Properties

Label 598.2.g
Level $598$
Weight $2$
Character orbit 598.g
Rep. character $\chi_{598}(229,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $56$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 598 = 2 \cdot 13 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 598.g (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 299 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(598, [\chi])\).

Total New Old
Modular forms 176 56 120
Cusp forms 160 56 104
Eisenstein series 16 0 16

Trace form

\( 56 q + 56 q^{9} + 8 q^{13} - 56 q^{16} - 8 q^{26} + 48 q^{27} + 16 q^{29} + 32 q^{31} - 32 q^{35} + 16 q^{39} - 32 q^{41} + 12 q^{46} - 48 q^{47} + 16 q^{50} - 48 q^{54} - 64 q^{55} - 8 q^{58} + 48 q^{59}+ \cdots + 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(598, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
598.2.g.a 598.g 299.g $56$ $4.775$ None 598.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(598, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(598, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(299, [\chi])\)\(^{\oplus 2}\)