Properties

Label 6.10.a.a
Level 66
Weight 1010
Character orbit 6.a
Self dual yes
Analytic conductor 3.0903.090
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6,10,Mod(1,6)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: N N == 6=23 6 = 2 \cdot 3
Weight: k k == 10 10
Character orbit: [χ][\chi] == 6.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 3.090215016983.09021501698
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q16q2+81q3+256q4+2694q51296q63544q74096q8+6561q943104q10+29580q11+20736q1244818q13+56704q14+218214q15+65536q16++194074380q99+O(q100) q - 16 q^{2} + 81 q^{3} + 256 q^{4} + 2694 q^{5} - 1296 q^{6} - 3544 q^{7} - 4096 q^{8} + 6561 q^{9} - 43104 q^{10} + 29580 q^{11} + 20736 q^{12} - 44818 q^{13} + 56704 q^{14} + 218214 q^{15} + 65536 q^{16}+ \cdots + 194074380 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
−16.0000 81.0000 256.000 2694.00 −1296.00 −3544.00 −4096.00 6561.00 −43104.0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6.10.a.a 1
3.b odd 2 1 18.10.a.c 1
4.b odd 2 1 48.10.a.d 1
5.b even 2 1 150.10.a.h 1
5.c odd 4 2 150.10.c.d 2
7.b odd 2 1 294.10.a.a 1
8.b even 2 1 192.10.a.a 1
8.d odd 2 1 192.10.a.h 1
9.c even 3 2 162.10.c.f 2
9.d odd 6 2 162.10.c.e 2
12.b even 2 1 144.10.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.10.a.a 1 1.a even 1 1 trivial
18.10.a.c 1 3.b odd 2 1
48.10.a.d 1 4.b odd 2 1
144.10.a.a 1 12.b even 2 1
150.10.a.h 1 5.b even 2 1
150.10.c.d 2 5.c odd 4 2
162.10.c.e 2 9.d odd 6 2
162.10.c.f 2 9.c even 3 2
192.10.a.a 1 8.b even 2 1
192.10.a.h 1 8.d odd 2 1
294.10.a.a 1 7.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace S10new(Γ0(6))S_{10}^{\mathrm{new}}(\Gamma_0(6)).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+16 T + 16 Copy content Toggle raw display
33 T81 T - 81 Copy content Toggle raw display
55 T2694 T - 2694 Copy content Toggle raw display
77 T+3544 T + 3544 Copy content Toggle raw display
1111 T29580 T - 29580 Copy content Toggle raw display
1313 T+44818 T + 44818 Copy content Toggle raw display
1717 T+101934 T + 101934 Copy content Toggle raw display
1919 T+895084 T + 895084 Copy content Toggle raw display
2323 T+1113000 T + 1113000 Copy content Toggle raw display
2929 T+2357346 T + 2357346 Copy content Toggle raw display
3131 T175808 T - 175808 Copy content Toggle raw display
3737 T+2919418 T + 2919418 Copy content Toggle raw display
4141 T26218794 T - 26218794 Copy content Toggle raw display
4343 T+18762964 T + 18762964 Copy content Toggle raw display
4747 T+20966160 T + 20966160 Copy content Toggle raw display
5353 T57251574 T - 57251574 Copy content Toggle raw display
5959 T33587580 T - 33587580 Copy content Toggle raw display
6161 T82260830 T - 82260830 Copy content Toggle raw display
6767 T+188455804 T + 188455804 Copy content Toggle raw display
7171 T80924040 T - 80924040 Copy content Toggle raw display
7373 T+236140918 T + 236140918 Copy content Toggle raw display
7979 T526909808 T - 526909808 Copy content Toggle raw display
8383 T18346452 T - 18346452 Copy content Toggle raw display
8989 T690643098 T - 690643098 Copy content Toggle raw display
9797 T+438251038 T + 438251038 Copy content Toggle raw display
show more
show less