Properties

Label 5950.2.a.cc.1.5
Level $5950$
Weight $2$
Character 5950.1
Self dual yes
Analytic conductor $47.511$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5950,2,Mod(1,5950)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5950, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5950.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5950 = 2 \cdot 5^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5950.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [7,7,-2,7,0,-2,-7,7,7,0,-7,-2,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.5109892027\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 2x^{6} - 12x^{5} + 17x^{4} + 40x^{3} - 32x^{2} - 40x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1190)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-0.944189\) of defining polynomial
Character \(\chi\) \(=\) 5950.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +0.944189 q^{3} +1.00000 q^{4} +0.944189 q^{6} -1.00000 q^{7} +1.00000 q^{8} -2.10851 q^{9} -6.47760 q^{11} +0.944189 q^{12} +6.60115 q^{13} -1.00000 q^{14} +1.00000 q^{16} -1.00000 q^{17} -2.10851 q^{18} +3.14658 q^{19} -0.944189 q^{21} -6.47760 q^{22} +0.715465 q^{23} +0.944189 q^{24} +6.60115 q^{26} -4.82340 q^{27} -1.00000 q^{28} -5.52962 q^{29} -10.3233 q^{31} +1.00000 q^{32} -6.11608 q^{33} -1.00000 q^{34} -2.10851 q^{36} +8.27542 q^{37} +3.14658 q^{38} +6.23274 q^{39} -7.08117 q^{41} -0.944189 q^{42} -0.272148 q^{43} -6.47760 q^{44} +0.715465 q^{46} -7.39269 q^{47} +0.944189 q^{48} +1.00000 q^{49} -0.944189 q^{51} +6.60115 q^{52} +1.24260 q^{53} -4.82340 q^{54} -1.00000 q^{56} +2.97097 q^{57} -5.52962 q^{58} -6.52216 q^{59} -5.44476 q^{61} -10.3233 q^{62} +2.10851 q^{63} +1.00000 q^{64} -6.11608 q^{66} -8.75002 q^{67} -1.00000 q^{68} +0.675535 q^{69} +12.4820 q^{71} -2.10851 q^{72} +10.5962 q^{73} +8.27542 q^{74} +3.14658 q^{76} +6.47760 q^{77} +6.23274 q^{78} -15.8721 q^{79} +1.77132 q^{81} -7.08117 q^{82} -11.0408 q^{83} -0.944189 q^{84} -0.272148 q^{86} -5.22101 q^{87} -6.47760 q^{88} -6.41380 q^{89} -6.60115 q^{91} +0.715465 q^{92} -9.74715 q^{93} -7.39269 q^{94} +0.944189 q^{96} -7.55828 q^{97} +1.00000 q^{98} +13.6581 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} - 2 q^{3} + 7 q^{4} - 2 q^{6} - 7 q^{7} + 7 q^{8} + 7 q^{9} - 7 q^{11} - 2 q^{12} + q^{13} - 7 q^{14} + 7 q^{16} - 7 q^{17} + 7 q^{18} - 2 q^{19} + 2 q^{21} - 7 q^{22} - 27 q^{23} - 2 q^{24}+ \cdots - 44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.944189 0.545128 0.272564 0.962138i \(-0.412128\pi\)
0.272564 + 0.962138i \(0.412128\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0.944189 0.385464
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) −2.10851 −0.702836
\(10\) 0 0
\(11\) −6.47760 −1.95307 −0.976535 0.215359i \(-0.930908\pi\)
−0.976535 + 0.215359i \(0.930908\pi\)
\(12\) 0.944189 0.272564
\(13\) 6.60115 1.83083 0.915415 0.402510i \(-0.131862\pi\)
0.915415 + 0.402510i \(0.131862\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 −0.242536
\(18\) −2.10851 −0.496980
\(19\) 3.14658 0.721875 0.360938 0.932590i \(-0.382457\pi\)
0.360938 + 0.932590i \(0.382457\pi\)
\(20\) 0 0
\(21\) −0.944189 −0.206039
\(22\) −6.47760 −1.38103
\(23\) 0.715465 0.149185 0.0745924 0.997214i \(-0.476234\pi\)
0.0745924 + 0.997214i \(0.476234\pi\)
\(24\) 0.944189 0.192732
\(25\) 0 0
\(26\) 6.60115 1.29459
\(27\) −4.82340 −0.928263
\(28\) −1.00000 −0.188982
\(29\) −5.52962 −1.02682 −0.513412 0.858142i \(-0.671619\pi\)
−0.513412 + 0.858142i \(0.671619\pi\)
\(30\) 0 0
\(31\) −10.3233 −1.85412 −0.927060 0.374913i \(-0.877672\pi\)
−0.927060 + 0.374913i \(0.877672\pi\)
\(32\) 1.00000 0.176777
\(33\) −6.11608 −1.06467
\(34\) −1.00000 −0.171499
\(35\) 0 0
\(36\) −2.10851 −0.351418
\(37\) 8.27542 1.36047 0.680235 0.732994i \(-0.261878\pi\)
0.680235 + 0.732994i \(0.261878\pi\)
\(38\) 3.14658 0.510443
\(39\) 6.23274 0.998037
\(40\) 0 0
\(41\) −7.08117 −1.10589 −0.552947 0.833217i \(-0.686497\pi\)
−0.552947 + 0.833217i \(0.686497\pi\)
\(42\) −0.944189 −0.145692
\(43\) −0.272148 −0.0415021 −0.0207511 0.999785i \(-0.506606\pi\)
−0.0207511 + 0.999785i \(0.506606\pi\)
\(44\) −6.47760 −0.976535
\(45\) 0 0
\(46\) 0.715465 0.105490
\(47\) −7.39269 −1.07833 −0.539167 0.842199i \(-0.681261\pi\)
−0.539167 + 0.842199i \(0.681261\pi\)
\(48\) 0.944189 0.136282
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −0.944189 −0.132213
\(52\) 6.60115 0.915415
\(53\) 1.24260 0.170684 0.0853418 0.996352i \(-0.472802\pi\)
0.0853418 + 0.996352i \(0.472802\pi\)
\(54\) −4.82340 −0.656381
\(55\) 0 0
\(56\) −1.00000 −0.133631
\(57\) 2.97097 0.393514
\(58\) −5.52962 −0.726075
\(59\) −6.52216 −0.849112 −0.424556 0.905402i \(-0.639570\pi\)
−0.424556 + 0.905402i \(0.639570\pi\)
\(60\) 0 0
\(61\) −5.44476 −0.697130 −0.348565 0.937285i \(-0.613331\pi\)
−0.348565 + 0.937285i \(0.613331\pi\)
\(62\) −10.3233 −1.31106
\(63\) 2.10851 0.265647
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.11608 −0.752837
\(67\) −8.75002 −1.06898 −0.534492 0.845173i \(-0.679497\pi\)
−0.534492 + 0.845173i \(0.679497\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0.675535 0.0813248
\(70\) 0 0
\(71\) 12.4820 1.48134 0.740672 0.671867i \(-0.234507\pi\)
0.740672 + 0.671867i \(0.234507\pi\)
\(72\) −2.10851 −0.248490
\(73\) 10.5962 1.24019 0.620094 0.784527i \(-0.287094\pi\)
0.620094 + 0.784527i \(0.287094\pi\)
\(74\) 8.27542 0.961997
\(75\) 0 0
\(76\) 3.14658 0.360938
\(77\) 6.47760 0.738191
\(78\) 6.23274 0.705719
\(79\) −15.8721 −1.78575 −0.892873 0.450308i \(-0.851314\pi\)
−0.892873 + 0.450308i \(0.851314\pi\)
\(80\) 0 0
\(81\) 1.77132 0.196814
\(82\) −7.08117 −0.781985
\(83\) −11.0408 −1.21189 −0.605944 0.795507i \(-0.707205\pi\)
−0.605944 + 0.795507i \(0.707205\pi\)
\(84\) −0.944189 −0.103019
\(85\) 0 0
\(86\) −0.272148 −0.0293464
\(87\) −5.22101 −0.559751
\(88\) −6.47760 −0.690515
\(89\) −6.41380 −0.679862 −0.339931 0.940450i \(-0.610404\pi\)
−0.339931 + 0.940450i \(0.610404\pi\)
\(90\) 0 0
\(91\) −6.60115 −0.691989
\(92\) 0.715465 0.0745924
\(93\) −9.74715 −1.01073
\(94\) −7.39269 −0.762498
\(95\) 0 0
\(96\) 0.944189 0.0963659
\(97\) −7.55828 −0.767427 −0.383713 0.923452i \(-0.625355\pi\)
−0.383713 + 0.923452i \(0.625355\pi\)
\(98\) 1.00000 0.101015
\(99\) 13.6581 1.37269
\(100\) 0 0
\(101\) 0.605246 0.0602242 0.0301121 0.999547i \(-0.490414\pi\)
0.0301121 + 0.999547i \(0.490414\pi\)
\(102\) −0.944189 −0.0934887
\(103\) 10.6708 1.05142 0.525711 0.850663i \(-0.323799\pi\)
0.525711 + 0.850663i \(0.323799\pi\)
\(104\) 6.60115 0.647296
\(105\) 0 0
\(106\) 1.24260 0.120692
\(107\) −2.47479 −0.239247 −0.119624 0.992819i \(-0.538169\pi\)
−0.119624 + 0.992819i \(0.538169\pi\)
\(108\) −4.82340 −0.464132
\(109\) −2.40704 −0.230553 −0.115276 0.993333i \(-0.536775\pi\)
−0.115276 + 0.993333i \(0.536775\pi\)
\(110\) 0 0
\(111\) 7.81356 0.741630
\(112\) −1.00000 −0.0944911
\(113\) −5.04159 −0.474272 −0.237136 0.971476i \(-0.576209\pi\)
−0.237136 + 0.971476i \(0.576209\pi\)
\(114\) 2.97097 0.278257
\(115\) 0 0
\(116\) −5.52962 −0.513412
\(117\) −13.9186 −1.28677
\(118\) −6.52216 −0.600413
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) 30.9593 2.81448
\(122\) −5.44476 −0.492946
\(123\) −6.68597 −0.602853
\(124\) −10.3233 −0.927060
\(125\) 0 0
\(126\) 2.10851 0.187841
\(127\) 10.7877 0.957252 0.478626 0.878019i \(-0.341135\pi\)
0.478626 + 0.878019i \(0.341135\pi\)
\(128\) 1.00000 0.0883883
\(129\) −0.256959 −0.0226240
\(130\) 0 0
\(131\) −1.16568 −0.101846 −0.0509229 0.998703i \(-0.516216\pi\)
−0.0509229 + 0.998703i \(0.516216\pi\)
\(132\) −6.11608 −0.532336
\(133\) −3.14658 −0.272843
\(134\) −8.75002 −0.755886
\(135\) 0 0
\(136\) −1.00000 −0.0857493
\(137\) −20.9397 −1.78900 −0.894498 0.447073i \(-0.852467\pi\)
−0.894498 + 0.447073i \(0.852467\pi\)
\(138\) 0.675535 0.0575053
\(139\) −3.72458 −0.315915 −0.157957 0.987446i \(-0.550491\pi\)
−0.157957 + 0.987446i \(0.550491\pi\)
\(140\) 0 0
\(141\) −6.98010 −0.587830
\(142\) 12.4820 1.04747
\(143\) −42.7596 −3.57574
\(144\) −2.10851 −0.175709
\(145\) 0 0
\(146\) 10.5962 0.876945
\(147\) 0.944189 0.0778754
\(148\) 8.27542 0.680235
\(149\) 2.93671 0.240585 0.120293 0.992738i \(-0.461617\pi\)
0.120293 + 0.992738i \(0.461617\pi\)
\(150\) 0 0
\(151\) −8.47874 −0.689990 −0.344995 0.938605i \(-0.612119\pi\)
−0.344995 + 0.938605i \(0.612119\pi\)
\(152\) 3.14658 0.255221
\(153\) 2.10851 0.170463
\(154\) 6.47760 0.521980
\(155\) 0 0
\(156\) 6.23274 0.499018
\(157\) 4.58849 0.366201 0.183101 0.983094i \(-0.441387\pi\)
0.183101 + 0.983094i \(0.441387\pi\)
\(158\) −15.8721 −1.26271
\(159\) 1.17325 0.0930444
\(160\) 0 0
\(161\) −0.715465 −0.0563866
\(162\) 1.77132 0.139168
\(163\) −12.9615 −1.01523 −0.507613 0.861585i \(-0.669472\pi\)
−0.507613 + 0.861585i \(0.669472\pi\)
\(164\) −7.08117 −0.552947
\(165\) 0 0
\(166\) −11.0408 −0.856935
\(167\) 9.29757 0.719467 0.359734 0.933055i \(-0.382868\pi\)
0.359734 + 0.933055i \(0.382868\pi\)
\(168\) −0.944189 −0.0728458
\(169\) 30.5752 2.35194
\(170\) 0 0
\(171\) −6.63459 −0.507360
\(172\) −0.272148 −0.0207511
\(173\) −9.43425 −0.717272 −0.358636 0.933477i \(-0.616758\pi\)
−0.358636 + 0.933477i \(0.616758\pi\)
\(174\) −5.22101 −0.395803
\(175\) 0 0
\(176\) −6.47760 −0.488267
\(177\) −6.15815 −0.462875
\(178\) −6.41380 −0.480735
\(179\) −2.84058 −0.212315 −0.106157 0.994349i \(-0.533855\pi\)
−0.106157 + 0.994349i \(0.533855\pi\)
\(180\) 0 0
\(181\) −3.01811 −0.224334 −0.112167 0.993689i \(-0.535779\pi\)
−0.112167 + 0.993689i \(0.535779\pi\)
\(182\) −6.60115 −0.489310
\(183\) −5.14088 −0.380025
\(184\) 0.715465 0.0527448
\(185\) 0 0
\(186\) −9.74715 −0.714696
\(187\) 6.47760 0.473689
\(188\) −7.39269 −0.539167
\(189\) 4.82340 0.350850
\(190\) 0 0
\(191\) 7.85353 0.568261 0.284131 0.958786i \(-0.408295\pi\)
0.284131 + 0.958786i \(0.408295\pi\)
\(192\) 0.944189 0.0681410
\(193\) −6.63482 −0.477584 −0.238792 0.971071i \(-0.576751\pi\)
−0.238792 + 0.971071i \(0.576751\pi\)
\(194\) −7.55828 −0.542653
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 11.5437 0.822454 0.411227 0.911533i \(-0.365100\pi\)
0.411227 + 0.911533i \(0.365100\pi\)
\(198\) 13.6581 0.970636
\(199\) −26.0150 −1.84416 −0.922078 0.387004i \(-0.873510\pi\)
−0.922078 + 0.387004i \(0.873510\pi\)
\(200\) 0 0
\(201\) −8.26167 −0.582733
\(202\) 0.605246 0.0425849
\(203\) 5.52962 0.388103
\(204\) −0.944189 −0.0661065
\(205\) 0 0
\(206\) 10.6708 0.743467
\(207\) −1.50856 −0.104852
\(208\) 6.60115 0.457708
\(209\) −20.3823 −1.40987
\(210\) 0 0
\(211\) −19.0340 −1.31036 −0.655179 0.755474i \(-0.727407\pi\)
−0.655179 + 0.755474i \(0.727407\pi\)
\(212\) 1.24260 0.0853418
\(213\) 11.7854 0.807522
\(214\) −2.47479 −0.169173
\(215\) 0 0
\(216\) −4.82340 −0.328191
\(217\) 10.3233 0.700791
\(218\) −2.40704 −0.163025
\(219\) 10.0048 0.676061
\(220\) 0 0
\(221\) −6.60115 −0.444042
\(222\) 7.81356 0.524412
\(223\) −2.99408 −0.200498 −0.100249 0.994962i \(-0.531964\pi\)
−0.100249 + 0.994962i \(0.531964\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) −5.04159 −0.335361
\(227\) −7.17860 −0.476460 −0.238230 0.971209i \(-0.576567\pi\)
−0.238230 + 0.971209i \(0.576567\pi\)
\(228\) 2.97097 0.196757
\(229\) 20.4722 1.35284 0.676422 0.736515i \(-0.263530\pi\)
0.676422 + 0.736515i \(0.263530\pi\)
\(230\) 0 0
\(231\) 6.11608 0.402408
\(232\) −5.52962 −0.363037
\(233\) −14.5803 −0.955185 −0.477592 0.878582i \(-0.658490\pi\)
−0.477592 + 0.878582i \(0.658490\pi\)
\(234\) −13.9186 −0.909886
\(235\) 0 0
\(236\) −6.52216 −0.424556
\(237\) −14.9862 −0.973460
\(238\) 1.00000 0.0648204
\(239\) −27.8402 −1.80083 −0.900415 0.435031i \(-0.856737\pi\)
−0.900415 + 0.435031i \(0.856737\pi\)
\(240\) 0 0
\(241\) 2.46386 0.158711 0.0793555 0.996846i \(-0.474714\pi\)
0.0793555 + 0.996846i \(0.474714\pi\)
\(242\) 30.9593 1.99014
\(243\) 16.1427 1.03555
\(244\) −5.44476 −0.348565
\(245\) 0 0
\(246\) −6.68597 −0.426282
\(247\) 20.7711 1.32163
\(248\) −10.3233 −0.655530
\(249\) −10.4246 −0.660634
\(250\) 0 0
\(251\) 7.79037 0.491724 0.245862 0.969305i \(-0.420929\pi\)
0.245862 + 0.969305i \(0.420929\pi\)
\(252\) 2.10851 0.132823
\(253\) −4.63450 −0.291368
\(254\) 10.7877 0.676879
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −30.2883 −1.88933 −0.944667 0.328030i \(-0.893615\pi\)
−0.944667 + 0.328030i \(0.893615\pi\)
\(258\) −0.256959 −0.0159976
\(259\) −8.27542 −0.514209
\(260\) 0 0
\(261\) 11.6592 0.721689
\(262\) −1.16568 −0.0720159
\(263\) 13.8039 0.851182 0.425591 0.904916i \(-0.360066\pi\)
0.425591 + 0.904916i \(0.360066\pi\)
\(264\) −6.11608 −0.376419
\(265\) 0 0
\(266\) −3.14658 −0.192929
\(267\) −6.05584 −0.370612
\(268\) −8.75002 −0.534492
\(269\) −12.4186 −0.757178 −0.378589 0.925565i \(-0.623591\pi\)
−0.378589 + 0.925565i \(0.623591\pi\)
\(270\) 0 0
\(271\) 12.1674 0.739114 0.369557 0.929208i \(-0.379509\pi\)
0.369557 + 0.929208i \(0.379509\pi\)
\(272\) −1.00000 −0.0606339
\(273\) −6.23274 −0.377222
\(274\) −20.9397 −1.26501
\(275\) 0 0
\(276\) 0.675535 0.0406624
\(277\) 26.5516 1.59533 0.797665 0.603101i \(-0.206069\pi\)
0.797665 + 0.603101i \(0.206069\pi\)
\(278\) −3.72458 −0.223385
\(279\) 21.7668 1.30314
\(280\) 0 0
\(281\) −9.09912 −0.542808 −0.271404 0.962465i \(-0.587488\pi\)
−0.271404 + 0.962465i \(0.587488\pi\)
\(282\) −6.98010 −0.415659
\(283\) −6.80753 −0.404666 −0.202333 0.979317i \(-0.564852\pi\)
−0.202333 + 0.979317i \(0.564852\pi\)
\(284\) 12.4820 0.740672
\(285\) 0 0
\(286\) −42.7596 −2.52843
\(287\) 7.08117 0.417989
\(288\) −2.10851 −0.124245
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −7.13644 −0.418346
\(292\) 10.5962 0.620094
\(293\) 27.1352 1.58526 0.792628 0.609706i \(-0.208713\pi\)
0.792628 + 0.609706i \(0.208713\pi\)
\(294\) 0.944189 0.0550662
\(295\) 0 0
\(296\) 8.27542 0.480999
\(297\) 31.2440 1.81296
\(298\) 2.93671 0.170119
\(299\) 4.72290 0.273132
\(300\) 0 0
\(301\) 0.272148 0.0156863
\(302\) −8.47874 −0.487897
\(303\) 0.571466 0.0328299
\(304\) 3.14658 0.180469
\(305\) 0 0
\(306\) 2.10851 0.120535
\(307\) 24.9786 1.42560 0.712802 0.701365i \(-0.247426\pi\)
0.712802 + 0.701365i \(0.247426\pi\)
\(308\) 6.47760 0.369096
\(309\) 10.0752 0.573159
\(310\) 0 0
\(311\) 20.4702 1.16076 0.580378 0.814347i \(-0.302905\pi\)
0.580378 + 0.814347i \(0.302905\pi\)
\(312\) 6.23274 0.352859
\(313\) −7.84620 −0.443493 −0.221747 0.975104i \(-0.571176\pi\)
−0.221747 + 0.975104i \(0.571176\pi\)
\(314\) 4.58849 0.258943
\(315\) 0 0
\(316\) −15.8721 −0.892873
\(317\) 31.3528 1.76095 0.880476 0.474091i \(-0.157223\pi\)
0.880476 + 0.474091i \(0.157223\pi\)
\(318\) 1.17325 0.0657923
\(319\) 35.8187 2.00546
\(320\) 0 0
\(321\) −2.33667 −0.130420
\(322\) −0.715465 −0.0398713
\(323\) −3.14658 −0.175080
\(324\) 1.77132 0.0984068
\(325\) 0 0
\(326\) −12.9615 −0.717873
\(327\) −2.27270 −0.125681
\(328\) −7.08117 −0.390992
\(329\) 7.39269 0.407572
\(330\) 0 0
\(331\) 8.54057 0.469432 0.234716 0.972064i \(-0.424584\pi\)
0.234716 + 0.972064i \(0.424584\pi\)
\(332\) −11.0408 −0.605944
\(333\) −17.4488 −0.956187
\(334\) 9.29757 0.508740
\(335\) 0 0
\(336\) −0.944189 −0.0515097
\(337\) 8.28173 0.451134 0.225567 0.974228i \(-0.427576\pi\)
0.225567 + 0.974228i \(0.427576\pi\)
\(338\) 30.5752 1.66307
\(339\) −4.76021 −0.258539
\(340\) 0 0
\(341\) 66.8702 3.62123
\(342\) −6.63459 −0.358757
\(343\) −1.00000 −0.0539949
\(344\) −0.272148 −0.0146732
\(345\) 0 0
\(346\) −9.43425 −0.507188
\(347\) −11.7797 −0.632365 −0.316183 0.948698i \(-0.602401\pi\)
−0.316183 + 0.948698i \(0.602401\pi\)
\(348\) −5.22101 −0.279875
\(349\) 28.7276 1.53776 0.768878 0.639396i \(-0.220815\pi\)
0.768878 + 0.639396i \(0.220815\pi\)
\(350\) 0 0
\(351\) −31.8400 −1.69949
\(352\) −6.47760 −0.345257
\(353\) −9.10674 −0.484703 −0.242352 0.970188i \(-0.577919\pi\)
−0.242352 + 0.970188i \(0.577919\pi\)
\(354\) −6.15815 −0.327302
\(355\) 0 0
\(356\) −6.41380 −0.339931
\(357\) 0.944189 0.0499718
\(358\) −2.84058 −0.150129
\(359\) 10.5395 0.556252 0.278126 0.960545i \(-0.410287\pi\)
0.278126 + 0.960545i \(0.410287\pi\)
\(360\) 0 0
\(361\) −9.09903 −0.478896
\(362\) −3.01811 −0.158628
\(363\) 29.2314 1.53425
\(364\) −6.60115 −0.345994
\(365\) 0 0
\(366\) −5.14088 −0.268718
\(367\) −6.19187 −0.323213 −0.161607 0.986855i \(-0.551668\pi\)
−0.161607 + 0.986855i \(0.551668\pi\)
\(368\) 0.715465 0.0372962
\(369\) 14.9307 0.777261
\(370\) 0 0
\(371\) −1.24260 −0.0645123
\(372\) −9.74715 −0.505366
\(373\) 6.40599 0.331690 0.165845 0.986152i \(-0.446965\pi\)
0.165845 + 0.986152i \(0.446965\pi\)
\(374\) 6.47760 0.334949
\(375\) 0 0
\(376\) −7.39269 −0.381249
\(377\) −36.5019 −1.87994
\(378\) 4.82340 0.248089
\(379\) −4.47057 −0.229638 −0.114819 0.993386i \(-0.536629\pi\)
−0.114819 + 0.993386i \(0.536629\pi\)
\(380\) 0 0
\(381\) 10.1856 0.521824
\(382\) 7.85353 0.401821
\(383\) −24.9589 −1.27534 −0.637670 0.770310i \(-0.720102\pi\)
−0.637670 + 0.770310i \(0.720102\pi\)
\(384\) 0.944189 0.0481829
\(385\) 0 0
\(386\) −6.63482 −0.337703
\(387\) 0.573825 0.0291692
\(388\) −7.55828 −0.383713
\(389\) 12.9696 0.657585 0.328793 0.944402i \(-0.393358\pi\)
0.328793 + 0.944402i \(0.393358\pi\)
\(390\) 0 0
\(391\) −0.715465 −0.0361826
\(392\) 1.00000 0.0505076
\(393\) −1.10062 −0.0555190
\(394\) 11.5437 0.581563
\(395\) 0 0
\(396\) 13.6581 0.686344
\(397\) 29.5224 1.48169 0.740844 0.671678i \(-0.234426\pi\)
0.740844 + 0.671678i \(0.234426\pi\)
\(398\) −26.0150 −1.30402
\(399\) −2.97097 −0.148734
\(400\) 0 0
\(401\) 33.3973 1.66778 0.833890 0.551931i \(-0.186109\pi\)
0.833890 + 0.551931i \(0.186109\pi\)
\(402\) −8.26167 −0.412055
\(403\) −68.1457 −3.39458
\(404\) 0.605246 0.0301121
\(405\) 0 0
\(406\) 5.52962 0.274430
\(407\) −53.6048 −2.65709
\(408\) −0.944189 −0.0467443
\(409\) 7.96757 0.393971 0.196986 0.980406i \(-0.436885\pi\)
0.196986 + 0.980406i \(0.436885\pi\)
\(410\) 0 0
\(411\) −19.7710 −0.975231
\(412\) 10.6708 0.525711
\(413\) 6.52216 0.320934
\(414\) −1.50856 −0.0741419
\(415\) 0 0
\(416\) 6.60115 0.323648
\(417\) −3.51671 −0.172214
\(418\) −20.3823 −0.996931
\(419\) −4.82584 −0.235757 −0.117879 0.993028i \(-0.537609\pi\)
−0.117879 + 0.993028i \(0.537609\pi\)
\(420\) 0 0
\(421\) 0.992428 0.0483680 0.0241840 0.999708i \(-0.492301\pi\)
0.0241840 + 0.999708i \(0.492301\pi\)
\(422\) −19.0340 −0.926563
\(423\) 15.5875 0.757892
\(424\) 1.24260 0.0603458
\(425\) 0 0
\(426\) 11.7854 0.571004
\(427\) 5.44476 0.263490
\(428\) −2.47479 −0.119624
\(429\) −40.3732 −1.94924
\(430\) 0 0
\(431\) −4.23083 −0.203792 −0.101896 0.994795i \(-0.532491\pi\)
−0.101896 + 0.994795i \(0.532491\pi\)
\(432\) −4.82340 −0.232066
\(433\) −4.54830 −0.218577 −0.109289 0.994010i \(-0.534857\pi\)
−0.109289 + 0.994010i \(0.534857\pi\)
\(434\) 10.3233 0.495534
\(435\) 0 0
\(436\) −2.40704 −0.115276
\(437\) 2.25127 0.107693
\(438\) 10.0048 0.478047
\(439\) 20.1943 0.963823 0.481911 0.876220i \(-0.339943\pi\)
0.481911 + 0.876220i \(0.339943\pi\)
\(440\) 0 0
\(441\) −2.10851 −0.100405
\(442\) −6.60115 −0.313985
\(443\) 7.95689 0.378043 0.189022 0.981973i \(-0.439468\pi\)
0.189022 + 0.981973i \(0.439468\pi\)
\(444\) 7.81356 0.370815
\(445\) 0 0
\(446\) −2.99408 −0.141774
\(447\) 2.77281 0.131150
\(448\) −1.00000 −0.0472456
\(449\) −5.34314 −0.252159 −0.126079 0.992020i \(-0.540239\pi\)
−0.126079 + 0.992020i \(0.540239\pi\)
\(450\) 0 0
\(451\) 45.8690 2.15989
\(452\) −5.04159 −0.237136
\(453\) −8.00553 −0.376133
\(454\) −7.17860 −0.336908
\(455\) 0 0
\(456\) 2.97097 0.139128
\(457\) −8.78868 −0.411117 −0.205559 0.978645i \(-0.565901\pi\)
−0.205559 + 0.978645i \(0.565901\pi\)
\(458\) 20.4722 0.956605
\(459\) 4.82340 0.225137
\(460\) 0 0
\(461\) 21.7515 1.01307 0.506534 0.862220i \(-0.330927\pi\)
0.506534 + 0.862220i \(0.330927\pi\)
\(462\) 6.11608 0.284546
\(463\) 18.4736 0.858541 0.429270 0.903176i \(-0.358771\pi\)
0.429270 + 0.903176i \(0.358771\pi\)
\(464\) −5.52962 −0.256706
\(465\) 0 0
\(466\) −14.5803 −0.675418
\(467\) 0.163658 0.00757320 0.00378660 0.999993i \(-0.498795\pi\)
0.00378660 + 0.999993i \(0.498795\pi\)
\(468\) −13.9186 −0.643387
\(469\) 8.75002 0.404038
\(470\) 0 0
\(471\) 4.33240 0.199627
\(472\) −6.52216 −0.300207
\(473\) 1.76286 0.0810565
\(474\) −14.9862 −0.688340
\(475\) 0 0
\(476\) 1.00000 0.0458349
\(477\) −2.62002 −0.119963
\(478\) −27.8402 −1.27338
\(479\) 25.1540 1.14931 0.574657 0.818394i \(-0.305135\pi\)
0.574657 + 0.818394i \(0.305135\pi\)
\(480\) 0 0
\(481\) 54.6273 2.49079
\(482\) 2.46386 0.112226
\(483\) −0.675535 −0.0307379
\(484\) 30.9593 1.40724
\(485\) 0 0
\(486\) 16.1427 0.732246
\(487\) −28.8860 −1.30895 −0.654474 0.756084i \(-0.727110\pi\)
−0.654474 + 0.756084i \(0.727110\pi\)
\(488\) −5.44476 −0.246473
\(489\) −12.2381 −0.553428
\(490\) 0 0
\(491\) −4.17428 −0.188383 −0.0941913 0.995554i \(-0.530027\pi\)
−0.0941913 + 0.995554i \(0.530027\pi\)
\(492\) −6.68597 −0.301427
\(493\) 5.52962 0.249042
\(494\) 20.7711 0.934535
\(495\) 0 0
\(496\) −10.3233 −0.463530
\(497\) −12.4820 −0.559896
\(498\) −10.4246 −0.467139
\(499\) 20.3782 0.912253 0.456126 0.889915i \(-0.349237\pi\)
0.456126 + 0.889915i \(0.349237\pi\)
\(500\) 0 0
\(501\) 8.77866 0.392202
\(502\) 7.79037 0.347701
\(503\) 13.0966 0.583947 0.291973 0.956426i \(-0.405688\pi\)
0.291973 + 0.956426i \(0.405688\pi\)
\(504\) 2.10851 0.0939204
\(505\) 0 0
\(506\) −4.63450 −0.206029
\(507\) 28.8688 1.28211
\(508\) 10.7877 0.478626
\(509\) −22.4005 −0.992883 −0.496442 0.868070i \(-0.665360\pi\)
−0.496442 + 0.868070i \(0.665360\pi\)
\(510\) 0 0
\(511\) −10.5962 −0.468747
\(512\) 1.00000 0.0441942
\(513\) −15.1772 −0.670090
\(514\) −30.2883 −1.33596
\(515\) 0 0
\(516\) −0.256959 −0.0113120
\(517\) 47.8869 2.10606
\(518\) −8.27542 −0.363601
\(519\) −8.90771 −0.391005
\(520\) 0 0
\(521\) 12.8800 0.564284 0.282142 0.959373i \(-0.408955\pi\)
0.282142 + 0.959373i \(0.408955\pi\)
\(522\) 11.6592 0.510311
\(523\) −5.02369 −0.219670 −0.109835 0.993950i \(-0.535032\pi\)
−0.109835 + 0.993950i \(0.535032\pi\)
\(524\) −1.16568 −0.0509229
\(525\) 0 0
\(526\) 13.8039 0.601877
\(527\) 10.3233 0.449690
\(528\) −6.11608 −0.266168
\(529\) −22.4881 −0.977744
\(530\) 0 0
\(531\) 13.7520 0.596786
\(532\) −3.14658 −0.136422
\(533\) −46.7439 −2.02470
\(534\) −6.05584 −0.262062
\(535\) 0 0
\(536\) −8.75002 −0.377943
\(537\) −2.68205 −0.115739
\(538\) −12.4186 −0.535406
\(539\) −6.47760 −0.279010
\(540\) 0 0
\(541\) −21.0348 −0.904355 −0.452178 0.891928i \(-0.649353\pi\)
−0.452178 + 0.891928i \(0.649353\pi\)
\(542\) 12.1674 0.522633
\(543\) −2.84966 −0.122291
\(544\) −1.00000 −0.0428746
\(545\) 0 0
\(546\) −6.23274 −0.266737
\(547\) 10.3391 0.442068 0.221034 0.975266i \(-0.429057\pi\)
0.221034 + 0.975266i \(0.429057\pi\)
\(548\) −20.9397 −0.894498
\(549\) 11.4803 0.489968
\(550\) 0 0
\(551\) −17.3994 −0.741239
\(552\) 0.675535 0.0287527
\(553\) 15.8721 0.674949
\(554\) 26.5516 1.12807
\(555\) 0 0
\(556\) −3.72458 −0.157957
\(557\) −39.0942 −1.65647 −0.828237 0.560377i \(-0.810656\pi\)
−0.828237 + 0.560377i \(0.810656\pi\)
\(558\) 21.7668 0.921460
\(559\) −1.79649 −0.0759833
\(560\) 0 0
\(561\) 6.11608 0.258221
\(562\) −9.09912 −0.383823
\(563\) 24.8465 1.04716 0.523579 0.851977i \(-0.324597\pi\)
0.523579 + 0.851977i \(0.324597\pi\)
\(564\) −6.98010 −0.293915
\(565\) 0 0
\(566\) −6.80753 −0.286142
\(567\) −1.77132 −0.0743885
\(568\) 12.4820 0.523734
\(569\) −7.84639 −0.328938 −0.164469 0.986382i \(-0.552591\pi\)
−0.164469 + 0.986382i \(0.552591\pi\)
\(570\) 0 0
\(571\) 33.9814 1.42208 0.711040 0.703152i \(-0.248225\pi\)
0.711040 + 0.703152i \(0.248225\pi\)
\(572\) −42.7596 −1.78787
\(573\) 7.41522 0.309775
\(574\) 7.08117 0.295563
\(575\) 0 0
\(576\) −2.10851 −0.0878545
\(577\) 10.2218 0.425538 0.212769 0.977103i \(-0.431752\pi\)
0.212769 + 0.977103i \(0.431752\pi\)
\(578\) 1.00000 0.0415945
\(579\) −6.26452 −0.260345
\(580\) 0 0
\(581\) 11.0408 0.458051
\(582\) −7.13644 −0.295815
\(583\) −8.04904 −0.333357
\(584\) 10.5962 0.438473
\(585\) 0 0
\(586\) 27.1352 1.12094
\(587\) 1.62318 0.0669960 0.0334980 0.999439i \(-0.489335\pi\)
0.0334980 + 0.999439i \(0.489335\pi\)
\(588\) 0.944189 0.0389377
\(589\) −32.4831 −1.33844
\(590\) 0 0
\(591\) 10.8994 0.448343
\(592\) 8.27542 0.340117
\(593\) −38.4450 −1.57875 −0.789373 0.613914i \(-0.789594\pi\)
−0.789373 + 0.613914i \(0.789594\pi\)
\(594\) 31.2440 1.28196
\(595\) 0 0
\(596\) 2.93671 0.120293
\(597\) −24.5631 −1.00530
\(598\) 4.72290 0.193134
\(599\) −35.5424 −1.45222 −0.726112 0.687576i \(-0.758675\pi\)
−0.726112 + 0.687576i \(0.758675\pi\)
\(600\) 0 0
\(601\) −2.27757 −0.0929039 −0.0464520 0.998921i \(-0.514791\pi\)
−0.0464520 + 0.998921i \(0.514791\pi\)
\(602\) 0.272148 0.0110919
\(603\) 18.4495 0.751321
\(604\) −8.47874 −0.344995
\(605\) 0 0
\(606\) 0.571466 0.0232142
\(607\) −26.2815 −1.06673 −0.533367 0.845884i \(-0.679074\pi\)
−0.533367 + 0.845884i \(0.679074\pi\)
\(608\) 3.14658 0.127611
\(609\) 5.22101 0.211566
\(610\) 0 0
\(611\) −48.8003 −1.97425
\(612\) 2.10851 0.0852313
\(613\) 5.46121 0.220576 0.110288 0.993900i \(-0.464823\pi\)
0.110288 + 0.993900i \(0.464823\pi\)
\(614\) 24.9786 1.00805
\(615\) 0 0
\(616\) 6.47760 0.260990
\(617\) −37.4904 −1.50930 −0.754652 0.656125i \(-0.772194\pi\)
−0.754652 + 0.656125i \(0.772194\pi\)
\(618\) 10.0752 0.405285
\(619\) −25.9784 −1.04416 −0.522080 0.852896i \(-0.674844\pi\)
−0.522080 + 0.852896i \(0.674844\pi\)
\(620\) 0 0
\(621\) −3.45097 −0.138483
\(622\) 20.4702 0.820779
\(623\) 6.41380 0.256964
\(624\) 6.23274 0.249509
\(625\) 0 0
\(626\) −7.84620 −0.313597
\(627\) −19.2447 −0.768561
\(628\) 4.58849 0.183101
\(629\) −8.27542 −0.329962
\(630\) 0 0
\(631\) −19.8832 −0.791539 −0.395769 0.918350i \(-0.629522\pi\)
−0.395769 + 0.918350i \(0.629522\pi\)
\(632\) −15.8721 −0.631357
\(633\) −17.9717 −0.714312
\(634\) 31.3528 1.24518
\(635\) 0 0
\(636\) 1.17325 0.0465222
\(637\) 6.60115 0.261547
\(638\) 35.8187 1.41807
\(639\) −26.3184 −1.04114
\(640\) 0 0
\(641\) 0.590754 0.0233334 0.0116667 0.999932i \(-0.496286\pi\)
0.0116667 + 0.999932i \(0.496286\pi\)
\(642\) −2.33667 −0.0922212
\(643\) 28.1565 1.11038 0.555192 0.831722i \(-0.312645\pi\)
0.555192 + 0.831722i \(0.312645\pi\)
\(644\) −0.715465 −0.0281933
\(645\) 0 0
\(646\) −3.14658 −0.123801
\(647\) −11.0568 −0.434688 −0.217344 0.976095i \(-0.569739\pi\)
−0.217344 + 0.976095i \(0.569739\pi\)
\(648\) 1.77132 0.0695841
\(649\) 42.2479 1.65838
\(650\) 0 0
\(651\) 9.74715 0.382021
\(652\) −12.9615 −0.507613
\(653\) 27.8917 1.09149 0.545744 0.837952i \(-0.316247\pi\)
0.545744 + 0.837952i \(0.316247\pi\)
\(654\) −2.27270 −0.0888696
\(655\) 0 0
\(656\) −7.08117 −0.276473
\(657\) −22.3421 −0.871648
\(658\) 7.39269 0.288197
\(659\) −12.7077 −0.495022 −0.247511 0.968885i \(-0.579613\pi\)
−0.247511 + 0.968885i \(0.579613\pi\)
\(660\) 0 0
\(661\) −17.5119 −0.681135 −0.340568 0.940220i \(-0.610619\pi\)
−0.340568 + 0.940220i \(0.610619\pi\)
\(662\) 8.54057 0.331939
\(663\) −6.23274 −0.242059
\(664\) −11.0408 −0.428467
\(665\) 0 0
\(666\) −17.4488 −0.676126
\(667\) −3.95625 −0.153187
\(668\) 9.29757 0.359734
\(669\) −2.82698 −0.109297
\(670\) 0 0
\(671\) 35.2690 1.36154
\(672\) −0.944189 −0.0364229
\(673\) −40.2926 −1.55317 −0.776584 0.630014i \(-0.783049\pi\)
−0.776584 + 0.630014i \(0.783049\pi\)
\(674\) 8.28173 0.319000
\(675\) 0 0
\(676\) 30.5752 1.17597
\(677\) −38.6926 −1.48708 −0.743539 0.668692i \(-0.766854\pi\)
−0.743539 + 0.668692i \(0.766854\pi\)
\(678\) −4.76021 −0.182815
\(679\) 7.55828 0.290060
\(680\) 0 0
\(681\) −6.77795 −0.259732
\(682\) 66.8702 2.56059
\(683\) 21.9118 0.838431 0.419215 0.907887i \(-0.362305\pi\)
0.419215 + 0.907887i \(0.362305\pi\)
\(684\) −6.63459 −0.253680
\(685\) 0 0
\(686\) −1.00000 −0.0381802
\(687\) 19.3297 0.737472
\(688\) −0.272148 −0.0103755
\(689\) 8.20256 0.312493
\(690\) 0 0
\(691\) 27.5037 1.04629 0.523144 0.852244i \(-0.324759\pi\)
0.523144 + 0.852244i \(0.324759\pi\)
\(692\) −9.43425 −0.358636
\(693\) −13.6581 −0.518827
\(694\) −11.7797 −0.447150
\(695\) 0 0
\(696\) −5.22101 −0.197902
\(697\) 7.08117 0.268219
\(698\) 28.7276 1.08736
\(699\) −13.7665 −0.520698
\(700\) 0 0
\(701\) −19.8851 −0.751050 −0.375525 0.926812i \(-0.622537\pi\)
−0.375525 + 0.926812i \(0.622537\pi\)
\(702\) −31.8400 −1.20172
\(703\) 26.0393 0.982090
\(704\) −6.47760 −0.244134
\(705\) 0 0
\(706\) −9.10674 −0.342737
\(707\) −0.605246 −0.0227626
\(708\) −6.15815 −0.231437
\(709\) 23.0108 0.864188 0.432094 0.901828i \(-0.357775\pi\)
0.432094 + 0.901828i \(0.357775\pi\)
\(710\) 0 0
\(711\) 33.4664 1.25509
\(712\) −6.41380 −0.240367
\(713\) −7.38596 −0.276607
\(714\) 0.944189 0.0353354
\(715\) 0 0
\(716\) −2.84058 −0.106157
\(717\) −26.2864 −0.981683
\(718\) 10.5395 0.393330
\(719\) 30.8148 1.14920 0.574599 0.818435i \(-0.305158\pi\)
0.574599 + 0.818435i \(0.305158\pi\)
\(720\) 0 0
\(721\) −10.6708 −0.397400
\(722\) −9.09903 −0.338631
\(723\) 2.32635 0.0865177
\(724\) −3.01811 −0.112167
\(725\) 0 0
\(726\) 29.2314 1.08488
\(727\) 0.215845 0.00800526 0.00400263 0.999992i \(-0.498726\pi\)
0.00400263 + 0.999992i \(0.498726\pi\)
\(728\) −6.60115 −0.244655
\(729\) 9.92775 0.367694
\(730\) 0 0
\(731\) 0.272148 0.0100657
\(732\) −5.14088 −0.190013
\(733\) 4.16143 0.153706 0.0768530 0.997042i \(-0.475513\pi\)
0.0768530 + 0.997042i \(0.475513\pi\)
\(734\) −6.19187 −0.228546
\(735\) 0 0
\(736\) 0.715465 0.0263724
\(737\) 56.6791 2.08780
\(738\) 14.9307 0.549607
\(739\) 22.2623 0.818931 0.409465 0.912326i \(-0.365715\pi\)
0.409465 + 0.912326i \(0.365715\pi\)
\(740\) 0 0
\(741\) 19.6118 0.720458
\(742\) −1.24260 −0.0456171
\(743\) 35.4588 1.30086 0.650429 0.759567i \(-0.274589\pi\)
0.650429 + 0.759567i \(0.274589\pi\)
\(744\) −9.74715 −0.357348
\(745\) 0 0
\(746\) 6.40599 0.234540
\(747\) 23.2797 0.851759
\(748\) 6.47760 0.236845
\(749\) 2.47479 0.0904270
\(750\) 0 0
\(751\) −21.8355 −0.796790 −0.398395 0.917214i \(-0.630433\pi\)
−0.398395 + 0.917214i \(0.630433\pi\)
\(752\) −7.39269 −0.269584
\(753\) 7.35559 0.268052
\(754\) −36.5019 −1.32932
\(755\) 0 0
\(756\) 4.82340 0.175425
\(757\) −32.4582 −1.17971 −0.589857 0.807508i \(-0.700816\pi\)
−0.589857 + 0.807508i \(0.700816\pi\)
\(758\) −4.47057 −0.162378
\(759\) −4.37584 −0.158833
\(760\) 0 0
\(761\) 36.5248 1.32402 0.662012 0.749493i \(-0.269703\pi\)
0.662012 + 0.749493i \(0.269703\pi\)
\(762\) 10.1856 0.368986
\(763\) 2.40704 0.0871407
\(764\) 7.85353 0.284131
\(765\) 0 0
\(766\) −24.9589 −0.901801
\(767\) −43.0538 −1.55458
\(768\) 0.944189 0.0340705
\(769\) −22.8778 −0.824994 −0.412497 0.910959i \(-0.635343\pi\)
−0.412497 + 0.910959i \(0.635343\pi\)
\(770\) 0 0
\(771\) −28.5979 −1.02993
\(772\) −6.63482 −0.238792
\(773\) 34.1082 1.22679 0.613394 0.789777i \(-0.289804\pi\)
0.613394 + 0.789777i \(0.289804\pi\)
\(774\) 0.573825 0.0206257
\(775\) 0 0
\(776\) −7.55828 −0.271326
\(777\) −7.81356 −0.280310
\(778\) 12.9696 0.464983
\(779\) −22.2815 −0.798317
\(780\) 0 0
\(781\) −80.8536 −2.89317
\(782\) −0.715465 −0.0255850
\(783\) 26.6715 0.953163
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) −1.10062 −0.0392579
\(787\) 14.8271 0.528530 0.264265 0.964450i \(-0.414871\pi\)
0.264265 + 0.964450i \(0.414871\pi\)
\(788\) 11.5437 0.411227
\(789\) 13.0335 0.464003
\(790\) 0 0
\(791\) 5.04159 0.179258
\(792\) 13.6581 0.485318
\(793\) −35.9417 −1.27633
\(794\) 29.5224 1.04771
\(795\) 0 0
\(796\) −26.0150 −0.922078
\(797\) 47.0924 1.66810 0.834049 0.551691i \(-0.186017\pi\)
0.834049 + 0.551691i \(0.186017\pi\)
\(798\) −2.97097 −0.105171
\(799\) 7.39269 0.261535
\(800\) 0 0
\(801\) 13.5235 0.477831
\(802\) 33.3973 1.17930
\(803\) −68.6378 −2.42217
\(804\) −8.26167 −0.291367
\(805\) 0 0
\(806\) −68.1457 −2.40033
\(807\) −11.7255 −0.412759
\(808\) 0.605246 0.0212925
\(809\) −18.0195 −0.633530 −0.316765 0.948504i \(-0.602597\pi\)
−0.316765 + 0.948504i \(0.602597\pi\)
\(810\) 0 0
\(811\) −37.6389 −1.32168 −0.660841 0.750526i \(-0.729800\pi\)
−0.660841 + 0.750526i \(0.729800\pi\)
\(812\) 5.52962 0.194052
\(813\) 11.4883 0.402912
\(814\) −53.6048 −1.87885
\(815\) 0 0
\(816\) −0.944189 −0.0330532
\(817\) −0.856334 −0.0299593
\(818\) 7.96757 0.278580
\(819\) 13.9186 0.486355
\(820\) 0 0
\(821\) −7.43512 −0.259487 −0.129744 0.991548i \(-0.541415\pi\)
−0.129744 + 0.991548i \(0.541415\pi\)
\(822\) −19.7710 −0.689593
\(823\) 6.52273 0.227368 0.113684 0.993517i \(-0.463735\pi\)
0.113684 + 0.993517i \(0.463735\pi\)
\(824\) 10.6708 0.371734
\(825\) 0 0
\(826\) 6.52216 0.226935
\(827\) 27.0754 0.941504 0.470752 0.882266i \(-0.343983\pi\)
0.470752 + 0.882266i \(0.343983\pi\)
\(828\) −1.50856 −0.0524262
\(829\) −34.5150 −1.19876 −0.599379 0.800466i \(-0.704586\pi\)
−0.599379 + 0.800466i \(0.704586\pi\)
\(830\) 0 0
\(831\) 25.0697 0.869658
\(832\) 6.60115 0.228854
\(833\) −1.00000 −0.0346479
\(834\) −3.51671 −0.121774
\(835\) 0 0
\(836\) −20.3823 −0.704936
\(837\) 49.7934 1.72111
\(838\) −4.82584 −0.166706
\(839\) 37.8184 1.30563 0.652817 0.757515i \(-0.273587\pi\)
0.652817 + 0.757515i \(0.273587\pi\)
\(840\) 0 0
\(841\) 1.57669 0.0543685
\(842\) 0.992428 0.0342013
\(843\) −8.59129 −0.295900
\(844\) −19.0340 −0.655179
\(845\) 0 0
\(846\) 15.5875 0.535910
\(847\) −30.9593 −1.06377
\(848\) 1.24260 0.0426709
\(849\) −6.42759 −0.220594
\(850\) 0 0
\(851\) 5.92077 0.202961
\(852\) 11.7854 0.403761
\(853\) −2.31438 −0.0792427 −0.0396214 0.999215i \(-0.512615\pi\)
−0.0396214 + 0.999215i \(0.512615\pi\)
\(854\) 5.44476 0.186316
\(855\) 0 0
\(856\) −2.47479 −0.0845867
\(857\) −17.5385 −0.599105 −0.299553 0.954080i \(-0.596837\pi\)
−0.299553 + 0.954080i \(0.596837\pi\)
\(858\) −40.3732 −1.37832
\(859\) −17.2802 −0.589593 −0.294796 0.955560i \(-0.595252\pi\)
−0.294796 + 0.955560i \(0.595252\pi\)
\(860\) 0 0
\(861\) 6.68597 0.227857
\(862\) −4.23083 −0.144103
\(863\) 15.4600 0.526264 0.263132 0.964760i \(-0.415245\pi\)
0.263132 + 0.964760i \(0.415245\pi\)
\(864\) −4.82340 −0.164095
\(865\) 0 0
\(866\) −4.54830 −0.154557
\(867\) 0.944189 0.0320663
\(868\) 10.3233 0.350396
\(869\) 102.813 3.48769
\(870\) 0 0
\(871\) −57.7602 −1.95713
\(872\) −2.40704 −0.0815127
\(873\) 15.9367 0.539375
\(874\) 2.25127 0.0761503
\(875\) 0 0
\(876\) 10.0048 0.338031
\(877\) −48.6209 −1.64181 −0.820906 0.571063i \(-0.806531\pi\)
−0.820906 + 0.571063i \(0.806531\pi\)
\(878\) 20.1943 0.681526
\(879\) 25.6208 0.864167
\(880\) 0 0
\(881\) −18.8100 −0.633724 −0.316862 0.948472i \(-0.602629\pi\)
−0.316862 + 0.948472i \(0.602629\pi\)
\(882\) −2.10851 −0.0709971
\(883\) −2.98271 −0.100376 −0.0501881 0.998740i \(-0.515982\pi\)
−0.0501881 + 0.998740i \(0.515982\pi\)
\(884\) −6.60115 −0.222021
\(885\) 0 0
\(886\) 7.95689 0.267317
\(887\) 8.81549 0.295995 0.147998 0.988988i \(-0.452717\pi\)
0.147998 + 0.988988i \(0.452717\pi\)
\(888\) 7.81356 0.262206
\(889\) −10.7877 −0.361807
\(890\) 0 0
\(891\) −11.4739 −0.384391
\(892\) −2.99408 −0.100249
\(893\) −23.2617 −0.778423
\(894\) 2.77281 0.0927368
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 4.45931 0.148892
\(898\) −5.34314 −0.178303
\(899\) 57.0839 1.90386
\(900\) 0 0
\(901\) −1.24260 −0.0413969
\(902\) 45.8690 1.52727
\(903\) 0.256959 0.00855105
\(904\) −5.04159 −0.167681
\(905\) 0 0
\(906\) −8.00553 −0.265966
\(907\) −23.3580 −0.775589 −0.387794 0.921746i \(-0.626763\pi\)
−0.387794 + 0.921746i \(0.626763\pi\)
\(908\) −7.17860 −0.238230
\(909\) −1.27616 −0.0423277
\(910\) 0 0
\(911\) 40.5921 1.34488 0.672438 0.740153i \(-0.265247\pi\)
0.672438 + 0.740153i \(0.265247\pi\)
\(912\) 2.97097 0.0983786
\(913\) 71.5181 2.36690
\(914\) −8.78868 −0.290704
\(915\) 0 0
\(916\) 20.4722 0.676422
\(917\) 1.16568 0.0384941
\(918\) 4.82340 0.159196
\(919\) −18.4602 −0.608947 −0.304473 0.952521i \(-0.598480\pi\)
−0.304473 + 0.952521i \(0.598480\pi\)
\(920\) 0 0
\(921\) 23.5845 0.777137
\(922\) 21.7515 0.716347
\(923\) 82.3958 2.71209
\(924\) 6.11608 0.201204
\(925\) 0 0
\(926\) 18.4736 0.607080
\(927\) −22.4994 −0.738977
\(928\) −5.52962 −0.181519
\(929\) 34.7395 1.13977 0.569884 0.821725i \(-0.306988\pi\)
0.569884 + 0.821725i \(0.306988\pi\)
\(930\) 0 0
\(931\) 3.14658 0.103125
\(932\) −14.5803 −0.477592
\(933\) 19.3277 0.632761
\(934\) 0.163658 0.00535506
\(935\) 0 0
\(936\) −13.9186 −0.454943
\(937\) −28.8524 −0.942566 −0.471283 0.881982i \(-0.656209\pi\)
−0.471283 + 0.881982i \(0.656209\pi\)
\(938\) 8.75002 0.285698
\(939\) −7.40830 −0.241761
\(940\) 0 0
\(941\) 33.3643 1.08764 0.543822 0.839200i \(-0.316977\pi\)
0.543822 + 0.839200i \(0.316977\pi\)
\(942\) 4.33240 0.141157
\(943\) −5.06633 −0.164983
\(944\) −6.52216 −0.212278
\(945\) 0 0
\(946\) 1.76286 0.0573156
\(947\) 59.0329 1.91831 0.959156 0.282876i \(-0.0912886\pi\)
0.959156 + 0.282876i \(0.0912886\pi\)
\(948\) −14.9862 −0.486730
\(949\) 69.9470 2.27057
\(950\) 0 0
\(951\) 29.6030 0.959944
\(952\) 1.00000 0.0324102
\(953\) −13.5500 −0.438928 −0.219464 0.975621i \(-0.570431\pi\)
−0.219464 + 0.975621i \(0.570431\pi\)
\(954\) −2.62002 −0.0848263
\(955\) 0 0
\(956\) −27.8402 −0.900415
\(957\) 33.8196 1.09323
\(958\) 25.1540 0.812688
\(959\) 20.9397 0.676177
\(960\) 0 0
\(961\) 75.5706 2.43776
\(962\) 54.6273 1.76125
\(963\) 5.21812 0.168152
\(964\) 2.46386 0.0793555
\(965\) 0 0
\(966\) −0.675535 −0.0217350
\(967\) 54.7241 1.75981 0.879904 0.475151i \(-0.157607\pi\)
0.879904 + 0.475151i \(0.157607\pi\)
\(968\) 30.9593 0.995070
\(969\) −2.97097 −0.0954412
\(970\) 0 0
\(971\) −11.2224 −0.360145 −0.180072 0.983653i \(-0.557633\pi\)
−0.180072 + 0.983653i \(0.557633\pi\)
\(972\) 16.1427 0.517776
\(973\) 3.72458 0.119405
\(974\) −28.8860 −0.925567
\(975\) 0 0
\(976\) −5.44476 −0.174283
\(977\) 44.3382 1.41850 0.709252 0.704955i \(-0.249033\pi\)
0.709252 + 0.704955i \(0.249033\pi\)
\(978\) −12.2381 −0.391333
\(979\) 41.5460 1.32782
\(980\) 0 0
\(981\) 5.07526 0.162041
\(982\) −4.17428 −0.133207
\(983\) 5.47897 0.174752 0.0873759 0.996175i \(-0.472152\pi\)
0.0873759 + 0.996175i \(0.472152\pi\)
\(984\) −6.68597 −0.213141
\(985\) 0 0
\(986\) 5.52962 0.176099
\(987\) 6.98010 0.222179
\(988\) 20.7711 0.660816
\(989\) −0.194712 −0.00619149
\(990\) 0 0
\(991\) −3.48863 −0.110820 −0.0554100 0.998464i \(-0.517647\pi\)
−0.0554100 + 0.998464i \(0.517647\pi\)
\(992\) −10.3233 −0.327765
\(993\) 8.06391 0.255901
\(994\) −12.4820 −0.395906
\(995\) 0 0
\(996\) −10.4246 −0.330317
\(997\) −35.4114 −1.12149 −0.560746 0.827988i \(-0.689485\pi\)
−0.560746 + 0.827988i \(0.689485\pi\)
\(998\) 20.3782 0.645060
\(999\) −39.9156 −1.26287
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5950.2.a.cc.1.5 7
5.2 odd 4 1190.2.e.g.239.10 yes 14
5.3 odd 4 1190.2.e.g.239.5 14
5.4 even 2 5950.2.a.cb.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1190.2.e.g.239.5 14 5.3 odd 4
1190.2.e.g.239.10 yes 14 5.2 odd 4
5950.2.a.cb.1.3 7 5.4 even 2
5950.2.a.cc.1.5 7 1.1 even 1 trivial