Newspace parameters
| Level: | \( N \) | \(=\) | \( 598 = 2 \cdot 13 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 598.k (of order \(11\), degree \(10\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.77505404087\) |
| Analytic rank: | \(0\) |
| Dimension: | \(60\) |
| Relative dimension: | \(6\) over \(\Q(\zeta_{11})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{11}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 27.1 | −0.415415 | − | 0.909632i | −3.13267 | + | 0.919834i | −0.654861 | + | 0.755750i | −0.985274 | − | 0.633197i | 2.13807 | + | 2.46746i | −0.121161 | − | 0.842695i | 0.959493 | + | 0.281733i | 6.44375 | − | 4.14115i | −0.166679 | + | 1.15928i |
| 27.2 | −0.415415 | − | 0.909632i | −1.65011 | + | 0.484516i | −0.654861 | + | 0.755750i | −0.986982 | − | 0.634295i | 1.12621 | + | 1.29972i | 0.0179750 | + | 0.125019i | 0.959493 | + | 0.281733i | −0.0356585 | + | 0.0229163i | −0.166968 | + | 1.16129i |
| 27.3 | −0.415415 | − | 0.909632i | −0.263871 | + | 0.0774796i | −0.654861 | + | 0.755750i | 2.41093 | + | 1.54941i | 0.180094 | + | 0.207839i | 0.284581 | + | 1.97930i | 0.959493 | + | 0.281733i | −2.46014 | + | 1.58103i | 0.407858 | − | 2.83671i |
| 27.4 | −0.415415 | − | 0.909632i | 0.310477 | − | 0.0911643i | −0.654861 | + | 0.755750i | −1.40637 | − | 0.903821i | −0.211903 | − | 0.244549i | −0.751602 | − | 5.22750i | 0.959493 | + | 0.281733i | −2.43568 | + | 1.56531i | −0.237916 | + | 1.65474i |
| 27.5 | −0.415415 | − | 0.909632i | 0.984709 | − | 0.289137i | −0.654861 | + | 0.755750i | −3.21203 | − | 2.06425i | −0.672071 | − | 0.775611i | 0.658581 | + | 4.58053i | 0.959493 | + | 0.281733i | −1.63771 | + | 1.05249i | −0.543379 | + | 3.77928i |
| 27.6 | −0.415415 | − | 0.909632i | 2.68119 | − | 0.787267i | −0.654861 | + | 0.755750i | 1.99722 | + | 1.28353i | −1.82993 | − | 2.11185i | −0.465836 | − | 3.23996i | 0.959493 | + | 0.281733i | 4.04521 | − | 2.59970i | 0.337869 | − | 2.34993i |
| 105.1 | 0.654861 | + | 0.755750i | −1.54754 | − | 0.994541i | −0.142315 | + | 0.989821i | −1.83517 | + | 4.01847i | −0.261797 | − | 1.82084i | −0.992517 | − | 0.291429i | −0.841254 | + | 0.540641i | 0.159512 | + | 0.349283i | −4.23874 | + | 1.24461i |
| 105.2 | 0.654861 | + | 0.755750i | −1.49766 | − | 0.962490i | −0.142315 | + | 0.989821i | −0.500058 | + | 1.09497i | −0.253360 | − | 1.76215i | 4.15445 | + | 1.21986i | −0.841254 | + | 0.540641i | 0.0703631 | + | 0.154074i | −1.15500 | + | 0.339137i |
| 105.3 | 0.654861 | + | 0.755750i | −0.213281 | − | 0.137067i | −0.142315 | + | 0.989821i | 1.54954 | − | 3.39303i | −0.0360808 | − | 0.250947i | −3.09616 | − | 0.909114i | −0.841254 | + | 0.540641i | −1.21954 | − | 2.67043i | 3.57901 | − | 1.05089i |
| 105.4 | 0.654861 | + | 0.755750i | 0.483269 | + | 0.310578i | −0.142315 | + | 0.989821i | 0.896658 | − | 1.96341i | 0.0817547 | + | 0.568616i | 2.62306 | + | 0.770200i | −0.841254 | + | 0.540641i | −1.10915 | − | 2.42871i | 2.07103 | − | 0.608110i |
| 105.5 | 0.654861 | + | 0.755750i | 1.39176 | + | 0.894432i | −0.142315 | + | 0.989821i | −1.10621 | + | 2.42226i | 0.235445 | + | 1.63755i | −4.07399 | − | 1.19623i | −0.841254 | + | 0.540641i | −0.109248 | − | 0.239220i | −2.55503 | + | 0.750226i |
| 105.6 | 0.654861 | + | 0.755750i | 1.89599 | + | 1.21848i | −0.142315 | + | 0.989821i | −0.335592 | + | 0.734843i | 0.320745 | + | 2.23083i | 1.55839 | + | 0.457585i | −0.841254 | + | 0.540641i | 0.863851 | + | 1.89157i | −0.775123 | + | 0.227597i |
| 131.1 | 0.654861 | − | 0.755750i | −1.54754 | + | 0.994541i | −0.142315 | − | 0.989821i | −1.83517 | − | 4.01847i | −0.261797 | + | 1.82084i | −0.992517 | + | 0.291429i | −0.841254 | − | 0.540641i | 0.159512 | − | 0.349283i | −4.23874 | − | 1.24461i |
| 131.2 | 0.654861 | − | 0.755750i | −1.49766 | + | 0.962490i | −0.142315 | − | 0.989821i | −0.500058 | − | 1.09497i | −0.253360 | + | 1.76215i | 4.15445 | − | 1.21986i | −0.841254 | − | 0.540641i | 0.0703631 | − | 0.154074i | −1.15500 | − | 0.339137i |
| 131.3 | 0.654861 | − | 0.755750i | −0.213281 | + | 0.137067i | −0.142315 | − | 0.989821i | 1.54954 | + | 3.39303i | −0.0360808 | + | 0.250947i | −3.09616 | + | 0.909114i | −0.841254 | − | 0.540641i | −1.21954 | + | 2.67043i | 3.57901 | + | 1.05089i |
| 131.4 | 0.654861 | − | 0.755750i | 0.483269 | − | 0.310578i | −0.142315 | − | 0.989821i | 0.896658 | + | 1.96341i | 0.0817547 | − | 0.568616i | 2.62306 | − | 0.770200i | −0.841254 | − | 0.540641i | −1.10915 | + | 2.42871i | 2.07103 | + | 0.608110i |
| 131.5 | 0.654861 | − | 0.755750i | 1.39176 | − | 0.894432i | −0.142315 | − | 0.989821i | −1.10621 | − | 2.42226i | 0.235445 | − | 1.63755i | −4.07399 | + | 1.19623i | −0.841254 | − | 0.540641i | −0.109248 | + | 0.239220i | −2.55503 | − | 0.750226i |
| 131.6 | 0.654861 | − | 0.755750i | 1.89599 | − | 1.21848i | −0.142315 | − | 0.989821i | −0.335592 | − | 0.734843i | 0.320745 | − | 2.23083i | 1.55839 | − | 0.457585i | −0.841254 | − | 0.540641i | 0.863851 | − | 1.89157i | −0.775123 | − | 0.227597i |
| 209.1 | −0.841254 | − | 0.540641i | −0.339420 | − | 2.36072i | 0.415415 | + | 0.909632i | −3.64185 | − | 1.06934i | −0.990764 | + | 2.16947i | 1.23762 | − | 1.42829i | 0.142315 | − | 0.989821i | −2.57932 | + | 0.757356i | 2.48559 | + | 2.86852i |
| 209.2 | −0.841254 | − | 0.540641i | −0.317967 | − | 2.21151i | 0.415415 | + | 0.909632i | 3.91448 | + | 1.14940i | −0.928140 | + | 2.03234i | −1.81293 | + | 2.09223i | 0.142315 | − | 0.989821i | −1.91118 | + | 0.561172i | −2.67166 | − | 3.08326i |
| See all 60 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 23.c | even | 11 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 598.2.k.f | ✓ | 60 |
| 23.c | even | 11 | 1 | inner | 598.2.k.f | ✓ | 60 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 598.2.k.f | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
| 598.2.k.f | ✓ | 60 | 23.c | even | 11 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{60} + 10 T_{3}^{58} + 7 T_{3}^{57} + 72 T_{3}^{56} + 196 T_{3}^{55} + 93 T_{3}^{54} + 804 T_{3}^{53} + \cdots + 121 \)
acting on \(S_{2}^{\mathrm{new}}(598, [\chi])\).