.842448 0.781070i
\(297\) 0.660918 + 13.7806i 0.0383503 + 0.799634i
\(298\) 4.38005 + 2.60293i 0.253730 + 0.150784i
\(299\) 13.5735i 0.784977i
\(300\) 0 0
\(301\) 0.918791i 0.0529583i
\(302\) −9.89682 + 16.6538i −0.569498 + 0.958317i
\(303\) −15.8698 + 9.50365i −0.911698 + 0.545970i
\(304\) 6.85902 10.6078i 0.393392 0.608400i
\(305\) 0 0
\(306\) −22.4217 5.54515i −1.28177 0.316995i
\(307\) 5.31757 5.31757i 0.303490 0.303490i −0.538888 0.842378i \(-0.681155\pi\)
0.842378 + 0.538888i \(0.181155\pi\)
\(308\) −4.44323 + 15.0547i −0.253177 + 0.857822i
\(309\) −6.16176 + 24.5587i −0.350530 + 1.39709i
\(310\) 0 0
\(311\) 31.3649i 1.77854i −0.457382 0.889270i \(-0.651213\pi\)
0.457382 0.889270i \(-0.348787\pi\)
\(312\) −28.0449 8.17425i −1.58773 0.462776i
\(313\) −5.42321 + 5.42321i −0.306538 + 0.306538i −0.843565 0.537027i \(-0.819547\pi\)
0.537027 + 0.843565i \(0.319547\pi\)
\(314\) 3.58518 + 14.0875i 0.202324 + 0.795005i
\(315\) 0 0
\(316\) 15.8572 8.63007i 0.892039 0.485479i
\(317\) 12.8513 + 12.8513i 0.721799 + 0.721799i 0.968972 0.247172i \(-0.0795013\pi\)
−0.247172 + 0.968972i \(0.579501\pi\)
\(318\) 11.4069 + 11.3301i 0.639666 + 0.635358i
\(319\) 11.5519i 0.646782i
\(320\) 0 0
\(321\) −8.25108 2.07019i −0.460530 0.115547i
\(322\) −8.18034 4.86132i −0.455872 0.270911i
\(323\) 12.1570 12.1570i 0.676435 0.676435i
\(324\) −8.39005 + 15.9250i −0.466114 + 0.884725i
\(325\) 0 0
\(326\) 18.4251 4.68908i 1.02047 0.259704i
\(327\) −3.98173 + 2.38446i −0.220190 + 0.131861i
\(328\) −1.13325 + 29.9756i −0.0625732 + 1.65513i
\(329\) −7.66064 −0.422345
\(330\) 0 0
\(331\) 10.6434i 0.585016i 0.956263 + 0.292508i \(0.0944899\pi\)
−0.956263 + 0.292508i \(0.905510\pi\)
\(332\) 26.5524 + 7.83664i 1.45725 + 0.430092i
\(333\) −6.06996 20.0660i −0.332632 1.09961i
\(334\) −7.11005 27.9380i −0.389045 1.52870i
\(335\) 0 0
\(336\) −14.9706 + 13.9742i −0.816712 + 0.762356i
\(337\) −0.581584 0.581584i −0.0316809 0.0316809i 0.691089 0.722770i \(-0.257131\pi\)
−0.722770 + 0.691089i \(0.757131\pi\)
\(338\) −27.4219 16.2960i −1.49155 0.886383i
\(339\) 14.5316 + 3.64596i 0.789246 + 0.198021i
\(340\) 0 0
\(341\) 4.16297 0.225438
\(342\) −6.92251 11.4716i −0.374327 0.620312i
\(343\) −10.9995 + 10.9995i −0.593920 + 0.593920i
\(344\) 0.597734 + 0.644705i 0.0322276 + 0.0347602i
\(345\) 0 0
\(346\) 8.92350 + 35.0637i 0.479730 + 1.88504i
\(347\) −1.90948 1.90948i −0.102506 0.102506i 0.653994 0.756500i \(-0.273092\pi\)
−0.756500 + 0.653994i \(0.773092\pi\)
\(348\) −7.65575 + 12.9823i −0.410391 + 0.695925i
\(349\) −16.3562 −0.875528 −0.437764 0.899090i \(-0.644229\pi\)
−0.437764 + 0.899090i \(0.644229\pi\)
\(350\) 0 0
\(351\) −20.8342 + 22.9333i −1.11205 + 1.22409i
\(352\) −6.67631 13.4543i −0.355848 0.717118i
\(353\) 0.326679 + 0.326679i 0.0173874 + 0.0173874i 0.715747 0.698360i \(-0.246086\pi\)
−0.698360 + 0.715747i \(0.746086\pi\)
\(354\) 24.3276 0.0821905i 1.29300 0.00436838i
\(355\) 0 0
\(356\) 2.70801 + 4.97580i 0.143524 + 0.263717i
\(357\) −23.9126 + 14.3201i −1.26559 + 0.757898i
\(358\) 7.07515 + 4.20454i 0.373934 + 0.222217i
\(359\) −16.0922 −0.849315 −0.424657 0.905354i \(-0.639605\pi\)
−0.424657 + 0.905354i \(0.639605\pi\)
\(360\) 0 0
\(361\) −9.02676 −0.475093
\(362\) −4.35658 2.58898i −0.228977 0.136074i
\(363\) 5.86998 3.51524i 0.308094 0.184502i
\(364\) −30.9629 + 16.8511i −1.62290 + 0.883239i
\(365\) 0 0
\(366\) 29.1877 0.0986104i 1.52567 0.00515445i
\(367\) 17.3259 + 17.3259i 0.904406 + 0.904406i 0.995814 0.0914078i \(-0.0291367\pi\)
−0.0914078 + 0.995814i \(0.529137\pi\)
\(368\) 8.90265 1.91071i 0.464083 0.0996028i
\(369\) 28.0481 + 15.0200i 1.46013 + 0.781912i
\(370\) 0 0
\(371\) 19.4015 1.00728
\(372\) 4.67845 + 2.75891i 0.242566 + 0.143043i
\(373\) 4.04391 + 4.04391i 0.209386 + 0.209386i 0.804006 0.594621i \(-0.202698\pi\)
−0.594621 + 0.804006i \(0.702698\pi\)
\(374\) −5.04168 19.8106i −0.260699 1.02438i
\(375\) 0 0
\(376\) 5.37538 4.98374i 0.277214 0.257017i
\(377\) −18.3445 + 18.3445i −0.944791 + 0.944791i
\(378\) 6.35947 + 20.7696i 0.327096 + 1.06828i
\(379\) 9.37395 0.481507 0.240754 0.970586i \(-0.422605\pi\)
0.240754 + 0.970586i \(0.422605\pi\)
\(380\) 0 0
\(381\) −26.6698 6.69143i −1.36633 0.342812i
\(382\) 14.1067 + 8.38318i 0.721762 + 0.428921i
\(383\) 1.94014 + 1.94014i 0.0991364 + 0.0991364i 0.754935 0.655799i \(-0.227668\pi\)
−0.655799 + 0.754935i \(0.727668\pi\)
\(384\) 1.41354 19.5449i 0.0721342 0.997395i
\(385\) 0 0
\(386\) 4.84915 + 19.0541i 0.246815 + 0.969829i
\(387\) 0.892551 0.269996i 0.0453709 0.0137247i
\(388\) 7.41690 25.1302i 0.376536 1.27579i
\(389\) 15.7785i 0.800003i 0.916515 + 0.400001i \(0.130990\pi\)
−0.916515 + 0.400001i \(0.869010\pi\)
\(390\) 0 0
\(391\) 12.3926 0.626721
\(392\) −0.185652 + 4.91069i −0.00937684 + 0.248027i
\(393\) 9.74171 5.83382i 0.491404 0.294277i
\(394\) 3.82422 0.973239i 0.192661 0.0490310i
\(395\) 0 0
\(396\) −15.9304 + 0.107643i −0.800535 + 0.00540926i
\(397\) −16.1961 + 16.1961i −0.812858 + 0.812858i −0.985061 0.172204i \(-0.944911\pi\)
0.172204 + 0.985061i \(0.444911\pi\)
\(398\) 4.97607 + 2.95712i 0.249428 + 0.148227i
\(399\) −15.6825 3.93472i −0.785105 0.196982i
\(400\) 0 0
\(401\) 33.9532i 1.69554i 0.530362 + 0.847771i \(0.322056\pi\)
−0.530362 + 0.847771i \(0.677944\pi\)
\(402\) 21.6505 + 21.5047i 1.07983 + 1.07256i
\(403\) 6.61083 + 6.61083i 0.329309 + 0.329309i
\(404\) −10.2104 18.7610i −0.507987 0.933395i
\(405\) 0 0
\(406\) 4.48563 + 17.6257i 0.222618 + 0.874749i
\(407\) 13.1197 13.1197i 0.650321 0.650321i
\(408\) 7.46307 25.6049i 0.369477 1.26763i
\(409\) 11.9177i 0.589294i −0.955606 0.294647i \(-0.904798\pi\)
0.955606 0.294647i \(-0.0952021\pi\)
\(410\) 0 0
\(411\) −0.975525 + 3.88811i −0.0481191 + 0.191786i
\(412\) −28.0411 8.27602i −1.38148 0.407730i
\(413\) 20.7588 20.7588i 1.02148 1.02148i
\(414\) 2.31861 9.37526i 0.113953 0.460769i
\(415\) 0 0
\(416\) 10.7635 31.9676i 0.527726 1.56734i
\(417\) −1.53313 + 0.918113i −0.0750776 + 0.0449602i
\(418\) 6.05799 10.1940i 0.296306 0.498606i
\(419\) 0.494053i 0.0241361i 0.999927 + 0.0120680i \(0.00384147\pi\)
−0.999927 + 0.0120680i \(0.996159\pi\)
\(420\) 0 0
\(421\) 28.0844i 1.36875i −0.729129 0.684376i \(-0.760075\pi\)
0.729129 0.684376i \(-0.239925\pi\)
\(422\) −6.55810 3.89727i −0.319243 0.189716i
\(423\) −2.25116 7.44186i −0.109455 0.361835i
\(424\) −13.6138 + 12.6220i −0.661145 + 0.612976i
\(425\) 0 0
\(426\) −7.09948 + 0.0239855i −0.343971 + 0.00116210i
\(427\) 24.9060 24.9060i 1.20529 1.20529i
\(428\) 2.78053 9.42108i 0.134402 0.455385i
\(429\) −26.5978 6.67337i −1.28415 0.322193i
\(430\) 0 0
\(431\) 8.20673i 0.395304i −0.980272 0.197652i \(-0.936668\pi\)
0.980272 0.197652i \(-0.0633316\pi\)
\(432\) −17.9744 10.4366i −0.864793 0.502129i
\(433\) −8.09993 + 8.09993i −0.389258 + 0.389258i −0.874423 0.485165i \(-0.838760\pi\)
0.485165 + 0.874423i \(0.338760\pi\)
\(434\) 6.35179 1.61649i 0.304896 0.0775941i
\(435\) 0 0
\(436\) −2.56179 4.70713i −0.122687 0.225431i
\(437\) 5.08325 + 5.08325i 0.243165 + 0.243165i
\(438\) −5.64739 5.60936i −0.269843 0.268025i
\(439\) 5.21928i 0.249103i −0.992213 0.124551i \(-0.960251\pi\)
0.992213 0.124551i \(-0.0397491\pi\)
\(440\) 0 0
\(441\) 4.59492 + 2.46062i 0.218806 + 0.117173i
\(442\) 23.4532 39.4657i 1.11556 1.87719i
\(443\) −21.7308 + 21.7308i −1.03246 + 1.03246i −0.0330087 + 0.999455i \(0.510509\pi\)
−0.999455 + 0.0330087i \(0.989491\pi\)
\(444\) 23.4391 6.04949i 1.11237 0.287096i
\(445\) 0 0
\(446\) 1.30170 + 5.11487i 0.0616374 + 0.242196i
\(447\) 3.20603 + 5.35364i 0.151640 + 0.253219i
\(448\) −15.4109 17.9360i −0.728099 0.847394i
\(449\) 0.611967 0.0288805 0.0144403 0.999896i \(-0.495403\pi\)
0.0144403 + 0.999896i \(0.495403\pi\)
\(450\) 0 0
\(451\) 28.1592i 1.32596i
\(452\) −4.89698 + 16.5921i −0.230335 + 0.780428i
\(453\) −20.3556 + 12.1899i −0.956388 + 0.572732i
\(454\) 10.9077 2.77595i 0.511925 0.130282i
\(455\) 0 0
\(456\) 13.5640 7.44151i 0.635192 0.348481i
\(457\) −3.44344 3.44344i −0.161077 0.161077i 0.621967 0.783044i \(-0.286334\pi\)
−0.783044 + 0.621967i \(0.786334\pi\)
\(458\) 8.11480 13.6551i 0.379180 0.638061i
\(459\) −20.9381 19.0216i −0.977305 0.887853i
\(460\) 0 0
\(461\) −0.294401 −0.0137116 −0.00685580 0.999976i \(-0.502182\pi\)
−0.00685580 + 0.999976i \(0.502182\pi\)
\(462\) −13.5477 + 13.6396i −0.630298 + 0.634571i
\(463\) 9.79796 9.79796i 0.455350 0.455350i −0.441776 0.897126i \(-0.645651\pi\)
0.897126 + 0.441776i \(0.145651\pi\)
\(464\) −14.6142 9.44955i −0.678446 0.438684i
\(465\) 0 0
\(466\) 29.2118 7.43423i 1.35321 0.344384i
\(467\) 18.8562 + 18.8562i 0.872561 + 0.872561i 0.992751 0.120190i \(-0.0383504\pi\)
−0.120190 + 0.992751i \(0.538350\pi\)
\(468\) −25.4686 25.1268i −1.17729 1.16148i
\(469\) 36.8245 1.70040
\(470\) 0 0
\(471\) −4.33262 + 17.2684i −0.199637 + 0.795684i
\(472\) −1.06125 + 28.0712i −0.0488480 + 1.29208i
\(473\) 0.583575 + 0.583575i 0.0268328 + 0.0268328i
\(474\) 22.1108 0.0747012i 1.01558 0.00343114i
\(475\) 0 0
\(476\) −15.3850 28.2690i −0.705172 1.29571i
\(477\) 5.70133 + 18.8474i 0.261046 + 0.862964i
\(478\) −2.09400 + 3.52366i −0.0957774 + 0.161169i
\(479\) 18.9906 0.867702 0.433851 0.900985i \(-0.357154\pi\)
0.433851 + 0.900985i \(0.357154\pi\)
\(480\) 0 0
\(481\) 41.6685 1.89992
\(482\) −0.398735 + 0.670968i −0.0181619 + 0.0305617i
\(483\) −5.98769 9.99866i −0.272449 0.454955i
\(484\) 3.77666 + 6.93938i 0.171666 + 0.315426i
\(485\) 0 0
\(486\) −18.3077 + 12.2812i −0.830454 + 0.557088i
\(487\) −12.0580 12.0580i −0.546399 0.546399i 0.378998 0.925397i \(-0.376269\pi\)
−0.925397 + 0.378998i \(0.876269\pi\)
\(488\) −1.27327 + 33.6792i −0.0576381 + 1.52459i
\(489\) 22.5854 + 5.66666i 1.02135 + 0.256255i
\(490\) 0 0
\(491\) 18.1797 0.820439 0.410219 0.911987i \(-0.365452\pi\)
0.410219 + 0.911987i \(0.365452\pi\)
\(492\) −18.6618 + 31.6460i −0.841341 + 1.42671i
\(493\) −16.7485 16.7485i −0.754314 0.754314i
\(494\) 25.8084 6.56806i 1.16117 0.295511i
\(495\) 0 0
\(496\) −3.40534 + 5.26653i −0.152904 + 0.236474i
\(497\) −6.05801 + 6.05801i −0.271739 + 0.271739i
\(498\) 24.0565 + 23.8945i 1.07800 + 1.07074i
\(499\) 24.8457 1.11225 0.556124 0.831100i \(-0.312288\pi\)
0.556124 + 0.831100i \(0.312288\pi\)
\(500\) 0 0
\(501\) 8.59235 34.2462i 0.383878 1.53001i
\(502\) 4.54937 7.65541i 0.203048 0.341678i
\(503\) −17.0078 17.0078i −0.758340 0.758340i 0.217680 0.976020i \(-0.430151\pi\)
−0.976020 + 0.217680i \(0.930151\pi\)
\(504\) −24.2646 + 6.35007i −1.08083 + 0.282855i
\(505\) 0 0
\(506\) 8.28347 2.10809i 0.368245 0.0937161i
\(507\) −20.0717 33.5172i −0.891418 1.48855i
\(508\) 8.98743 30.4515i 0.398753 1.35107i
\(509\) 26.1925i 1.16096i −0.814274 0.580481i \(-0.802865\pi\)
0.814274 0.580481i \(-0.197135\pi\)
\(510\) 0 0
\(511\) −9.60542 −0.424919
\(512\) 22.4822 + 2.55962i 0.993581 + 0.113120i
\(513\) −0.786102 16.3908i −0.0347073 0.723673i
\(514\) 5.38562 + 21.1621i 0.237549 + 0.933420i
\(515\) 0 0
\(516\) 0.269086 + 1.04259i 0.0118458 + 0.0458973i
\(517\) 4.86569 4.86569i 0.213993 0.213993i
\(518\) 14.9234 25.1123i 0.655699 1.10337i
\(519\) −10.7839 + 42.9808i −0.473359 + 1.88665i
\(520\) 0 0
\(521\) 21.5789i 0.945388i 0.881227 + 0.472694i \(0.156718\pi\)
−0.881227 + 0.472694i \(0.843282\pi\)
\(522\) −15.8042 + 9.53701i −0.691730 + 0.417424i
\(523\) −1.75051 1.75051i −0.0765445 0.0765445i 0.667798 0.744343i \(-0.267237\pi\)
−0.744343 + 0.667798i \(0.767237\pi\)
\(524\) 6.26767 + 11.5165i 0.273804 + 0.503099i
\(525\) 0 0
\(526\) −40.8878 + 10.4057i −1.78279 + 0.453709i
\(527\) −6.03567 + 6.03567i −0.262918 + 0.262918i
\(528\) 0.632844 18.3844i 0.0275410 0.800079i
\(529\) 17.8182i 0.774707i
\(530\) 0 0
\(531\) 26.2662 + 14.0658i 1.13985 + 0.610403i
\(532\) 5.28482 17.9062i 0.229126 0.776333i
\(533\) −44.7170 + 44.7170i −1.93691 + 1.93691i
\(534\) 0.0234403 + 6.93811i 0.00101436 + 0.300241i
\(535\) 0 0
\(536\) −25.8393 + 23.9567i −1.11609 + 1.03477i
\(537\) 5.17874 + 8.64781i 0.223479 + 0.373181i
\(538\) 25.0583 + 14.8913i 1.08034 + 0.642011i
\(539\) 4.61311i 0.198701i
\(540\) 0 0
\(541\) 22.6515i 0.973864i −0.873440 0.486932i \(-0.838116\pi\)
0.873440 0.486932i \(-0.161884\pi\)
\(542\) 17.5512 29.5341i 0.753889 1.26860i
\(543\) −3.18885 5.32496i −0.136847 0.228516i
\(544\) 29.1863 + 9.82709i 1.25135 + 0.421333i
\(545\) 0 0
\(546\) −43.1737 + 0.145862i −1.84766 + 0.00624232i
\(547\) 24.2626 24.2626i 1.03739 1.03739i 0.0381200 0.999273i \(-0.487863\pi\)
0.999273 0.0381200i \(-0.0121369\pi\)
\(548\) −4.43944 1.31025i −0.189644 0.0559712i
\(549\) 31.5136 + 16.8758i 1.34497 + 0.720243i
\(550\) 0 0
\(551\) 13.7399i 0.585341i
\(552\) 10.7063 + 3.12055i 0.455689 + 0.132820i
\(553\) 18.8673 18.8673i 0.802318 0.802318i
\(554\) −6.23937 24.5168i −0.265085 1.04162i
\(555\) 0 0
\(556\) −0.986391 1.81243i −0.0418323 0.0768643i
\(557\) −14.5141 14.5141i −0.614984 0.614984i 0.329257 0.944240i \(-0.393202\pi\)
−0.944240 + 0.329257i \(0.893202\pi\)
\(558\) 3.43686 + 5.69537i 0.145494 + 0.241104i
\(559\) 1.85344i 0.0783923i
\(560\) 0 0
\(561\) 6.09277 24.2837i 0.257237 1.02526i
\(562\) 10.7197 + 6.37040i 0.452185 + 0.268719i
\(563\) 4.09672 4.09672i 0.172656 0.172656i −0.615489 0.788145i \(-0.711042\pi\)
0.788145 + 0.615489i \(0.211042\pi\)
\(564\) 8.69281 2.24356i 0.366033 0.0944710i
\(565\) 0 0
\(566\) −26.1519 + 6.65549i −1.09925 + 0.279751i
\(567\) −5.23053 + 26.0840i −0.219662 + 1.09542i
\(568\) 0.309703 8.19196i 0.0129948 0.343727i
\(569\) −27.6005 −1.15707 −0.578536 0.815657i \(-0.696376\pi\)
−0.578536 + 0.815657i \(0.696376\pi\)
\(570\) 0 0
\(571\) 32.2742i 1.35063i 0.737528 + 0.675317i \(0.235993\pi\)
−0.737528 + 0.675317i \(0.764007\pi\)
\(572\) 8.96317 30.3693i 0.374769 1.26980i
\(573\) 10.3256 + 17.2423i 0.431357 + 0.720309i
\(574\) 10.9343 + 42.9648i 0.456388 + 1.79332i
\(575\) 0 0
\(576\) 12.8951 20.2415i 0.537294 0.843395i
\(577\) 5.10163 + 5.10163i 0.212384 + 0.212384i 0.805279 0.592896i \(-0.202015\pi\)
−0.592896 + 0.805279i \(0.702015\pi\)
\(578\) 15.3645 + 9.13063i 0.639078 + 0.379784i
\(579\) −5.86010 + 23.3564i −0.243537 + 0.970657i
\(580\) 0 0
\(581\) 40.9168 1.69751
\(582\) 22.6147 22.7680i 0.937409 0.943764i
\(583\) −12.3230 + 12.3230i −0.510365 + 0.510365i
\(584\) 6.74001 6.24895i 0.278904 0.258584i
\(585\) 0 0
\(586\) −3.37538 13.2631i −0.139436 0.547894i
\(587\) 3.37004 + 3.37004i 0.139097 + 0.139097i 0.773227 0.634130i \(-0.218642\pi\)
−0.634130 + 0.773227i \(0.718642\pi\)
\(588\) −3.05723 + 5.18433i −0.126078 + 0.213798i
\(589\) −4.95148 −0.204022
\(590\) 0 0
\(591\) 4.68769 + 1.17614i 0.192826 + 0.0483799i
\(592\) 5.86557 + 27.3297i 0.241074 + 1.12324i
\(593\) −16.9693 16.9693i −0.696844 0.696844i 0.266884 0.963729i \(-0.414006\pi\)
−0.963729 + 0.266884i \(0.914006\pi\)
\(594\) −17.2312 9.15270i −0.707005 0.375540i
\(595\) 0 0
\(596\) −6.32897 + 3.44445i −0.259245 + 0.141090i
\(597\) 3.64229 + 6.08214i 0.149069 + 0.248926i
\(598\) 16.5019 + 9.80656i 0.674813 + 0.401020i
\(599\) −1.04438 −0.0426723 −0.0213361 0.999772i \(-0.506792\pi\)
−0.0213361 + 0.999772i \(0.506792\pi\)
\(600\) 0 0
\(601\) 0.244816 0.00998624 0.00499312 0.999988i \(-0.498411\pi\)
0.00499312 + 0.999988i \(0.498411\pi\)
\(602\) 1.11701 + 0.663806i 0.0455260 + 0.0270547i
\(603\) 10.8212 + 35.7728i 0.440675 + 1.45678i
\(604\) −13.0965 24.0639i −0.532887 0.979148i
\(605\) 0 0
\(606\) −0.0883806 26.1598i −0.00359021 1.06267i
\(607\) −3.95241 3.95241i −0.160423 0.160423i 0.622331 0.782754i \(-0.286186\pi\)
−0.782754 + 0.622331i \(0.786186\pi\)
\(608\) 7.94086 + 16.0027i 0.322045 + 0.648995i
\(609\) −5.42079 + 21.6054i −0.219661 + 0.875496i
\(610\) 0 0
\(611\) 15.4535 0.625183
\(612\) 22.9407 23.2528i 0.927321 0.939938i
\(613\) −21.0245 21.0245i −0.849172 0.849172i 0.140858 0.990030i \(-0.455014\pi\)
−0.990030 + 0.140858i \(0.955014\pi\)
\(614\) 2.62297 + 10.3066i 0.105854 + 0.415941i
\(615\) 0 0
\(616\) −15.0925 16.2785i −0.608094 0.655879i
\(617\) 18.7366 18.7366i 0.754307 0.754307i −0.220973 0.975280i \(-0.570923\pi\)
0.975280 + 0.220973i \(0.0709231\pi\)
\(618\) −25.4053 25.2342i −1.02195 1.01507i
\(619\) 8.66233 0.348169 0.174084 0.984731i \(-0.444303\pi\)
0.174084 + 0.984731i \(0.444303\pi\)
\(620\) 0 0
\(621\) 7.95356 8.75489i 0.319165 0.351322i
\(622\) 38.1316 + 22.6604i 1.52894 + 0.908600i
\(623\) 5.92031 + 5.92031i 0.237192 + 0.237192i
\(624\) 30.1996 28.1897i 1.20895 1.12849i
\(625\) 0 0
\(626\) −2.67508 10.5114i −0.106918 0.420119i
\(627\) 12.4599 7.46163i 0.497602 0.297989i
\(628\) −19.7170 5.81925i −0.786794 0.232214i
\(629\) 38.0432i 1.51688i
\(630\) 0 0
\(631\) −1.38183 −0.0550097 −0.0275049 0.999622i \(-0.508756\pi\)
−0.0275049 + 0.999622i \(0.508756\pi\)
\(632\) −0.964549 + 25.5133i −0.0383677 + 1.01487i
\(633\) −4.80028 8.01583i −0.190794 0.318601i
\(634\) −24.9086 + 6.33907i −0.989246 + 0.251757i
\(635\) 0 0
\(636\) −22.0156 + 5.68210i −0.872977 + 0.225310i
\(637\) −7.32566 + 7.32566i −0.290253 + 0.290253i
\(638\) −14.0441 8.34598i −0.556012 0.330421i
\(639\) −7.66521 4.10479i −0.303231 0.162383i
\(640\) 0 0
\(641\) 32.1844i 1.27121i −0.772015 0.635604i \(-0.780751\pi\)
0.772015 0.635604i \(-0.219249\pi\)
\(642\) 8.47803 8.53551i 0.334601 0.336870i
\(643\) 13.8136 + 13.8136i 0.544755 + 0.544755i 0.924919 0.380164i \(-0.124132\pi\)
−0.380164 + 0.924919i \(0.624132\pi\)
\(644\) 11.8202 6.43298i 0.465782 0.253495i
\(645\) 0 0
\(646\) 5.99662 + 23.5630i 0.235934 + 0.927072i
\(647\) 15.5057 15.5057i 0.609594 0.609594i −0.333246 0.942840i \(-0.608144\pi\)
0.942840 + 0.333246i \(0.108144\pi\)
\(648\) −13.2991 21.7056i −0.522439 0.852677i
\(649\) 26.3701i 1.03512i
\(650\) 0 0
\(651\) 7.78597 + 1.95350i 0.305156 + 0.0765635i
\(652\) −7.61103 + 25.7880i −0.298071 + 1.00993i
\(653\) 17.9422 17.9422i 0.702132 0.702132i −0.262736 0.964868i \(-0.584625\pi\)
0.964868 + 0.262736i \(0.0846248\pi\)
\(654\) −0.0221746 6.56348i −0.000867097 0.256652i
\(655\) 0 0
\(656\) −35.6238 23.0344i −1.39088 0.899343i
\(657\) −2.82265 9.33110i −0.110122 0.364041i
\(658\) 5.53463 9.31335i 0.215763 0.363072i
\(659\) 39.4445i 1.53654i 0.640127 + 0.768269i \(0.278882\pi\)
−0.640127 + 0.768269i \(0.721118\pi\)
\(660\) 0 0
\(661\) 7.69555i 0.299322i 0.988737 + 0.149661i \(0.0478183\pi\)
−0.988737 + 0.149661i \(0.952182\pi\)
\(662\) −12.9397 7.68964i −0.502915 0.298866i
\(663\) 48.2381 28.8874i 1.87341 1.12189i
\(664\) −28.7108 + 26.6190i −1.11420 + 1.03302i
\(665\) 0 0
\(666\) 28.7805 + 7.11775i 1.11522 + 0.275807i
\(667\) 7.00310 7.00310i 0.271161 0.271161i
\(668\) 39.1023 + 11.5406i 1.51291 + 0.446520i
\(669\) −1.57308 + 6.26976i −0.0608188 + 0.242403i
\(670\) 0 0
\(671\) 31.6383i 1.22138i
\(672\) −6.17313 28.2964i −0.238134 1.09156i
\(673\) 2.37397 2.37397i 0.0915096 0.0915096i −0.659870 0.751380i \(-0.729389\pi\)
0.751380 + 0.659870i \(0.229389\pi\)
\(674\) 1.12724 0.286875i 0.0434196 0.0110500i
\(675\) 0 0
\(676\) 39.6233 21.5644i 1.52397 0.829402i
\(677\) 6.61424 + 6.61424i 0.254206 + 0.254206i 0.822693 0.568487i \(-0.192471\pi\)
−0.568487 + 0.822693i \(0.692471\pi\)
\(678\) −14.9313 + 15.0325i −0.573431 + 0.577319i
\(679\) 38.7252i 1.48614i
\(680\) 0 0
\(681\) 13.3706 + 3.35468i 0.512363 + 0.128552i
\(682\) −3.00765 + 5.06110i −0.115169 + 0.193799i
\(683\) −14.3187 + 14.3187i −0.547889 + 0.547889i −0.925830 0.377941i \(-0.876632\pi\)
0.377941 + 0.925830i \(0.376632\pi\)
\(684\) 18.9478 0.128032i 0.724488 0.00489541i
\(685\) 0 0
\(686\) −5.42568 21.3195i −0.207154 0.813983i
\(687\) 16.6903 9.99500i 0.636776 0.381333i
\(688\) −1.21564 + 0.260905i −0.0463460 + 0.00994691i
\(689\) −39.1380 −1.49104
\(690\) 0 0
\(691\) 36.4559i 1.38685i −0.720529 0.693425i \(-0.756101\pi\)
0.720529 0.693425i \(-0.243899\pi\)
\(692\) −49.0754 14.4841i −1.86557 0.550602i
\(693\) −22.5365 + 6.81728i −0.856091 + 0.258967i
\(694\) 3.70098 0.941876i 0.140487 0.0357531i
\(695\) 0 0
\(696\) −10.2520 18.6868i −0.388602 0.708323i
\(697\) −40.8265 40.8265i −1.54641 1.54641i
\(698\) 11.8170 19.8849i 0.447279 0.752655i
\(699\) 35.8076 + 8.98411i 1.35437 + 0.339810i
\(700\) 0 0
\(701\) −48.0342 −1.81423 −0.907113 0.420887i \(-0.861719\pi\)
−0.907113 + 0.420887i \(0.861719\pi\)
\(702\) −12.8287 41.8979i −0.484189 1.58133i
\(703\) −15.6047 + 15.6047i −0.588544 + 0.588544i
\(704\) 21.1804 + 1.60378i 0.798268 + 0.0604446i
\(705\) 0 0
\(706\) −0.633175 + 0.161139i −0.0238299 + 0.00606455i
\(707\) −22.3222 22.3222i −0.839515 0.839515i
\(708\) −17.4762 + 29.6354i −0.656796 + 1.11377i
\(709\) −6.97929 −0.262113 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(710\) 0 0
\(711\) 23.8728 + 12.7841i 0.895299 + 0.479441i
\(712\) −8.00576 0.302663i −0.300029 0.0113428i
\(713\) −2.52371 2.52371i −0.0945138 0.0945138i
\(714\) −0.133172 39.4175i −0.00498382 1.47516i
\(715\) 0 0
\(716\) −10.2233 + 5.56387i −0.382062 + 0.207932i
\(717\) −4.30690 + 2.57918i −0.160844 + 0.0963214i
\(718\) 11.6263 19.5640i 0.433888 0.730121i
\(719\) 2.63485 0.0982634 0.0491317 0.998792i \(-0.484355\pi\)
0.0491317 + 0.998792i \(0.484355\pi\)
\(720\) 0 0
\(721\) −43.2108 −1.60926
\(722\) 6.52163 10.9742i 0.242710 0.408418i
\(723\) −0.820109 + 0.491122i −0.0305002 + 0.0182650i
\(724\) 6.29506 3.42600i 0.233954 0.127326i
\(725\) 0 0
\(726\) 0.0326905 + 9.67606i 0.00121326 + 0.359112i
\(727\) 5.55176 + 5.55176i 0.205903 + 0.205903i 0.802524 0.596620i \(-0.203490\pi\)
−0.596620 + 0.802524i \(0.703490\pi\)
\(728\) 1.88338 49.8174i 0.0698028 1.84636i
\(729\) −26.8761 + 2.58389i −0.995410 + 0.0956996i
\(730\) 0 0
\(731\) −1.69219 −0.0625879
\(732\) −20.9676 + 35.5560i −0.774984 + 1.31419i
\(733\) −10.2051 10.2051i −0.376934 0.376934i 0.493061 0.869995i \(-0.335878\pi\)
−0.869995 + 0.493061i \(0.835878\pi\)
\(734\) −33.5814 + 8.54626i −1.23951 + 0.315448i
\(735\) 0 0
\(736\) −4.10903 + 12.2038i −0.151461 + 0.449837i
\(737\) −23.3893 + 23.3893i −0.861554 + 0.861554i
\(738\) −38.5246 + 23.2476i −1.41811 + 0.855757i
\(739\) 33.7165 1.24028 0.620141 0.784490i \(-0.287075\pi\)
0.620141 + 0.784490i \(0.287075\pi\)
\(740\) 0 0
\(741\) 31.6356 + 7.93737i 1.16216 + 0.291586i
\(742\) −14.0172 + 23.5872i −0.514586 + 0.865914i
\(743\) −14.9523 14.9523i −0.548546 0.548546i 0.377474 0.926020i \(-0.376793\pi\)
−0.926020 + 0.377474i \(0.876793\pi\)
\(744\) −6.73420 + 3.69454i −0.246888 + 0.135448i
\(745\) 0 0
\(746\) −7.83798 + 1.99472i −0.286969 + 0.0730317i
\(747\) 12.0238 + 39.7482i 0.439928 + 1.45431i
\(748\) 27.7271 + 8.18335i 1.01380 + 0.299213i
\(749\) 14.5177i 0.530466i
\(750\) 0 0
\(751\) 29.4194 1.07353 0.536764 0.843733i \(-0.319647\pi\)
0.536764 + 0.843733i \(0.319647\pi\)
\(752\) 2.17536 + 10.1357i 0.0793271 + 0.369611i
\(753\) 9.35705 5.60346i 0.340990 0.204202i
\(754\) −9.04869 35.5557i −0.329534 1.29486i
\(755\) 0 0
\(756\) −29.8451 7.27412i −1.08546 0.264557i
\(757\) −9.10219 + 9.10219i −0.330825 + 0.330825i −0.852900 0.522075i \(-0.825158\pi\)
0.522075 + 0.852900i \(0.325158\pi\)
\(758\) −6.77246 + 11.3963i −0.245987 + 0.413932i
\(759\) 10.1538 + 2.54758i 0.368560 + 0.0924715i
\(760\) 0 0
\(761\) 19.4230i 0.704083i 0.935984 + 0.352042i \(0.114512\pi\)
−0.935984 + 0.352042i \(0.885488\pi\)
\(762\) 27.4033 27.5891i 0.992718 0.999449i
\(763\) −5.60064 5.60064i −0.202757 0.202757i
\(764\) −20.3836 + 11.0935i −0.737451 + 0.401347i
\(765\) 0 0
\(766\) −3.76041 + 0.957001i −0.135869 + 0.0345778i
\(767\) −41.8760 + 41.8760i −1.51206 + 1.51206i
\(768\) 22.7403 + 15.8392i 0.820568 + 0.571548i
\(769\) 1.26203i 0.0455101i −0.999741 0.0227551i \(-0.992756\pi\)
0.999741 0.0227551i \(-0.00724379\pi\)
\(770\) 0 0
\(771\) −6.50841 + 25.9403i −0.234395 + 0.934217i
\(772\) −26.6683 7.87085i −0.959812 0.283278i
\(773\) −13.6782 + 13.6782i −0.491971 + 0.491971i −0.908927 0.416956i \(-0.863097\pi\)
0.416956 + 0.908927i \(0.363097\pi\)
\(774\) −0.316602 + 1.28018i −0.0113800 + 0.0460150i
\(775\) 0 0
\(776\) 25.1933 + 27.1730i 0.904386 + 0.975455i
\(777\) 30.6942 18.3812i 1.10115 0.659423i
\(778\) −19.1826 11.3996i −0.687729 0.408696i
\(779\) 33.4928i 1.20000i
\(780\) 0 0
\(781\) 7.69555i 0.275368i
\(782\) −8.95337 + 15.0662i −0.320172 + 0.538766i
\(783\) −22.5813 + 1.08300i −0.806991 + 0.0387032i
\(784\) −5.83600 3.77356i −0.208428 0.134770i
\(785\) 0 0
\(786\) 0.0542525 + 16.0582i 0.00193512 + 0.572777i
\(787\) 1.64945 1.64945i 0.0587966 0.0587966i −0.677097 0.735894i \(-0.736762\pi\)
0.735894 + 0.677097i \(0.236762\pi\)
\(788\) −1.57970 + 5.35240i −0.0562745 + 0.190671i
\(789\) −50.1199 12.5750i −1.78431 0.447683i
\(790\) 0 0
\(791\) 25.5682i 0.909100i
\(792\) 11.3785 19.4451i 0.404318 0.690951i
\(793\) −50.2420 + 50.2420i −1.78414 + 1.78414i
\(794\) −7.98895 31.3915i −0.283517 1.11404i
\(795\) 0 0
\(796\) −7.19019 + 3.91316i −0.254850 + 0.138698i
\(797\) 15.2015 + 15.2015i 0.538466 + 0.538466i 0.923078 0.384612i \(-0.125665\pi\)
−0.384612 + 0.923078i \(0.625665\pi\)
\(798\) 16.1138 16.2231i 0.570423 0.574290i
\(799\) 14.1090i 0.499141i
\(800\) 0 0
\(801\) −4.01149 + 7.49098i −0.141739 + 0.264681i
\(802\) −41.2783 24.5304i −1.45759 0.866199i
\(803\) 6.10093 6.10093i 0.215297 0.215297i
\(804\) −41.7861 + 10.7847i −1.47368 + 0.380349i
\(805\) 0 0
\(806\) −12.8132 + 3.26089i −0.451327 + 0.114860i
\(807\) 18.3417 + 30.6282i 0.645657 + 1.07816i
\(808\) 30.1853 + 1.14118i 1.06192 + 0.0401465i
\(809\) 44.9347 1.57982 0.789910 0.613223i \(-0.210127\pi\)
0.789910 + 0.613223i \(0.210127\pi\)
\(810\) 0 0
\(811\) 23.8947i 0.839055i −0.907743 0.419528i \(-0.862196\pi\)
0.907743 0.419528i \(-0.137804\pi\)
\(812\) −24.6691 7.28080i −0.865714 0.255506i
\(813\) 36.0990 21.6178i 1.26605 0.758171i
\(814\) 6.47149 + 25.4289i 0.226826 + 0.891282i
\(815\) 0 0
\(816\) 25.7371 + 27.5721i 0.900979 + 0.965218i
\(817\) −0.694110 0.694110i −0.0242838 0.0242838i
\(818\) 14.4889 + 8.61029i 0.506592 + 0.301052i
\(819\) −46.6141 24.9623i −1.62883 0.872253i
\(820\) 0 0
\(821\) 43.1420 1.50567 0.752833 0.658212i \(-0.228687\pi\)
0.752833 + 0.658212i \(0.228687\pi\)
\(822\) −4.02215 3.99506i −0.140288 0.139344i
\(823\) −29.4978 + 29.4978i −1.02823 + 1.02823i −0.0286405 + 0.999590i \(0.509118\pi\)
−0.999590 + 0.0286405i \(0.990882\pi\)
\(824\) 30.3205 28.1115i 1.05627 0.979309i
\(825\) 0 0
\(826\) 10.2396 + 40.2351i 0.356281 + 1.39996i
\(827\) −32.6568 32.6568i −1.13559 1.13559i −0.989232 0.146357i \(-0.953245\pi\)
−0.146357 0.989232i \(-0.546755\pi\)
\(828\) 9.72275 + 9.59224i 0.337889 + 0.333353i
\(829\) −19.3767 −0.672980 −0.336490 0.941687i \(-0.609240\pi\)
−0.336490 + 0.941687i \(0.609240\pi\)
\(830\) 0 0
\(831\) 7.54014 30.0524i 0.261565 1.04251i
\(832\) 31.0879 + 36.1815i 1.07778 + 1.25437i
\(833\) −6.68831 6.68831i −0.231736 0.231736i
\(834\) −0.00853813 2.52720i −0.000295651 0.0875099i
\(835\) 0 0
\(836\) 8.01654 + 14.7299i 0.277258 + 0.509444i
\(837\) 0.390281 + 8.13766i 0.0134901 + 0.281279i
\(838\) −0.600640 0.356942i −0.0207488 0.0123304i
\(839\) 38.4795 1.32846 0.664229 0.747529i \(-0.268760\pi\)
0.664229 + 0.747529i \(0.268760\pi\)
\(840\) 0 0
\(841\) 10.0707 0.347267
\(842\) 34.1434 + 20.2904i 1.17666 + 0.699252i
\(843\) 7.84643 + 13.1025i 0.270245 + 0.451274i
\(844\) 9.47616 5.15726i 0.326183 0.177520i
\(845\) 0 0
\(846\) 10.6738 + 2.63975i 0.366972 + 0.0907564i
\(847\) 8.25662 + 8.25662i 0.283701 + 0.283701i
\(848\) −5.50936 25.6699i −0.189192 0.881510i
\(849\) −32.0568 8.04302i −1.10019 0.276036i
\(850\) 0 0
\(851\) −15.9071 −0.545289
\(852\) 5.10005 8.64845i 0.174725 0.296291i
\(853\) 20.0303 + 20.0303i 0.685823 + 0.685823i 0.961306 0.275483i \(-0.0888378\pi\)
−0.275483 + 0.961306i \(0.588838\pi\)
\(854\) 12.2852 + 48.2733i 0.420392 + 1.65188i
\(855\) 0 0
\(856\) 9.44472 + 10.1869i 0.322814 + 0.348181i
\(857\) 24.3417 24.3417i 0.831496 0.831496i −0.156226 0.987721i \(-0.549933\pi\)
0.987721 + 0.156226i \(0.0499327\pi\)
\(858\) 27.3294 27.5147i 0.933009 0.939335i
\(859\) −43.4501 −1.48250 −0.741249 0.671230i \(-0.765766\pi\)
−0.741249 + 0.671230i \(0.765766\pi\)
\(860\) 0 0
\(861\) −13.2138 + 52.6659i −0.450326 + 1.79485i
\(862\) 9.97726 + 5.92917i 0.339827 + 0.201948i
\(863\) 16.6773 + 16.6773i 0.567701 + 0.567701i 0.931484 0.363783i \(-0.118515\pi\)
−0.363783 + 0.931484i \(0.618515\pi\)
\(864\) 25.6742 14.3120i 0.873455 0.486905i
\(865\) 0 0
\(866\) −3.99541 15.6994i −0.135769 0.533488i
\(867\) 11.2462 + 18.7797i 0.381941 + 0.637791i
\(868\) −2.62379 + 8.89002i −0.0890572 + 0.301747i
\(869\) 23.9673i 0.813034i
\(870\) 0 0
\(871\) −74.2847 −2.51704
\(872\) 7.57348 + 0.286321i 0.256470 + 0.00969604i
\(873\) 37.6193 11.3798i 1.27322 0.385148i
\(874\) −9.85245 + 2.50738i −0.333264 + 0.0848136i
\(875\) 0 0
\(876\) 10.8996 2.81313i 0.368264 0.0950469i
\(877\) 0.209733 0.209733i 0.00708216 0.00708216i −0.703557 0.710639i \(-0.748406\pi\)
0.710639 + 0.703557i \(0.248406\pi\)
\(878\) 6.34529 + 3.77081i 0.214143 + 0.127259i
\(879\) 4.07907 16.2578i 0.137584 0.548362i
\(880\) 0 0
\(881\) 7.66064i 0.258093i 0.991639 + 0.129047i \(0.0411917\pi\)
−0.991639 + 0.129047i \(0.958808\pi\)
\(882\) −6.31121 + 3.80849i −0.212509 + 0.128239i
\(883\) −7.44439 7.44439i −0.250524 0.250524i 0.570662 0.821185i \(-0.306687\pi\)
−0.821185 + 0.570662i \(0.806687\pi\)
\(884\) 31.0357 + 57.0261i 1.04384 + 1.91800i
\(885\) 0 0
\(886\) −10.7191 42.1191i −0.360114 1.41502i
\(887\) −15.8208 + 15.8208i −0.531211 + 0.531211i −0.920933 0.389722i \(-0.872571\pi\)
0.389722 + 0.920933i \(0.372571\pi\)
\(888\) −9.57959 + 32.8665i −0.321470 + 1.10293i
\(889\) 46.9253i 1.57382i
\(890\) 0 0
\(891\) −13.2452 19.8896i −0.443730 0.666325i
\(892\) −7.15881 2.11284i −0.239695 0.0707433i
\(893\) −5.78730 + 5.78730i −0.193665 + 0.193665i
\(894\) −8.82493 + 0.0298149i −0.295150 + 0.000997160i
\(895\) 0 0
\(896\) 32.9395 5.77740i 1.10043 0.193009i
\(897\) 12.0787 + 20.1699i 0.403298 + 0.673454i
\(898\) −0.442132 + 0.743993i −0.0147541 + 0.0248274i
\(899\) 6.82156i 0.227512i
\(900\) 0 0
\(901\) 35.7329i 1.19043i
\(902\) −34.2343 20.3444i −1.13988 0.677393i
\(903\) 0.817610 + 1.36530i 0.0272084 + 0.0454344i
\(904\) −16.6338 17.9409i −0.553231 0.596705i
\(905\) 0 0
\(906\) −0.113362 33.5540i −0.00376620 1.11476i
\(907\) −33.9035 + 33.9035i −1.12575 + 1.12575i −0.134886 + 0.990861i \(0.543067\pi\)
−0.990861 + 0.134886i \(0.956933\pi\)
\(908\) −4.50575 + 15.2665i −0.149529 + 0.506638i
\(909\) 15.1251 28.2444i 0.501669 0.936806i
\(910\) 0 0
\(911\) 8.75281i 0.289994i 0.989432 + 0.144997i \(0.0463172\pi\)
−0.989432 + 0.144997i \(0.953683\pi\)
\(912\) −0.752710 + 21.8666i −0.0249247 + 0.724076i
\(913\) −25.9885 + 25.9885i −0.860094 + 0.860094i
\(914\) 6.67413 1.69852i 0.220761 0.0561822i
\(915\) 0 0
\(916\) 10.7383 + 19.7310i 0.354804 + 0.651930i
\(917\) 13.7025 + 13.7025i 0.452497 + 0.452497i
\(918\) 38.2526 11.7126i 1.26253 0.386573i
\(919\) 27.0428i 0.892058i −0.895018 0.446029i \(-0.852838\pi\)
0.895018 0.446029i \(-0.147162\pi\)
\(920\) 0 0
\(921\) −3.16980 + 12.6338i −0.104449 + 0.416297i
\(922\) 0.212698 0.357915i 0.00700483 0.0117873i
\(923\) 12.2206 12.2206i 0.402246 0.402246i
\(924\) −6.79429 26.3248i −0.223516 0.866024i
\(925\) 0 0
\(926\) 4.83298 + 18.9906i 0.158822 + 0.624069i
\(927\) −12.6979 41.9768i −0.417055 1.37870i
\(928\) 22.0466 10.9400i 0.723716 0.359122i
\(929\) 41.2267 1.35261 0.676303 0.736624i \(-0.263581\pi\)
0.676303 + 0.736624i \(0.263581\pi\)
\(930\) 0 0
\(931\) 5.48688i 0.179825i
\(932\) −12.0668 + 40.8851i −0.395261 + 1.33924i
\(933\) 27.9109 + 46.6075i 0.913761 + 1.52586i
\(934\) −36.5474 + 9.30109i −1.19587 + 0.304341i
\(935\) 0 0
\(936\) 48.9481 12.8098i 1.59992 0.418700i
\(937\) 37.7773 + 37.7773i 1.23413 + 1.23413i 0.962363 + 0.271766i \(0.0876078\pi\)
0.271766 + 0.962363i \(0.412392\pi\)
\(938\) −26.6048 + 44.7690i −0.868679 + 1.46176i
\(939\) 3.23277 12.8847i 0.105498 0.420478i
\(940\) 0 0
\(941\) −53.4869 −1.74362 −0.871812 0.489841i \(-0.837055\pi\)
−0.871812 + 0.489841i \(0.837055\pi\)
\(942\) −17.8636 17.7433i −0.582029 0.578109i
\(943\) 17.0709 17.0709i 0.555905 0.555905i
\(944\) −33.3606 21.5710i −1.08579 0.702076i
\(945\) 0 0
\(946\) −1.13110 + 0.287857i −0.0367751 + 0.00935903i
\(947\) 23.8152 + 23.8152i 0.773891 + 0.773891i 0.978784 0.204893i \(-0.0656846\pi\)
−0.204893 + 0.978784i \(0.565685\pi\)
\(948\) −15.8838 + 26.9350i −0.515880 + 0.874809i
\(949\) 19.3767 0.628993
\(950\) 0 0
\(951\) −30.5327 7.66064i −0.990091 0.248413i
\(952\) 45.4832 + 1.71952i 1.47412 + 0.0557301i
\(953\) 31.8333 + 31.8333i 1.03118 + 1.03118i 0.999498 + 0.0316832i \(0.0100868\pi\)
0.0316832 + 0.999498i \(0.489913\pi\)
\(954\) −27.0327 6.68549i −0.875215 0.216451i
\(955\) 0 0
\(956\) −2.77099 5.09153i −0.0896203 0.164672i
\(957\) −10.2798 17.1658i −0.332297 0.554893i
\(958\) −13.7203 + 23.0876i −0.443282 + 0.745928i
\(959\) −6.84111 −0.220911
\(960\) 0 0
\(961\) −28.5417 −0.920700
\(962\) −30.1045 + 50.6581i −0.970609 + 1.63328i
\(963\) 14.1031 4.26618i 0.454466 0.137476i
\(964\) −0.527646 0.969517i −0.0169943 0.0312260i
\(965\) 0 0
\(966\) 16.4817 0.0556834i 0.530292 0.00179158i
\(967\) −21.7712 21.7712i −0.700115 0.700115i 0.264320 0.964435i \(-0.414852\pi\)
−0.964435 + 0.264320i \(0.914852\pi\)
\(968\) −11.1650 0.422102i −0.358858 0.0135669i
\(969\) −7.24679 + 28.8833i −0.232801 + 0.927864i
\(970\) 0 0
\(971\) −2.19315 −0.0703814 −0.0351907 0.999381i \(-0.511204\pi\)
−0.0351907 + 0.999381i \(0.511204\pi\)
\(972\) −1.70391 31.1303i −0.0546528 0.998505i
\(973\) −2.15647 2.15647i −0.0691333 0.0691333i
\(974\) 23.3710 5.94777i 0.748855 0.190579i
\(975\) 0 0
\(976\) −40.0253 25.8804i −1.28118 0.828412i
\(977\) 2.26226 2.26226i 0.0723760 0.0723760i −0.669992 0.742368i \(-0.733703\pi\)
0.742368 + 0.669992i \(0.233703\pi\)
\(978\) −23.2066 + 23.3639i −0.742065 + 0.747096i
\(979\) −7.52063 −0.240361
\(980\) 0 0
\(981\) 3.79488 7.08649i 0.121161 0.226254i
\(982\) −13.1344 + 22.1018i −0.419136 + 0.705298i
\(983\) 39.9359 + 39.9359i 1.27376 + 1.27376i 0.944101 + 0.329656i \(0.106933\pi\)
0.329656 + 0.944101i \(0.393067\pi\)
\(984\) −24.9906 45.5515i −0.796671 1.45213i
\(985\) 0 0
\(986\) 32.4622 8.26144i 1.03381 0.263098i
\(987\) 11.3835 6.81701i 0.362341 0.216988i
\(988\) −10.6609 + 36.1216i −0.339168 + 1.14918i
\(989\) 0.707560i 0.0224991i
\(990\) 0 0
\(991\) 26.1776 0.831560 0.415780 0.909465i \(-0.363509\pi\)
0.415780 + 0.909465i \(0.363509\pi\)
\(992\) −3.94245 7.94496i −0.125173 0.252253i
\(993\) −9.47134 15.8159i −0.300564 0.501902i
\(994\) −2.98820 11.7417i −0.0947799 0.372426i
\(995\) 0 0
\(996\) −46.4298 + 11.9833i −1.47118 + 0.379704i
\(997\) 28.1978 28.1978i 0.893034 0.893034i −0.101774 0.994808i \(-0.532452\pi\)
0.994808 + 0.101774i \(0.0324518\pi\)
\(998\) −17.9505 + 30.2060i −0.568212 + 0.956153i
\(999\) 26.8761 + 24.4161i 0.850321 + 0.772492i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 600.2.w.k.557.11 yes 64
3.2 odd 2 inner 600.2.w.k.557.21 yes 64
5.2 odd 4 inner 600.2.w.k.293.5 64
5.3 odd 4 inner 600.2.w.k.293.28 yes 64
5.4 even 2 inner 600.2.w.k.557.22 yes 64
8.5 even 2 inner 600.2.w.k.557.6 yes 64
15.2 even 4 inner 600.2.w.k.293.27 yes 64
15.8 even 4 inner 600.2.w.k.293.6 yes 64
15.14 odd 2 inner 600.2.w.k.557.12 yes 64
24.5 odd 2 inner 600.2.w.k.557.28 yes 64
40.13 odd 4 inner 600.2.w.k.293.21 yes 64
40.29 even 2 inner 600.2.w.k.557.27 yes 64
40.37 odd 4 inner 600.2.w.k.293.12 yes 64
120.29 odd 2 inner 600.2.w.k.557.5 yes 64
120.53 even 4 inner 600.2.w.k.293.11 yes 64
120.77 even 4 inner 600.2.w.k.293.22 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
600.2.w.k.293.5 64 5.2 odd 4 inner
600.2.w.k.293.6 yes 64 15.8 even 4 inner
600.2.w.k.293.11 yes 64 120.53 even 4 inner
600.2.w.k.293.12 yes 64 40.37 odd 4 inner
600.2.w.k.293.21 yes 64 40.13 odd 4 inner
600.2.w.k.293.22 yes 64 120.77 even 4 inner
600.2.w.k.293.27 yes 64 15.2 even 4 inner
600.2.w.k.293.28 yes 64 5.3 odd 4 inner
600.2.w.k.557.5 yes 64 120.29 odd 2 inner
600.2.w.k.557.6 yes 64 8.5 even 2 inner
600.2.w.k.557.11 yes 64 1.1 even 1 trivial
600.2.w.k.557.12 yes 64 15.14 odd 2 inner
600.2.w.k.557.21 yes 64 3.2 odd 2 inner
600.2.w.k.557.22 yes 64 5.4 even 2 inner
600.2.w.k.557.27 yes 64 40.29 even 2 inner
600.2.w.k.557.28 yes 64 24.5 odd 2 inner