Defining parameters
| Level: | \( N \) | \(=\) | \( 598 = 2 \cdot 13 \cdot 23 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 598.g (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 299 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(168\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(598, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 176 | 56 | 120 |
| Cusp forms | 160 | 56 | 104 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(598, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 598.2.g.a | $56$ | $4.775$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(598, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(598, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(299, [\chi])\)\(^{\oplus 2}\)