Newspace parameters
| Level: | \( N \) | \(=\) | \( 595 = 5 \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 595.x (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(4.75109892027\) |
| Analytic rank: | \(0\) |
| Dimension: | \(92\) |
| Relative dimension: | \(46\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 16.1 | −1.39384 | + | 2.41421i | −1.84849 | + | 1.06723i | −2.88560 | − | 4.99800i | 0.866025 | + | 0.500000i | − | 5.95018i | 2.49361 | + | 0.884254i | 10.5129 | 0.777940 | − | 1.34743i | −2.41421 | + | 1.39384i | |||
| 16.2 | −1.39384 | + | 2.41421i | 1.84849 | − | 1.06723i | −2.88560 | − | 4.99800i | −0.866025 | − | 0.500000i | 5.95018i | −2.49361 | − | 0.884254i | 10.5129 | 0.777940 | − | 1.34743i | 2.41421 | − | 1.39384i | ||||
| 16.3 | −1.27624 | + | 2.21052i | −2.06818 | + | 1.19407i | −2.25759 | − | 3.91027i | −0.866025 | − | 0.500000i | − | 6.09567i | −2.39657 | + | 1.12092i | 6.41999 | 1.35159 | − | 2.34102i | 2.21052 | − | 1.27624i | |||
| 16.4 | −1.27624 | + | 2.21052i | 2.06818 | − | 1.19407i | −2.25759 | − | 3.91027i | 0.866025 | + | 0.500000i | 6.09567i | 2.39657 | − | 1.12092i | 6.41999 | 1.35159 | − | 2.34102i | −2.21052 | + | 1.27624i | ||||
| 16.5 | −1.15797 | + | 2.00566i | −1.02661 | + | 0.592714i | −1.68177 | − | 2.91291i | 0.866025 | + | 0.500000i | − | 2.74537i | −2.40091 | − | 1.11159i | 3.15787 | −0.797381 | + | 1.38110i | −2.00566 | + | 1.15797i | |||
| 16.6 | −1.15797 | + | 2.00566i | 1.02661 | − | 0.592714i | −1.68177 | − | 2.91291i | −0.866025 | − | 0.500000i | 2.74537i | 2.40091 | + | 1.11159i | 3.15787 | −0.797381 | + | 1.38110i | 2.00566 | − | 1.15797i | ||||
| 16.7 | −1.00968 | + | 1.74882i | −2.89186 | + | 1.66962i | −1.03890 | − | 1.79943i | −0.866025 | − | 0.500000i | − | 6.74312i | 2.60766 | − | 0.447341i | 0.157121 | 4.07525 | − | 7.05854i | 1.74882 | − | 1.00968i | |||
| 16.8 | −1.00968 | + | 1.74882i | 2.89186 | − | 1.66962i | −1.03890 | − | 1.79943i | 0.866025 | + | 0.500000i | 6.74312i | −2.60766 | + | 0.447341i | 0.157121 | 4.07525 | − | 7.05854i | −1.74882 | + | 1.00968i | ||||
| 16.9 | −1.00254 | + | 1.73645i | −0.439248 | + | 0.253600i | −1.01016 | − | 1.74965i | 0.866025 | + | 0.500000i | − | 1.01697i | 0.111277 | + | 2.64341i | 0.0407467 | −1.37137 | + | 2.37529i | −1.73645 | + | 1.00254i | |||
| 16.10 | −1.00254 | + | 1.73645i | 0.439248 | − | 0.253600i | −1.01016 | − | 1.74965i | −0.866025 | − | 0.500000i | 1.01697i | −0.111277 | − | 2.64341i | 0.0407467 | −1.37137 | + | 2.37529i | 1.73645 | − | 1.00254i | ||||
| 16.11 | −0.837274 | + | 1.45020i | −1.69643 | + | 0.979434i | −0.402056 | − | 0.696381i | 0.866025 | + | 0.500000i | − | 3.28022i | 1.19780 | − | 2.35908i | −2.00257 | 0.418584 | − | 0.725008i | −1.45020 | + | 0.837274i | |||
| 16.12 | −0.837274 | + | 1.45020i | 1.69643 | − | 0.979434i | −0.402056 | − | 0.696381i | −0.866025 | − | 0.500000i | 3.28022i | −1.19780 | + | 2.35908i | −2.00257 | 0.418584 | − | 0.725008i | 1.45020 | − | 0.837274i | ||||
| 16.13 | −0.754544 | + | 1.30691i | −1.14054 | + | 0.658489i | −0.138672 | − | 0.240187i | −0.866025 | − | 0.500000i | − | 1.98743i | 2.59066 | + | 0.537082i | −2.59964 | −0.632785 | + | 1.09602i | 1.30691 | − | 0.754544i | |||
| 16.14 | −0.754544 | + | 1.30691i | 1.14054 | − | 0.658489i | −0.138672 | − | 0.240187i | 0.866025 | + | 0.500000i | 1.98743i | −2.59066 | − | 0.537082i | −2.59964 | −0.632785 | + | 1.09602i | −1.30691 | + | 0.754544i | ||||
| 16.15 | −0.689672 | + | 1.19455i | −0.402406 | + | 0.232329i | 0.0487037 | + | 0.0843574i | −0.866025 | − | 0.500000i | − | 0.640925i | −2.48784 | − | 0.900371i | −2.89305 | −1.39205 | + | 2.41109i | 1.19455 | − | 0.689672i | |||
| 16.16 | −0.689672 | + | 1.19455i | 0.402406 | − | 0.232329i | 0.0487037 | + | 0.0843574i | 0.866025 | + | 0.500000i | 0.640925i | 2.48784 | + | 0.900371i | −2.89305 | −1.39205 | + | 2.41109i | −1.19455 | + | 0.689672i | ||||
| 16.17 | −0.420367 | + | 0.728097i | −1.87558 | + | 1.08286i | 0.646583 | + | 1.11991i | −0.866025 | − | 0.500000i | − | 1.82080i | −0.576334 | + | 2.58222i | −2.76868 | 0.845190 | − | 1.46391i | 0.728097 | − | 0.420367i | |||
| 16.18 | −0.420367 | + | 0.728097i | 1.87558 | − | 1.08286i | 0.646583 | + | 1.11991i | 0.866025 | + | 0.500000i | 1.82080i | 0.576334 | − | 2.58222i | −2.76868 | 0.845190 | − | 1.46391i | −0.728097 | + | 0.420367i | ||||
| 16.19 | −0.349678 | + | 0.605661i | −1.89728 | + | 1.09540i | 0.755450 | + | 1.30848i | 0.866025 | + | 0.500000i | − | 1.53215i | 0.894806 | − | 2.48984i | −2.45537 | 0.899791 | − | 1.55848i | −0.605661 | + | 0.349678i | |||
| 16.20 | −0.349678 | + | 0.605661i | 1.89728 | − | 1.09540i | 0.755450 | + | 1.30848i | −0.866025 | − | 0.500000i | 1.53215i | −0.894806 | + | 2.48984i | −2.45537 | 0.899791 | − | 1.55848i | 0.605661 | − | 0.349678i | ||||
| See all 92 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 7.c | even | 3 | 1 | inner |
| 17.b | even | 2 | 1 | inner |
| 119.j | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 595.2.x.b | ✓ | 92 |
| 7.c | even | 3 | 1 | inner | 595.2.x.b | ✓ | 92 |
| 17.b | even | 2 | 1 | inner | 595.2.x.b | ✓ | 92 |
| 119.j | even | 6 | 1 | inner | 595.2.x.b | ✓ | 92 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 595.2.x.b | ✓ | 92 | 1.a | even | 1 | 1 | trivial |
| 595.2.x.b | ✓ | 92 | 7.c | even | 3 | 1 | inner |
| 595.2.x.b | ✓ | 92 | 17.b | even | 2 | 1 | inner |
| 595.2.x.b | ✓ | 92 | 119.j | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{46} + 36 T_{2}^{44} + 739 T_{2}^{42} + 10338 T_{2}^{40} + 6 T_{2}^{39} + 109093 T_{2}^{38} + \cdots + 86436 \)
acting on \(S_{2}^{\mathrm{new}}(595, [\chi])\).