Properties

Label 595.2.x.a.16.1
Level $595$
Weight $2$
Character 595.16
Analytic conductor $4.751$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [595,2,Mod(16,595)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("595.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(595, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 595 = 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 595.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.75109892027\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 16.1
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 595.16
Dual form 595.2.x.a.186.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.59808 + 1.50000i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-0.866025 - 0.500000i) q^{5} +(-0.866025 - 2.50000i) q^{7} +(3.00000 - 5.19615i) q^{9} +(1.73205 - 1.00000i) q^{11} +(-5.19615 - 3.00000i) q^{12} -2.00000 q^{13} +3.00000 q^{15} +(-2.00000 + 3.46410i) q^{16} +(-1.13397 - 3.96410i) q^{17} +(2.00000 - 3.46410i) q^{19} -2.00000i q^{20} +(6.00000 + 5.19615i) q^{21} +(0.866025 + 0.500000i) q^{23} +(0.500000 + 0.866025i) q^{25} +9.00000i q^{27} +(3.46410 - 4.00000i) q^{28} +(5.19615 - 3.00000i) q^{31} +(-3.00000 + 5.19615i) q^{33} +(-0.500000 + 2.59808i) q^{35} +12.0000 q^{36} +(4.33013 + 2.50000i) q^{37} +(5.19615 - 3.00000i) q^{39} +6.00000i q^{41} +12.0000 q^{43} +(3.46410 + 2.00000i) q^{44} +(-5.19615 + 3.00000i) q^{45} +(4.00000 - 6.92820i) q^{47} -12.0000i q^{48} +(-5.50000 + 4.33013i) q^{49} +(8.89230 + 8.59808i) q^{51} +(-2.00000 - 3.46410i) q^{52} +(-4.00000 - 6.92820i) q^{53} -2.00000 q^{55} +12.0000i q^{57} +(-4.50000 - 7.79423i) q^{59} +(3.00000 + 5.19615i) q^{60} +(1.73205 + 1.00000i) q^{61} +(-15.5885 - 3.00000i) q^{63} -8.00000 q^{64} +(1.73205 + 1.00000i) q^{65} +(-1.00000 - 1.73205i) q^{67} +(5.73205 - 5.92820i) q^{68} -3.00000 q^{69} -16.0000i q^{71} +(-11.2583 + 6.50000i) q^{73} +(-2.59808 - 1.50000i) q^{75} +8.00000 q^{76} +(-4.00000 - 3.46410i) q^{77} +(-6.92820 - 4.00000i) q^{79} +(3.46410 - 2.00000i) q^{80} +(-4.50000 - 7.79423i) q^{81} +6.00000 q^{83} +(-3.00000 + 15.5885i) q^{84} +(-1.00000 + 4.00000i) q^{85} +(6.50000 - 11.2583i) q^{89} +(1.73205 + 5.00000i) q^{91} +2.00000i q^{92} +(-9.00000 + 15.5885i) q^{93} +(-3.46410 + 2.00000i) q^{95} -5.00000i q^{97} -12.0000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 12 q^{9} - 8 q^{13} + 12 q^{15} - 8 q^{16} - 8 q^{17} + 8 q^{19} + 24 q^{21} + 2 q^{25} - 12 q^{33} - 2 q^{35} + 48 q^{36} + 48 q^{43} + 16 q^{47} - 22 q^{49} - 6 q^{51} - 8 q^{52} - 16 q^{53}+ \cdots - 36 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/595\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(171\) \(477\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(3\) −2.59808 + 1.50000i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) −0.866025 0.500000i −0.387298 0.223607i
\(6\) 0 0
\(7\) −0.866025 2.50000i −0.327327 0.944911i
\(8\) 0 0
\(9\) 3.00000 5.19615i 1.00000 1.73205i
\(10\) 0 0
\(11\) 1.73205 1.00000i 0.522233 0.301511i −0.215615 0.976478i \(-0.569176\pi\)
0.737848 + 0.674967i \(0.235842\pi\)
\(12\) −5.19615 3.00000i −1.50000 0.866025i
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 3.00000 0.774597
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) −1.13397 3.96410i −0.275029 0.961436i
\(18\) 0 0
\(19\) 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i \(-0.681602\pi\)
0.998899 + 0.0469020i \(0.0149348\pi\)
\(20\) 2.00000i 0.447214i
\(21\) 6.00000 + 5.19615i 1.30931 + 1.13389i
\(22\) 0 0
\(23\) 0.866025 + 0.500000i 0.180579 + 0.104257i 0.587565 0.809177i \(-0.300087\pi\)
−0.406986 + 0.913434i \(0.633420\pi\)
\(24\) 0 0
\(25\) 0.500000 + 0.866025i 0.100000 + 0.173205i
\(26\) 0 0
\(27\) 9.00000i 1.73205i
\(28\) 3.46410 4.00000i 0.654654 0.755929i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 5.19615 3.00000i 0.933257 0.538816i 0.0454165 0.998968i \(-0.485539\pi\)
0.887840 + 0.460152i \(0.152205\pi\)
\(32\) 0 0
\(33\) −3.00000 + 5.19615i −0.522233 + 0.904534i
\(34\) 0 0
\(35\) −0.500000 + 2.59808i −0.0845154 + 0.439155i
\(36\) 12.0000 2.00000
\(37\) 4.33013 + 2.50000i 0.711868 + 0.410997i 0.811752 0.584002i \(-0.198514\pi\)
−0.0998840 + 0.994999i \(0.531847\pi\)
\(38\) 0 0
\(39\) 5.19615 3.00000i 0.832050 0.480384i
\(40\) 0 0
\(41\) 6.00000i 0.937043i 0.883452 + 0.468521i \(0.155213\pi\)
−0.883452 + 0.468521i \(0.844787\pi\)
\(42\) 0 0
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) 3.46410 + 2.00000i 0.522233 + 0.301511i
\(45\) −5.19615 + 3.00000i −0.774597 + 0.447214i
\(46\) 0 0
\(47\) 4.00000 6.92820i 0.583460 1.01058i −0.411606 0.911362i \(-0.635032\pi\)
0.995066 0.0992202i \(-0.0316348\pi\)
\(48\) 12.0000i 1.73205i
\(49\) −5.50000 + 4.33013i −0.785714 + 0.618590i
\(50\) 0 0
\(51\) 8.89230 + 8.59808i 1.24517 + 1.20397i
\(52\) −2.00000 3.46410i −0.277350 0.480384i
\(53\) −4.00000 6.92820i −0.549442 0.951662i −0.998313 0.0580651i \(-0.981507\pi\)
0.448871 0.893597i \(-0.351826\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 12.0000i 1.58944i
\(58\) 0 0
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 3.00000 + 5.19615i 0.387298 + 0.670820i
\(61\) 1.73205 + 1.00000i 0.221766 + 0.128037i 0.606768 0.794879i \(-0.292466\pi\)
−0.385002 + 0.922916i \(0.625799\pi\)
\(62\) 0 0
\(63\) −15.5885 3.00000i −1.96396 0.377964i
\(64\) −8.00000 −1.00000
\(65\) 1.73205 + 1.00000i 0.214834 + 0.124035i
\(66\) 0 0
\(67\) −1.00000 1.73205i −0.122169 0.211604i 0.798454 0.602056i \(-0.205652\pi\)
−0.920623 + 0.390453i \(0.872318\pi\)
\(68\) 5.73205 5.92820i 0.695113 0.718900i
\(69\) −3.00000 −0.361158
\(70\) 0 0
\(71\) 16.0000i 1.89885i −0.313993 0.949425i \(-0.601667\pi\)
0.313993 0.949425i \(-0.398333\pi\)
\(72\) 0 0
\(73\) −11.2583 + 6.50000i −1.31769 + 0.760767i −0.983356 0.181688i \(-0.941844\pi\)
−0.334332 + 0.942455i \(0.608511\pi\)
\(74\) 0 0
\(75\) −2.59808 1.50000i −0.300000 0.173205i
\(76\) 8.00000 0.917663
\(77\) −4.00000 3.46410i −0.455842 0.394771i
\(78\) 0 0
\(79\) −6.92820 4.00000i −0.779484 0.450035i 0.0567635 0.998388i \(-0.481922\pi\)
−0.836247 + 0.548352i \(0.815255\pi\)
\(80\) 3.46410 2.00000i 0.387298 0.223607i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −3.00000 + 15.5885i −0.327327 + 1.70084i
\(85\) −1.00000 + 4.00000i −0.108465 + 0.433861i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.50000 11.2583i 0.688999 1.19338i −0.283164 0.959072i \(-0.591384\pi\)
0.972162 0.234309i \(-0.0752827\pi\)
\(90\) 0 0
\(91\) 1.73205 + 5.00000i 0.181568 + 0.524142i
\(92\) 2.00000i 0.208514i
\(93\) −9.00000 + 15.5885i −0.933257 + 1.61645i
\(94\) 0 0
\(95\) −3.46410 + 2.00000i −0.355409 + 0.205196i
\(96\) 0 0
\(97\) 5.00000i 0.507673i −0.967247 0.253837i \(-0.918307\pi\)
0.967247 0.253837i \(-0.0816925\pi\)
\(98\) 0 0
\(99\) 12.0000i 1.20605i
\(100\) −1.00000 + 1.73205i −0.100000 + 0.173205i
\(101\) 3.00000 + 5.19615i 0.298511 + 0.517036i 0.975796 0.218685i \(-0.0701767\pi\)
−0.677284 + 0.735721i \(0.736843\pi\)
\(102\) 0 0
\(103\) −7.00000 + 12.1244i −0.689730 + 1.19465i 0.282194 + 0.959357i \(0.408938\pi\)
−0.971925 + 0.235291i \(0.924396\pi\)
\(104\) 0 0
\(105\) −2.59808 7.50000i −0.253546 0.731925i
\(106\) 0 0
\(107\) −2.59808 1.50000i −0.251166 0.145010i 0.369132 0.929377i \(-0.379655\pi\)
−0.620298 + 0.784366i \(0.712988\pi\)
\(108\) −15.5885 + 9.00000i −1.50000 + 0.866025i
\(109\) 12.1244 7.00000i 1.16130 0.670478i 0.209687 0.977769i \(-0.432756\pi\)
0.951616 + 0.307290i \(0.0994222\pi\)
\(110\) 0 0
\(111\) −15.0000 −1.42374
\(112\) 10.3923 + 2.00000i 0.981981 + 0.188982i
\(113\) 18.0000i 1.69330i −0.532152 0.846649i \(-0.678617\pi\)
0.532152 0.846649i \(-0.321383\pi\)
\(114\) 0 0
\(115\) −0.500000 0.866025i −0.0466252 0.0807573i
\(116\) 0 0
\(117\) −6.00000 + 10.3923i −0.554700 + 0.960769i
\(118\) 0 0
\(119\) −8.92820 + 6.26795i −0.818447 + 0.574582i
\(120\) 0 0
\(121\) −3.50000 + 6.06218i −0.318182 + 0.551107i
\(122\) 0 0
\(123\) −9.00000 15.5885i −0.811503 1.40556i
\(124\) 10.3923 + 6.00000i 0.933257 + 0.538816i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) 0 0
\(129\) −31.1769 + 18.0000i −2.74497 + 1.58481i
\(130\) 0 0
\(131\) 10.3923 + 6.00000i 0.907980 + 0.524222i 0.879781 0.475380i \(-0.157689\pi\)
0.0281993 + 0.999602i \(0.491023\pi\)
\(132\) −12.0000 −1.04447
\(133\) −10.3923 2.00000i −0.901127 0.173422i
\(134\) 0 0
\(135\) 4.50000 7.79423i 0.387298 0.670820i
\(136\) 0 0
\(137\) −6.00000 10.3923i −0.512615 0.887875i −0.999893 0.0146279i \(-0.995344\pi\)
0.487278 0.873247i \(-0.337990\pi\)
\(138\) 0 0
\(139\) 2.00000i 0.169638i −0.996396 0.0848189i \(-0.972969\pi\)
0.996396 0.0848189i \(-0.0270312\pi\)
\(140\) −5.00000 + 1.73205i −0.422577 + 0.146385i
\(141\) 24.0000i 2.02116i
\(142\) 0 0
\(143\) −3.46410 + 2.00000i −0.289683 + 0.167248i
\(144\) 12.0000 + 20.7846i 1.00000 + 1.73205i
\(145\) 0 0
\(146\) 0 0
\(147\) 7.79423 19.5000i 0.642857 1.60833i
\(148\) 10.0000i 0.821995i
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) −8.00000 13.8564i −0.651031 1.12762i −0.982873 0.184284i \(-0.941004\pi\)
0.331842 0.943335i \(-0.392330\pi\)
\(152\) 0 0
\(153\) −24.0000 6.00000i −1.94029 0.485071i
\(154\) 0 0
\(155\) −6.00000 −0.481932
\(156\) 10.3923 + 6.00000i 0.832050 + 0.480384i
\(157\) 11.0000 + 19.0526i 0.877896 + 1.52056i 0.853646 + 0.520854i \(0.174386\pi\)
0.0242497 + 0.999706i \(0.492280\pi\)
\(158\) 0 0
\(159\) 20.7846 + 12.0000i 1.64833 + 0.951662i
\(160\) 0 0
\(161\) 0.500000 2.59808i 0.0394055 0.204757i
\(162\) 0 0
\(163\) 11.2583 + 6.50000i 0.881820 + 0.509119i 0.871258 0.490825i \(-0.163305\pi\)
0.0105623 + 0.999944i \(0.496638\pi\)
\(164\) −10.3923 + 6.00000i −0.811503 + 0.468521i
\(165\) 5.19615 3.00000i 0.404520 0.233550i
\(166\) 0 0
\(167\) 11.0000i 0.851206i −0.904910 0.425603i \(-0.860062\pi\)
0.904910 0.425603i \(-0.139938\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −12.0000 20.7846i −0.917663 1.58944i
\(172\) 12.0000 + 20.7846i 0.914991 + 1.58481i
\(173\) −5.19615 3.00000i −0.395056 0.228086i 0.289292 0.957241i \(-0.406580\pi\)
−0.684349 + 0.729155i \(0.739913\pi\)
\(174\) 0 0
\(175\) 1.73205 2.00000i 0.130931 0.151186i
\(176\) 8.00000i 0.603023i
\(177\) 23.3827 + 13.5000i 1.75755 + 1.01472i
\(178\) 0 0
\(179\) 4.50000 + 7.79423i 0.336346 + 0.582568i 0.983742 0.179585i \(-0.0574756\pi\)
−0.647397 + 0.762153i \(0.724142\pi\)
\(180\) −10.3923 6.00000i −0.774597 0.447214i
\(181\) 20.0000i 1.48659i −0.668965 0.743294i \(-0.733262\pi\)
0.668965 0.743294i \(-0.266738\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) −2.50000 4.33013i −0.183804 0.318357i
\(186\) 0 0
\(187\) −5.92820 5.73205i −0.433513 0.419169i
\(188\) 16.0000 1.16692
\(189\) 22.5000 7.79423i 1.63663 0.566947i
\(190\) 0 0
\(191\) 4.00000 6.92820i 0.289430 0.501307i −0.684244 0.729253i \(-0.739868\pi\)
0.973674 + 0.227946i \(0.0732010\pi\)
\(192\) 20.7846 12.0000i 1.50000 0.866025i
\(193\) 5.19615 3.00000i 0.374027 0.215945i −0.301189 0.953564i \(-0.597384\pi\)
0.675216 + 0.737620i \(0.264050\pi\)
\(194\) 0 0
\(195\) −6.00000 −0.429669
\(196\) −13.0000 5.19615i −0.928571 0.371154i
\(197\) 7.00000i 0.498729i 0.968410 + 0.249365i \(0.0802218\pi\)
−0.968410 + 0.249365i \(0.919778\pi\)
\(198\) 0 0
\(199\) 13.8564 8.00000i 0.982255 0.567105i 0.0793045 0.996850i \(-0.474730\pi\)
0.902950 + 0.429745i \(0.141397\pi\)
\(200\) 0 0
\(201\) 5.19615 + 3.00000i 0.366508 + 0.211604i
\(202\) 0 0
\(203\) 0 0
\(204\) −6.00000 + 24.0000i −0.420084 + 1.68034i
\(205\) 3.00000 5.19615i 0.209529 0.362915i
\(206\) 0 0
\(207\) 5.19615 3.00000i 0.361158 0.208514i
\(208\) 4.00000 6.92820i 0.277350 0.480384i
\(209\) 8.00000i 0.553372i
\(210\) 0 0
\(211\) 2.00000i 0.137686i 0.997628 + 0.0688428i \(0.0219307\pi\)
−0.997628 + 0.0688428i \(0.978069\pi\)
\(212\) 8.00000 13.8564i 0.549442 0.951662i
\(213\) 24.0000 + 41.5692i 1.64445 + 2.84828i
\(214\) 0 0
\(215\) −10.3923 6.00000i −0.708749 0.409197i
\(216\) 0 0
\(217\) −12.0000 10.3923i −0.814613 0.705476i
\(218\) 0 0
\(219\) 19.5000 33.7750i 1.31769 2.28230i
\(220\) −2.00000 3.46410i −0.134840 0.233550i
\(221\) 2.26795 + 7.92820i 0.152559 + 0.533309i
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) 6.00000 0.400000
\(226\) 0 0
\(227\) 9.52628 5.50000i 0.632281 0.365048i −0.149354 0.988784i \(-0.547719\pi\)
0.781635 + 0.623736i \(0.214386\pi\)
\(228\) −20.7846 + 12.0000i −1.37649 + 0.794719i
\(229\) −9.50000 + 16.4545i −0.627778 + 1.08734i 0.360219 + 0.932868i \(0.382702\pi\)
−0.987997 + 0.154475i \(0.950631\pi\)
\(230\) 0 0
\(231\) 15.5885 + 3.00000i 1.02565 + 0.197386i
\(232\) 0 0
\(233\) −18.1865 10.5000i −1.19144 0.687878i −0.232806 0.972523i \(-0.574791\pi\)
−0.958633 + 0.284645i \(0.908124\pi\)
\(234\) 0 0
\(235\) −6.92820 + 4.00000i −0.451946 + 0.260931i
\(236\) 9.00000 15.5885i 0.585850 1.01472i
\(237\) 24.0000 1.55897
\(238\) 0 0
\(239\) −11.0000 −0.711531 −0.355765 0.934575i \(-0.615780\pi\)
−0.355765 + 0.934575i \(0.615780\pi\)
\(240\) −6.00000 + 10.3923i −0.387298 + 0.670820i
\(241\) −13.8564 + 8.00000i −0.892570 + 0.515325i −0.874782 0.484516i \(-0.838996\pi\)
−0.0177875 + 0.999842i \(0.505662\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 4.00000i 0.256074i
\(245\) 6.92820 1.00000i 0.442627 0.0638877i
\(246\) 0 0
\(247\) −4.00000 + 6.92820i −0.254514 + 0.440831i
\(248\) 0 0
\(249\) −15.5885 + 9.00000i −0.987878 + 0.570352i
\(250\) 0 0
\(251\) −17.0000 −1.07303 −0.536515 0.843891i \(-0.680260\pi\)
−0.536515 + 0.843891i \(0.680260\pi\)
\(252\) −10.3923 30.0000i −0.654654 1.88982i
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) −3.40192 11.8923i −0.213037 0.744725i
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −9.00000 + 15.5885i −0.561405 + 0.972381i 0.435970 + 0.899961i \(0.356405\pi\)
−0.997374 + 0.0724199i \(0.976928\pi\)
\(258\) 0 0
\(259\) 2.50000 12.9904i 0.155342 0.807183i
\(260\) 4.00000i 0.248069i
\(261\) 0 0
\(262\) 0 0
\(263\) 4.00000 + 6.92820i 0.246651 + 0.427211i 0.962594 0.270947i \(-0.0873367\pi\)
−0.715944 + 0.698158i \(0.754003\pi\)
\(264\) 0 0
\(265\) 8.00000i 0.491436i
\(266\) 0 0
\(267\) 39.0000i 2.38676i
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) −5.19615 + 3.00000i −0.316815 + 0.182913i −0.649972 0.759958i \(-0.725219\pi\)
0.333157 + 0.942871i \(0.391886\pi\)
\(270\) 0 0
\(271\) 3.50000 6.06218i 0.212610 0.368251i −0.739921 0.672694i \(-0.765137\pi\)
0.952531 + 0.304443i \(0.0984703\pi\)
\(272\) 16.0000 + 4.00000i 0.970143 + 0.242536i
\(273\) −12.0000 10.3923i −0.726273 0.628971i
\(274\) 0 0
\(275\) 1.73205 + 1.00000i 0.104447 + 0.0603023i
\(276\) −3.00000 5.19615i −0.180579 0.312772i
\(277\) −19.0526 + 11.0000i −1.14476 + 0.660926i −0.947604 0.319447i \(-0.896503\pi\)
−0.197153 + 0.980373i \(0.563170\pi\)
\(278\) 0 0
\(279\) 36.0000i 2.15526i
\(280\) 0 0
\(281\) 17.0000 1.01413 0.507067 0.861906i \(-0.330729\pi\)
0.507067 + 0.861906i \(0.330729\pi\)
\(282\) 0 0
\(283\) 16.4545 9.50000i 0.978117 0.564716i 0.0764162 0.997076i \(-0.475652\pi\)
0.901701 + 0.432360i \(0.142319\pi\)
\(284\) 27.7128 16.0000i 1.64445 0.949425i
\(285\) 6.00000 10.3923i 0.355409 0.615587i
\(286\) 0 0
\(287\) 15.0000 5.19615i 0.885422 0.306719i
\(288\) 0 0
\(289\) −14.4282 + 8.99038i −0.848718 + 0.528846i
\(290\) 0 0
\(291\) 7.50000 + 12.9904i 0.439658 + 0.761510i
\(292\) −22.5167 13.0000i −1.31769 0.760767i
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 9.00000i 0.524000i
\(296\) 0 0
\(297\) 9.00000 + 15.5885i 0.522233 + 0.904534i
\(298\) 0 0
\(299\) −1.73205 1.00000i −0.100167 0.0578315i
\(300\) 6.00000i 0.346410i
\(301\) −10.3923 30.0000i −0.599002 1.72917i
\(302\) 0 0
\(303\) −15.5885 9.00000i −0.895533 0.517036i
\(304\) 8.00000 + 13.8564i 0.458831 + 0.794719i
\(305\) −1.00000 1.73205i −0.0572598 0.0991769i
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 2.00000 10.3923i 0.113961 0.592157i
\(309\) 42.0000i 2.38930i
\(310\) 0 0
\(311\) −27.7128 + 16.0000i −1.57145 + 0.907277i −0.575458 + 0.817832i \(0.695176\pi\)
−0.995992 + 0.0894452i \(0.971491\pi\)
\(312\) 0 0
\(313\) 5.19615 + 3.00000i 0.293704 + 0.169570i 0.639611 0.768699i \(-0.279095\pi\)
−0.345907 + 0.938269i \(0.612429\pi\)
\(314\) 0 0
\(315\) 12.0000 + 10.3923i 0.676123 + 0.585540i
\(316\) 16.0000i 0.900070i
\(317\) 15.5885 + 9.00000i 0.875535 + 0.505490i 0.869184 0.494489i \(-0.164645\pi\)
0.00635137 + 0.999980i \(0.497978\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 6.92820 + 4.00000i 0.387298 + 0.223607i
\(321\) 9.00000 0.502331
\(322\) 0 0
\(323\) −16.0000 4.00000i −0.890264 0.222566i
\(324\) 9.00000 15.5885i 0.500000 0.866025i
\(325\) −1.00000 1.73205i −0.0554700 0.0960769i
\(326\) 0 0
\(327\) −21.0000 + 36.3731i −1.16130 + 2.01144i
\(328\) 0 0
\(329\) −20.7846 4.00000i −1.14589 0.220527i
\(330\) 0 0
\(331\) −6.50000 + 11.2583i −0.357272 + 0.618814i −0.987504 0.157593i \(-0.949627\pi\)
0.630232 + 0.776407i \(0.282960\pi\)
\(332\) 6.00000 + 10.3923i 0.329293 + 0.570352i
\(333\) 25.9808 15.0000i 1.42374 0.821995i
\(334\) 0 0
\(335\) 2.00000i 0.109272i
\(336\) −30.0000 + 10.3923i −1.63663 + 0.566947i
\(337\) 27.0000i 1.47078i 0.677642 + 0.735392i \(0.263002\pi\)
−0.677642 + 0.735392i \(0.736998\pi\)
\(338\) 0 0
\(339\) 27.0000 + 46.7654i 1.46644 + 2.53995i
\(340\) −7.92820 + 2.26795i −0.429967 + 0.122997i
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) 2.59808 + 1.50000i 0.139876 + 0.0807573i
\(346\) 0 0
\(347\) −19.9186 + 11.5000i −1.06929 + 0.617352i −0.927986 0.372615i \(-0.878461\pi\)
−0.141299 + 0.989967i \(0.545128\pi\)
\(348\) 0 0
\(349\) −15.0000 −0.802932 −0.401466 0.915874i \(-0.631499\pi\)
−0.401466 + 0.915874i \(0.631499\pi\)
\(350\) 0 0
\(351\) 18.0000i 0.960769i
\(352\) 0 0
\(353\) 9.00000 + 15.5885i 0.479022 + 0.829690i 0.999711 0.0240566i \(-0.00765819\pi\)
−0.520689 + 0.853746i \(0.674325\pi\)
\(354\) 0 0
\(355\) −8.00000 + 13.8564i −0.424596 + 0.735422i
\(356\) 26.0000 1.37800
\(357\) 13.7942 29.6769i 0.730068 1.57067i
\(358\) 0 0
\(359\) −1.50000 + 2.59808i −0.0791670 + 0.137121i −0.902891 0.429870i \(-0.858559\pi\)
0.823724 + 0.566991i \(0.191893\pi\)
\(360\) 0 0
\(361\) 1.50000 + 2.59808i 0.0789474 + 0.136741i
\(362\) 0 0
\(363\) 21.0000i 1.10221i
\(364\) −6.92820 + 8.00000i −0.363137 + 0.419314i
\(365\) 13.0000 0.680451
\(366\) 0 0
\(367\) −20.7846 + 12.0000i −1.08495 + 0.626395i −0.932227 0.361874i \(-0.882137\pi\)
−0.152721 + 0.988269i \(0.548804\pi\)
\(368\) −3.46410 + 2.00000i −0.180579 + 0.104257i
\(369\) 31.1769 + 18.0000i 1.62301 + 0.937043i
\(370\) 0 0
\(371\) −13.8564 + 16.0000i −0.719389 + 0.830679i
\(372\) −36.0000 −1.86651
\(373\) 1.00000 1.73205i 0.0517780 0.0896822i −0.838975 0.544170i \(-0.816844\pi\)
0.890753 + 0.454488i \(0.150178\pi\)
\(374\) 0 0
\(375\) 1.50000 + 2.59808i 0.0774597 + 0.134164i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 10.0000i 0.513665i −0.966456 0.256833i \(-0.917321\pi\)
0.966456 0.256833i \(-0.0826790\pi\)
\(380\) −6.92820 4.00000i −0.355409 0.205196i
\(381\) −10.3923 + 6.00000i −0.532414 + 0.307389i
\(382\) 0 0
\(383\) 17.0000 29.4449i 0.868659 1.50456i 0.00529229 0.999986i \(-0.498315\pi\)
0.863367 0.504576i \(-0.168351\pi\)
\(384\) 0 0
\(385\) 1.73205 + 5.00000i 0.0882735 + 0.254824i
\(386\) 0 0
\(387\) 36.0000 62.3538i 1.82998 3.16962i
\(388\) 8.66025 5.00000i 0.439658 0.253837i
\(389\) −18.5000 32.0429i −0.937987 1.62464i −0.769218 0.638986i \(-0.779354\pi\)
−0.168769 0.985656i \(-0.553979\pi\)
\(390\) 0 0
\(391\) 1.00000 4.00000i 0.0505722 0.202289i
\(392\) 0 0
\(393\) −36.0000 −1.81596
\(394\) 0 0
\(395\) 4.00000 + 6.92820i 0.201262 + 0.348596i
\(396\) 20.7846 12.0000i 1.04447 0.603023i
\(397\) 1.73205 + 1.00000i 0.0869291 + 0.0501886i 0.542834 0.839840i \(-0.317351\pi\)
−0.455905 + 0.890028i \(0.650684\pi\)
\(398\) 0 0
\(399\) 30.0000 10.3923i 1.50188 0.520266i
\(400\) −4.00000 −0.200000
\(401\) 24.2487 + 14.0000i 1.21092 + 0.699127i 0.962960 0.269643i \(-0.0869057\pi\)
0.247962 + 0.968770i \(0.420239\pi\)
\(402\) 0 0
\(403\) −10.3923 + 6.00000i −0.517678 + 0.298881i
\(404\) −6.00000 + 10.3923i −0.298511 + 0.517036i
\(405\) 9.00000i 0.447214i
\(406\) 0 0
\(407\) 10.0000 0.495682
\(408\) 0 0
\(409\) −5.50000 9.52628i −0.271957 0.471044i 0.697406 0.716677i \(-0.254338\pi\)
−0.969363 + 0.245633i \(0.921004\pi\)
\(410\) 0 0
\(411\) 31.1769 + 18.0000i 1.53784 + 0.887875i
\(412\) −28.0000 −1.37946
\(413\) −15.5885 + 18.0000i −0.767058 + 0.885722i
\(414\) 0 0
\(415\) −5.19615 3.00000i −0.255069 0.147264i
\(416\) 0 0
\(417\) 3.00000 + 5.19615i 0.146911 + 0.254457i
\(418\) 0 0
\(419\) 30.0000i 1.46560i 0.680446 + 0.732798i \(0.261786\pi\)
−0.680446 + 0.732798i \(0.738214\pi\)
\(420\) 10.3923 12.0000i 0.507093 0.585540i
\(421\) 19.0000 0.926003 0.463002 0.886357i \(-0.346772\pi\)
0.463002 + 0.886357i \(0.346772\pi\)
\(422\) 0 0
\(423\) −24.0000 41.5692i −1.16692 2.02116i
\(424\) 0 0
\(425\) 2.86603 2.96410i 0.139023 0.143780i
\(426\) 0 0
\(427\) 1.00000 5.19615i 0.0483934 0.251459i
\(428\) 6.00000i 0.290021i
\(429\) 6.00000 10.3923i 0.289683 0.501745i
\(430\) 0 0
\(431\) 24.2487 14.0000i 1.16802 0.674356i 0.214807 0.976657i \(-0.431088\pi\)
0.953213 + 0.302300i \(0.0977546\pi\)
\(432\) −31.1769 18.0000i −1.50000 0.866025i
\(433\) 36.0000 1.73005 0.865025 0.501729i \(-0.167303\pi\)
0.865025 + 0.501729i \(0.167303\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 24.2487 + 14.0000i 1.16130 + 0.670478i
\(437\) 3.46410 2.00000i 0.165710 0.0956730i
\(438\) 0 0
\(439\) 19.0526 + 11.0000i 0.909329 + 0.525001i 0.880215 0.474575i \(-0.157398\pi\)
0.0291138 + 0.999576i \(0.490731\pi\)
\(440\) 0 0
\(441\) 6.00000 + 41.5692i 0.285714 + 1.97949i
\(442\) 0 0
\(443\) −7.00000 + 12.1244i −0.332580 + 0.576046i −0.983017 0.183515i \(-0.941252\pi\)
0.650437 + 0.759560i \(0.274586\pi\)
\(444\) −15.0000 25.9808i −0.711868 1.23299i
\(445\) −11.2583 + 6.50000i −0.533696 + 0.308130i
\(446\) 0 0
\(447\) 9.00000i 0.425685i
\(448\) 6.92820 + 20.0000i 0.327327 + 0.944911i
\(449\) 6.00000i 0.283158i −0.989927 0.141579i \(-0.954782\pi\)
0.989927 0.141579i \(-0.0452178\pi\)
\(450\) 0 0
\(451\) 6.00000 + 10.3923i 0.282529 + 0.489355i
\(452\) 31.1769 18.0000i 1.46644 0.846649i
\(453\) 41.5692 + 24.0000i 1.95309 + 1.12762i
\(454\) 0 0
\(455\) 1.00000 5.19615i 0.0468807 0.243599i
\(456\) 0 0
\(457\) −19.0000 + 32.9090i −0.888783 + 1.53942i −0.0474665 + 0.998873i \(0.515115\pi\)
−0.841316 + 0.540544i \(0.818219\pi\)
\(458\) 0 0
\(459\) 35.6769 10.2058i 1.66526 0.476365i
\(460\) 1.00000 1.73205i 0.0466252 0.0807573i
\(461\) 15.0000 0.698620 0.349310 0.937007i \(-0.386416\pi\)
0.349310 + 0.937007i \(0.386416\pi\)
\(462\) 0 0
\(463\) 16.0000 0.743583 0.371792 0.928316i \(-0.378744\pi\)
0.371792 + 0.928316i \(0.378744\pi\)
\(464\) 0 0
\(465\) 15.5885 9.00000i 0.722897 0.417365i
\(466\) 0 0
\(467\) 9.00000 15.5885i 0.416470 0.721348i −0.579111 0.815249i \(-0.696600\pi\)
0.995582 + 0.0939008i \(0.0299336\pi\)
\(468\) −24.0000 −1.10940
\(469\) −3.46410 + 4.00000i −0.159957 + 0.184703i
\(470\) 0 0
\(471\) −57.1577 33.0000i −2.63369 1.52056i
\(472\) 0 0
\(473\) 20.7846 12.0000i 0.955677 0.551761i
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) −19.7846 9.19615i −0.906826 0.421505i
\(477\) −48.0000 −2.19777
\(478\) 0 0
\(479\) −27.7128 + 16.0000i −1.26623 + 0.731059i −0.974273 0.225372i \(-0.927640\pi\)
−0.291958 + 0.956431i \(0.594307\pi\)
\(480\) 0 0
\(481\) −8.66025 5.00000i −0.394874 0.227980i
\(482\) 0 0
\(483\) 2.59808 + 7.50000i 0.118217 + 0.341262i
\(484\) −14.0000 −0.636364
\(485\) −2.50000 + 4.33013i −0.113519 + 0.196621i
\(486\) 0 0
\(487\) −23.3827 + 13.5000i −1.05957 + 0.611743i −0.925313 0.379203i \(-0.876198\pi\)
−0.134257 + 0.990947i \(0.542865\pi\)
\(488\) 0 0
\(489\) −39.0000 −1.76364
\(490\) 0 0
\(491\) −5.00000 −0.225647 −0.112823 0.993615i \(-0.535989\pi\)
−0.112823 + 0.993615i \(0.535989\pi\)
\(492\) 18.0000 31.1769i 0.811503 1.40556i
\(493\) 0 0
\(494\) 0 0
\(495\) −6.00000 + 10.3923i −0.269680 + 0.467099i
\(496\) 24.0000i 1.07763i
\(497\) −40.0000 + 13.8564i −1.79425 + 0.621545i
\(498\) 0 0
\(499\) 13.8564 + 8.00000i 0.620298 + 0.358129i 0.776985 0.629519i \(-0.216748\pi\)
−0.156687 + 0.987648i \(0.550081\pi\)
\(500\) 1.73205 1.00000i 0.0774597 0.0447214i
\(501\) 16.5000 + 28.5788i 0.737166 + 1.27681i
\(502\) 0 0
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 6.00000i 0.266996i
\(506\) 0 0
\(507\) 23.3827 13.5000i 1.03846 0.599556i
\(508\) 4.00000 + 6.92820i 0.177471 + 0.307389i
\(509\) −12.5000 + 21.6506i −0.554053 + 0.959648i 0.443924 + 0.896065i \(0.353586\pi\)
−0.997977 + 0.0635830i \(0.979747\pi\)
\(510\) 0 0
\(511\) 26.0000 + 22.5167i 1.15017 + 0.996078i
\(512\) 0 0
\(513\) 31.1769 + 18.0000i 1.37649 + 0.794719i
\(514\) 0 0
\(515\) 12.1244 7.00000i 0.534263 0.308457i
\(516\) −62.3538 36.0000i −2.74497 1.58481i
\(517\) 16.0000i 0.703679i
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) 0 0
\(521\) 1.73205 1.00000i 0.0758825 0.0438108i −0.461579 0.887099i \(-0.652717\pi\)
0.537461 + 0.843288i \(0.319383\pi\)
\(522\) 0 0
\(523\) 19.0000 32.9090i 0.830812 1.43901i −0.0665832 0.997781i \(-0.521210\pi\)
0.897395 0.441228i \(-0.145457\pi\)
\(524\) 24.0000i 1.04844i
\(525\) −1.50000 + 7.79423i −0.0654654 + 0.340168i
\(526\) 0 0
\(527\) −17.7846 17.1962i −0.774710 0.749076i
\(528\) −12.0000 20.7846i −0.522233 0.904534i
\(529\) −11.0000 19.0526i −0.478261 0.828372i
\(530\) 0 0
\(531\) −54.0000 −2.34340
\(532\) −6.92820 20.0000i −0.300376 0.867110i
\(533\) 12.0000i 0.519778i
\(534\) 0 0
\(535\) 1.50000 + 2.59808i 0.0648507 + 0.112325i
\(536\) 0 0
\(537\) −23.3827 13.5000i −1.00904 0.582568i
\(538\) 0 0
\(539\) −5.19615 + 13.0000i −0.223814 + 0.559950i
\(540\) 18.0000 0.774597
\(541\) −6.92820 4.00000i −0.297867 0.171973i 0.343617 0.939110i \(-0.388348\pi\)
−0.641484 + 0.767136i \(0.721681\pi\)
\(542\) 0 0
\(543\) 30.0000 + 51.9615i 1.28742 + 2.22988i
\(544\) 0 0
\(545\) −14.0000 −0.599694
\(546\) 0 0
\(547\) 15.0000i 0.641354i 0.947189 + 0.320677i \(0.103910\pi\)
−0.947189 + 0.320677i \(0.896090\pi\)
\(548\) 12.0000 20.7846i 0.512615 0.887875i
\(549\) 10.3923 6.00000i 0.443533 0.256074i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −4.00000 + 20.7846i −0.170097 + 0.883852i
\(554\) 0 0
\(555\) 12.9904 + 7.50000i 0.551411 + 0.318357i
\(556\) 3.46410 2.00000i 0.146911 0.0848189i
\(557\) −18.0000 31.1769i −0.762684 1.32101i −0.941462 0.337119i \(-0.890548\pi\)
0.178778 0.983890i \(-0.442786\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) −8.00000 6.92820i −0.338062 0.292770i
\(561\) 24.0000 + 6.00000i 1.01328 + 0.253320i
\(562\) 0 0
\(563\) −5.00000 8.66025i −0.210725 0.364986i 0.741217 0.671266i \(-0.234249\pi\)
−0.951942 + 0.306280i \(0.900916\pi\)
\(564\) −41.5692 + 24.0000i −1.75038 + 1.01058i
\(565\) −9.00000 + 15.5885i −0.378633 + 0.655811i
\(566\) 0 0
\(567\) −15.5885 + 18.0000i −0.654654 + 0.755929i
\(568\) 0 0
\(569\) −23.0000 + 39.8372i −0.964210 + 1.67006i −0.252488 + 0.967600i \(0.581249\pi\)
−0.711722 + 0.702461i \(0.752085\pi\)
\(570\) 0 0
\(571\) −13.8564 + 8.00000i −0.579873 + 0.334790i −0.761083 0.648655i \(-0.775332\pi\)
0.181210 + 0.983444i \(0.441999\pi\)
\(572\) −6.92820 4.00000i −0.289683 0.167248i
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 1.00000i 0.0417029i
\(576\) −24.0000 + 41.5692i −1.00000 + 1.73205i
\(577\) −6.00000 10.3923i −0.249783 0.432637i 0.713682 0.700470i \(-0.247026\pi\)
−0.963466 + 0.267832i \(0.913693\pi\)
\(578\) 0 0
\(579\) −9.00000 + 15.5885i −0.374027 + 0.647834i
\(580\) 0 0
\(581\) −5.19615 15.0000i −0.215573 0.622305i
\(582\) 0 0
\(583\) −13.8564 8.00000i −0.573874 0.331326i
\(584\) 0 0
\(585\) 10.3923 6.00000i 0.429669 0.248069i
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 41.5692 6.00000i 1.71429 0.247436i
\(589\) 24.0000i 0.988903i
\(590\) 0 0
\(591\) −10.5000 18.1865i −0.431912 0.748094i
\(592\) −17.3205 + 10.0000i −0.711868 + 0.410997i
\(593\) −15.0000 + 25.9808i −0.615976 + 1.06690i 0.374236 + 0.927333i \(0.377905\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(594\) 0 0
\(595\) 10.8660 0.964102i 0.445464 0.0395243i
\(596\) −6.00000 −0.245770
\(597\) −24.0000 + 41.5692i −0.982255 + 1.70131i
\(598\) 0 0
\(599\) −19.5000 33.7750i −0.796748 1.38001i −0.921723 0.387849i \(-0.873218\pi\)
0.124975 0.992160i \(-0.460115\pi\)
\(600\) 0 0
\(601\) 44.0000i 1.79480i −0.441221 0.897399i \(-0.645454\pi\)
0.441221 0.897399i \(-0.354546\pi\)
\(602\) 0 0
\(603\) −12.0000 −0.488678
\(604\) 16.0000 27.7128i 0.651031 1.12762i
\(605\) 6.06218 3.50000i 0.246463 0.142295i
\(606\) 0 0
\(607\) 4.33013 + 2.50000i 0.175754 + 0.101472i 0.585296 0.810819i \(-0.300978\pi\)
−0.409542 + 0.912291i \(0.634311\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −8.00000 + 13.8564i −0.323645 + 0.560570i
\(612\) −13.6077 47.5692i −0.550058 1.92287i
\(613\) −12.0000 20.7846i −0.484675 0.839482i 0.515170 0.857088i \(-0.327729\pi\)
−0.999845 + 0.0176058i \(0.994396\pi\)
\(614\) 0 0
\(615\) 18.0000i 0.725830i
\(616\) 0 0
\(617\) 14.0000i 0.563619i −0.959470 0.281809i \(-0.909065\pi\)
0.959470 0.281809i \(-0.0909346\pi\)
\(618\) 0 0
\(619\) 6.92820 4.00000i 0.278468 0.160774i −0.354262 0.935146i \(-0.615268\pi\)
0.632730 + 0.774373i \(0.281934\pi\)
\(620\) −6.00000 10.3923i −0.240966 0.417365i
\(621\) −4.50000 + 7.79423i −0.180579 + 0.312772i
\(622\) 0 0
\(623\) −33.7750 6.50000i −1.35317 0.260417i
\(624\) 24.0000i 0.960769i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 12.0000 + 20.7846i 0.479234 + 0.830057i
\(628\) −22.0000 + 38.1051i −0.877896 + 1.52056i
\(629\) 5.00000 20.0000i 0.199363 0.797452i
\(630\) 0 0
\(631\) 23.0000 0.915616 0.457808 0.889051i \(-0.348635\pi\)
0.457808 + 0.889051i \(0.348635\pi\)
\(632\) 0 0
\(633\) −3.00000 5.19615i −0.119239 0.206529i
\(634\) 0 0
\(635\) −3.46410 2.00000i −0.137469 0.0793676i
\(636\) 48.0000i 1.90332i
\(637\) 11.0000 8.66025i 0.435836 0.343132i
\(638\) 0 0
\(639\) −83.1384 48.0000i −3.28891 1.89885i
\(640\) 0 0
\(641\) −13.8564 + 8.00000i −0.547295 + 0.315981i −0.748030 0.663665i \(-0.769000\pi\)
0.200735 + 0.979646i \(0.435667\pi\)
\(642\) 0 0
\(643\) 31.0000i 1.22252i 0.791430 + 0.611260i \(0.209337\pi\)
−0.791430 + 0.611260i \(0.790663\pi\)
\(644\) 5.00000 1.73205i 0.197028 0.0682524i
\(645\) 36.0000 1.41750
\(646\) 0 0
\(647\) 9.00000 + 15.5885i 0.353827 + 0.612845i 0.986916 0.161233i \(-0.0515470\pi\)
−0.633090 + 0.774078i \(0.718214\pi\)
\(648\) 0 0
\(649\) −15.5885 9.00000i −0.611900 0.353281i
\(650\) 0 0
\(651\) 46.7654 + 9.00000i 1.83288 + 0.352738i
\(652\) 26.0000i 1.01824i
\(653\) 29.4449 + 17.0000i 1.15227 + 0.665261i 0.949439 0.313953i \(-0.101653\pi\)
0.202828 + 0.979214i \(0.434987\pi\)
\(654\) 0 0
\(655\) −6.00000 10.3923i −0.234439 0.406061i
\(656\) −20.7846 12.0000i −0.811503 0.468521i
\(657\) 78.0000i 3.04307i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 10.3923 + 6.00000i 0.404520 + 0.233550i
\(661\) 3.50000 + 6.06218i 0.136134 + 0.235791i 0.926030 0.377450i \(-0.123199\pi\)
−0.789896 + 0.613241i \(0.789865\pi\)
\(662\) 0 0
\(663\) −17.7846 17.1962i −0.690697 0.667843i
\(664\) 0 0
\(665\) 8.00000 + 6.92820i 0.310227 + 0.268664i
\(666\) 0 0
\(667\) 0 0
\(668\) 19.0526 11.0000i 0.737166 0.425603i
\(669\) −10.3923 + 6.00000i −0.401790 + 0.231973i
\(670\) 0 0
\(671\) 4.00000 0.154418
\(672\) 0 0
\(673\) 29.0000i 1.11787i −0.829212 0.558934i \(-0.811211\pi\)
0.829212 0.558934i \(-0.188789\pi\)
\(674\) 0 0
\(675\) −7.79423 + 4.50000i −0.300000 + 0.173205i
\(676\) −9.00000 15.5885i −0.346154 0.599556i
\(677\) 12.9904 + 7.50000i 0.499261 + 0.288248i 0.728408 0.685143i \(-0.240260\pi\)
−0.229147 + 0.973392i \(0.573594\pi\)
\(678\) 0 0
\(679\) −12.5000 + 4.33013i −0.479706 + 0.166175i
\(680\) 0 0
\(681\) −16.5000 + 28.5788i −0.632281 + 1.09514i
\(682\) 0 0
\(683\) −2.59808 + 1.50000i −0.0994126 + 0.0573959i −0.548882 0.835900i \(-0.684946\pi\)
0.449469 + 0.893296i \(0.351613\pi\)
\(684\) 24.0000 41.5692i 0.917663 1.58944i
\(685\) 12.0000i 0.458496i
\(686\) 0 0
\(687\) 57.0000i 2.17469i
\(688\) −24.0000 + 41.5692i −0.914991 + 1.58481i
\(689\) 8.00000 + 13.8564i 0.304776 + 0.527887i
\(690\) 0 0
\(691\) −17.3205 10.0000i −0.658903 0.380418i 0.132956 0.991122i \(-0.457553\pi\)
−0.791859 + 0.610704i \(0.790887\pi\)
\(692\) 12.0000i 0.456172i
\(693\) −30.0000 + 10.3923i −1.13961 + 0.394771i
\(694\) 0 0
\(695\) −1.00000 + 1.73205i −0.0379322 + 0.0657004i
\(696\) 0 0
\(697\) 23.7846 6.80385i 0.900906 0.257714i
\(698\) 0 0
\(699\) 63.0000 2.38288
\(700\) 5.19615 + 1.00000i 0.196396 + 0.0377964i
\(701\) 15.0000 0.566542 0.283271 0.959040i \(-0.408580\pi\)
0.283271 + 0.959040i \(0.408580\pi\)
\(702\) 0 0
\(703\) 17.3205 10.0000i 0.653255 0.377157i
\(704\) −13.8564 + 8.00000i −0.522233 + 0.301511i
\(705\) 12.0000 20.7846i 0.451946 0.782794i
\(706\) 0 0
\(707\) 10.3923 12.0000i 0.390843 0.451306i
\(708\) 54.0000i 2.02944i
\(709\) 32.9090 + 19.0000i 1.23592 + 0.713560i 0.968258 0.249952i \(-0.0804150\pi\)
0.267664 + 0.963512i \(0.413748\pi\)
\(710\) 0 0
\(711\) −41.5692 + 24.0000i −1.55897 + 0.900070i
\(712\) 0 0
\(713\) 6.00000 0.224702
\(714\) 0 0
\(715\) 4.00000 0.149592
\(716\) −9.00000 + 15.5885i −0.336346 + 0.582568i
\(717\) 28.5788 16.5000i 1.06730 0.616204i
\(718\) 0 0
\(719\) −17.3205 10.0000i −0.645946 0.372937i 0.140955 0.990016i \(-0.454983\pi\)
−0.786901 + 0.617079i \(0.788316\pi\)
\(720\) 24.0000i 0.894427i
\(721\) 36.3731 + 7.00000i 1.35460 + 0.260694i
\(722\) 0 0
\(723\) 24.0000 41.5692i 0.892570 1.54598i
\(724\) 34.6410 20.0000i 1.28742 0.743294i
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −13.6077 47.5692i −0.503299 1.75941i
\(732\) −6.00000 10.3923i −0.221766 0.384111i
\(733\) 26.0000 45.0333i 0.960332 1.66334i 0.238667 0.971102i \(-0.423290\pi\)
0.721665 0.692242i \(-0.243377\pi\)
\(734\) 0 0
\(735\) −16.5000 + 12.9904i −0.608612 + 0.479157i
\(736\) 0 0
\(737\) −3.46410 2.00000i −0.127602 0.0736709i
\(738\) 0 0
\(739\) 11.5000 + 19.9186i 0.423034 + 0.732717i 0.996235 0.0866983i \(-0.0276316\pi\)
−0.573200 + 0.819415i \(0.694298\pi\)
\(740\) 5.00000 8.66025i 0.183804 0.318357i
\(741\) 24.0000i 0.881662i
\(742\) 0 0
\(743\) 9.00000i 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 0 0
\(745\) 2.59808 1.50000i 0.0951861 0.0549557i
\(746\) 0 0
\(747\) 18.0000 31.1769i 0.658586 1.14070i
\(748\) 4.00000 16.0000i 0.146254 0.585018i
\(749\) −1.50000 + 7.79423i −0.0548088 + 0.284795i
\(750\) 0 0
\(751\) −1.73205 1.00000i −0.0632034 0.0364905i 0.468065 0.883694i \(-0.344951\pi\)
−0.531269 + 0.847203i \(0.678285\pi\)
\(752\) 16.0000 + 27.7128i 0.583460 + 1.01058i
\(753\) 44.1673 25.5000i 1.60955 0.929272i
\(754\) 0 0
\(755\) 16.0000i 0.582300i
\(756\) 36.0000 + 31.1769i 1.30931 + 1.13389i
\(757\) −8.00000 −0.290765 −0.145382 0.989376i \(-0.546441\pi\)
−0.145382 + 0.989376i \(0.546441\pi\)
\(758\) 0 0
\(759\) −5.19615 + 3.00000i −0.188608 + 0.108893i
\(760\) 0 0
\(761\) 9.50000 16.4545i 0.344375 0.596475i −0.640865 0.767653i \(-0.721424\pi\)
0.985240 + 0.171179i \(0.0547576\pi\)
\(762\) 0 0
\(763\) −28.0000 24.2487i −1.01367 0.877862i
\(764\) 16.0000 0.578860
\(765\) 17.7846 + 17.1962i 0.643004 + 0.621728i
\(766\) 0 0
\(767\) 9.00000 + 15.5885i 0.324971 + 0.562867i
\(768\) 41.5692 + 24.0000i 1.50000 + 0.866025i
\(769\) 15.0000 0.540914 0.270457 0.962732i \(-0.412825\pi\)
0.270457 + 0.962732i \(0.412825\pi\)
\(770\) 0 0
\(771\) 54.0000i 1.94476i
\(772\) 10.3923 + 6.00000i 0.374027 + 0.215945i
\(773\) −10.0000 17.3205i −0.359675 0.622975i 0.628231 0.778027i \(-0.283779\pi\)
−0.987906 + 0.155051i \(0.950446\pi\)
\(774\) 0 0
\(775\) 5.19615 + 3.00000i 0.186651 + 0.107763i
\(776\) 0 0
\(777\) 12.9904 + 37.5000i 0.466027 + 1.34531i
\(778\) 0 0
\(779\) 20.7846 + 12.0000i 0.744686 + 0.429945i
\(780\) −6.00000 10.3923i −0.214834 0.372104i
\(781\) −16.0000 27.7128i −0.572525 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) −4.00000 27.7128i −0.142857 0.989743i
\(785\) 22.0000i 0.785214i
\(786\) 0 0
\(787\) −17.3205 + 10.0000i −0.617409 + 0.356462i −0.775860 0.630905i \(-0.782684\pi\)
0.158450 + 0.987367i \(0.449350\pi\)
\(788\) −12.1244 + 7.00000i −0.431912 + 0.249365i
\(789\) −20.7846 12.0000i −0.739952 0.427211i
\(790\) 0 0
\(791\) −45.0000 + 15.5885i −1.60002 + 0.554262i
\(792\) 0 0
\(793\) −3.46410 2.00000i −0.123014 0.0710221i
\(794\) 0 0
\(795\) −12.0000 20.7846i −0.425596 0.737154i
\(796\) 27.7128 + 16.0000i 0.982255 + 0.567105i
\(797\) 8.00000 0.283375 0.141687 0.989911i \(-0.454747\pi\)
0.141687 + 0.989911i \(0.454747\pi\)
\(798\) 0 0
\(799\) −32.0000 8.00000i −1.13208 0.283020i
\(800\) 0 0
\(801\) −39.0000 67.5500i −1.37800 2.38676i
\(802\) 0 0
\(803\) −13.0000 + 22.5167i −0.458760 + 0.794596i
\(804\) 12.0000i 0.423207i
\(805\) −1.73205 + 2.00000i −0.0610468 + 0.0704907i
\(806\) 0 0
\(807\) 9.00000 15.5885i 0.316815 0.548740i
\(808\) 0 0
\(809\) 25.9808 15.0000i 0.913435 0.527372i 0.0319002 0.999491i \(-0.489844\pi\)
0.881535 + 0.472119i \(0.156511\pi\)
\(810\) 0 0
\(811\) 14.0000i 0.491606i 0.969320 + 0.245803i \(0.0790517\pi\)
−0.969320 + 0.245803i \(0.920948\pi\)
\(812\) 0 0
\(813\) 21.0000i 0.736502i
\(814\) 0 0
\(815\) −6.50000 11.2583i −0.227685 0.394362i
\(816\) −47.5692 + 13.6077i −1.66526 + 0.476365i
\(817\) 24.0000 41.5692i 0.839654 1.45432i
\(818\) 0 0
\(819\) 31.1769 + 6.00000i 1.08941 + 0.209657i
\(820\) 12.0000 0.419058
\(821\) −36.3731 21.0000i −1.26943 0.732905i −0.294549 0.955636i \(-0.595169\pi\)
−0.974880 + 0.222731i \(0.928503\pi\)
\(822\) 0 0
\(823\) 26.8468 15.5000i 0.935820 0.540296i 0.0471726 0.998887i \(-0.484979\pi\)
0.888648 + 0.458591i \(0.151646\pi\)
\(824\) 0 0
\(825\) −6.00000 −0.208893
\(826\) 0 0
\(827\) 12.0000i 0.417281i 0.977992 + 0.208640i \(0.0669038\pi\)
−0.977992 + 0.208640i \(0.933096\pi\)
\(828\) 10.3923 + 6.00000i 0.361158 + 0.208514i
\(829\) 20.5000 + 35.5070i 0.711994 + 1.23321i 0.964107 + 0.265513i \(0.0855412\pi\)
−0.252113 + 0.967698i \(0.581125\pi\)
\(830\) 0 0
\(831\) 33.0000 57.1577i 1.14476 1.98278i
\(832\) 16.0000 0.554700
\(833\) 23.4019 + 16.8923i 0.810829 + 0.585284i
\(834\) 0 0
\(835\) −5.50000 + 9.52628i −0.190335 + 0.329670i
\(836\) 13.8564 8.00000i 0.479234 0.276686i
\(837\) 27.0000 + 46.7654i 0.933257 + 1.61645i
\(838\) 0 0
\(839\) 4.00000i 0.138095i −0.997613 0.0690477i \(-0.978004\pi\)
0.997613 0.0690477i \(-0.0219961\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) −44.1673 + 25.5000i −1.52120 + 0.878267i
\(844\) −3.46410 + 2.00000i −0.119239 + 0.0688428i
\(845\) 7.79423 + 4.50000i 0.268130 + 0.154805i
\(846\) 0 0
\(847\) 18.1865 + 3.50000i 0.624897 + 0.120261i
\(848\) 32.0000 1.09888
\(849\) −28.5000 + 49.3634i −0.978117 + 1.69415i
\(850\) 0 0
\(851\) 2.50000 + 4.33013i 0.0856989 + 0.148435i
\(852\) −48.0000 + 83.1384i −1.64445 + 2.84828i
\(853\) 15.0000i 0.513590i −0.966466 0.256795i \(-0.917333\pi\)
0.966466 0.256795i \(-0.0826666\pi\)
\(854\) 0 0
\(855\) 24.0000i 0.820783i
\(856\) 0 0
\(857\) 21.6506 12.5000i 0.739572 0.426992i −0.0823419 0.996604i \(-0.526240\pi\)
0.821914 + 0.569612i \(0.192907\pi\)
\(858\) 0 0
\(859\) −7.50000 + 12.9904i −0.255897 + 0.443226i −0.965139 0.261739i \(-0.915704\pi\)
0.709242 + 0.704965i \(0.249037\pi\)
\(860\) 24.0000i 0.818393i
\(861\) −31.1769 + 36.0000i −1.06251 + 1.22688i
\(862\) 0 0
\(863\) −8.00000 + 13.8564i −0.272323 + 0.471678i −0.969456 0.245264i \(-0.921125\pi\)
0.697133 + 0.716942i \(0.254459\pi\)
\(864\) 0 0
\(865\) 3.00000 + 5.19615i 0.102003 + 0.176674i
\(866\) 0 0
\(867\) 24.0000 45.0000i 0.815083 1.52828i
\(868\) 6.00000 31.1769i 0.203653 1.05821i
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 2.00000 + 3.46410i 0.0677674 + 0.117377i
\(872\) 0 0
\(873\) −25.9808 15.0000i −0.879316 0.507673i
\(874\) 0 0
\(875\) −2.50000 + 0.866025i −0.0845154 + 0.0292770i
\(876\) 78.0000 2.63538
\(877\) −45.8993 26.5000i −1.54991 0.894841i −0.998147 0.0608407i \(-0.980622\pi\)
−0.551763 0.834001i \(-0.686045\pi\)
\(878\) 0 0
\(879\) −41.5692 + 24.0000i −1.40209 + 0.809500i
\(880\) 4.00000 6.92820i 0.134840 0.233550i
\(881\) 20.0000i 0.673817i 0.941537 + 0.336909i \(0.109381\pi\)
−0.941537 + 0.336909i \(0.890619\pi\)
\(882\) 0 0
\(883\) 50.0000 1.68263 0.841317 0.540542i \(-0.181781\pi\)
0.841317 + 0.540542i \(0.181781\pi\)
\(884\) −11.4641 + 11.8564i −0.385579 + 0.398774i
\(885\) −13.5000 23.3827i −0.453798 0.786000i
\(886\) 0 0
\(887\) 16.4545 + 9.50000i 0.552487 + 0.318979i 0.750125 0.661296i \(-0.229993\pi\)
−0.197637 + 0.980275i \(0.563327\pi\)
\(888\) 0 0
\(889\) −3.46410 10.0000i −0.116182 0.335389i
\(890\) 0 0
\(891\) −15.5885 9.00000i −0.522233 0.301511i
\(892\) 4.00000 + 6.92820i 0.133930 + 0.231973i
\(893\) −16.0000 27.7128i −0.535420 0.927374i
\(894\) 0 0
\(895\) 9.00000i 0.300837i
\(896\) 0 0
\(897\) 6.00000 0.200334
\(898\) 0 0
\(899\) 0 0
\(900\) 6.00000 + 10.3923i 0.200000 + 0.346410i
\(901\) −22.9282 + 23.7128i −0.763849 + 0.789988i
\(902\) 0 0
\(903\) 72.0000 + 62.3538i 2.39601 + 2.07501i
\(904\) 0 0
\(905\) −10.0000 + 17.3205i −0.332411 + 0.575753i
\(906\) 0 0
\(907\) −14.7224 + 8.50000i −0.488850 + 0.282238i −0.724097 0.689698i \(-0.757743\pi\)
0.235247 + 0.971936i \(0.424410\pi\)
\(908\) 19.0526 + 11.0000i 0.632281 + 0.365048i
\(909\) 36.0000 1.19404
\(910\) 0 0
\(911\) 8.00000i 0.265052i −0.991180 0.132526i \(-0.957691\pi\)
0.991180 0.132526i \(-0.0423088\pi\)
\(912\) −41.5692 24.0000i −1.37649 0.794719i
\(913\) 10.3923 6.00000i 0.343935 0.198571i
\(914\) 0 0
\(915\) 5.19615 + 3.00000i 0.171780 + 0.0991769i
\(916\) −38.0000 −1.25556
\(917\) 6.00000 31.1769i 0.198137 1.02955i
\(918\) 0 0
\(919\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(920\) 0 0
\(921\) −46.7654 + 27.0000i −1.54097 + 0.889680i
\(922\) 0 0
\(923\) 32.0000i 1.05329i
\(924\) 10.3923 + 30.0000i 0.341882 + 0.986928i
\(925\) 5.00000i 0.164399i
\(926\) 0 0
\(927\) 42.0000 + 72.7461i 1.37946 + 2.38930i
\(928\) 0 0
\(929\) 25.9808 + 15.0000i 0.852401 + 0.492134i 0.861460 0.507825i \(-0.169550\pi\)
−0.00905914 + 0.999959i \(0.502884\pi\)
\(930\) 0 0
\(931\) 4.00000 + 27.7128i 0.131095 + 0.908251i
\(932\) 42.0000i 1.37576i
\(933\) 48.0000 83.1384i 1.57145 2.72183i
\(934\) 0 0
\(935\) 2.26795 + 7.92820i 0.0741699 + 0.259280i
\(936\) 0 0
\(937\) 12.0000 0.392023 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(938\) 0 0
\(939\) −18.0000 −0.587408
\(940\) −13.8564 8.00000i −0.451946 0.260931i
\(941\) 8.66025 5.00000i 0.282316 0.162995i −0.352155 0.935942i \(-0.614551\pi\)
0.634472 + 0.772946i \(0.281218\pi\)
\(942\) 0 0
\(943\) −3.00000 + 5.19615i −0.0976934 + 0.169210i
\(944\) 36.0000 1.17170
\(945\) −23.3827 4.50000i −0.760639 0.146385i
\(946\) 0 0
\(947\) 28.5788 + 16.5000i 0.928687 + 0.536178i 0.886396 0.462927i \(-0.153201\pi\)
0.0422912 + 0.999105i \(0.486534\pi\)
\(948\) 24.0000 + 41.5692i 0.779484 + 1.35011i
\(949\) 22.5167 13.0000i 0.730922 0.421998i
\(950\) 0 0
\(951\) −54.0000 −1.75107
\(952\) 0 0
\(953\) −8.00000 −0.259145 −0.129573 0.991570i \(-0.541361\pi\)
−0.129573 + 0.991570i \(0.541361\pi\)
\(954\) 0 0
\(955\) −6.92820 + 4.00000i −0.224191 + 0.129437i
\(956\) −11.0000 19.0526i −0.355765 0.616204i
\(957\) 0 0
\(958\) 0 0
\(959\) −20.7846 + 24.0000i −0.671170 + 0.775000i
\(960\) −24.0000 −0.774597
\(961\) 2.50000 4.33013i 0.0806452 0.139682i
\(962\) 0 0
\(963\) −15.5885 + 9.00000i −0.502331 + 0.290021i
\(964\) −27.7128 16.0000i −0.892570 0.515325i
\(965\) −6.00000 −0.193147
\(966\) 0 0
\(967\) −34.0000 −1.09337 −0.546683 0.837340i \(-0.684110\pi\)
−0.546683 + 0.837340i \(0.684110\pi\)
\(968\) 0 0
\(969\) 47.5692 13.6077i 1.52814 0.437142i
\(970\) 0 0
\(971\) −7.50000 + 12.9904i −0.240686 + 0.416881i −0.960910 0.276861i \(-0.910706\pi\)
0.720224 + 0.693742i \(0.244039\pi\)
\(972\) 0 0
\(973\) −5.00000 + 1.73205i −0.160293 + 0.0555270i
\(974\) 0 0
\(975\) 5.19615 + 3.00000i 0.166410 + 0.0960769i
\(976\) −6.92820 + 4.00000i −0.221766 + 0.128037i
\(977\) 13.0000 + 22.5167i 0.415907 + 0.720372i 0.995523 0.0945177i \(-0.0301309\pi\)
−0.579616 + 0.814890i \(0.696798\pi\)
\(978\) 0 0
\(979\) 26.0000i 0.830964i
\(980\) 8.66025 + 11.0000i 0.276642 + 0.351382i
\(981\) 84.0000i 2.68191i
\(982\) 0 0
\(983\) 11.2583 6.50000i 0.359085 0.207318i −0.309594 0.950869i \(-0.600193\pi\)
0.668679 + 0.743551i \(0.266860\pi\)
\(984\) 0 0
\(985\) 3.50000 6.06218i 0.111519 0.193157i
\(986\) 0 0
\(987\) 60.0000 20.7846i 1.90982 0.661581i
\(988\) −16.0000 −0.509028
\(989\) 10.3923 + 6.00000i 0.330456 + 0.190789i
\(990\) 0 0
\(991\) 29.4449 17.0000i 0.935347 0.540023i 0.0468483 0.998902i \(-0.485082\pi\)
0.888499 + 0.458879i \(0.151749\pi\)
\(992\) 0 0
\(993\) 39.0000i 1.23763i
\(994\) 0 0
\(995\) −16.0000 −0.507234
\(996\) −31.1769 18.0000i −0.987878 0.570352i
\(997\) 1.73205 1.00000i 0.0548546 0.0316703i −0.472322 0.881426i \(-0.656584\pi\)
0.527176 + 0.849756i \(0.323251\pi\)
\(998\) 0 0
\(999\) −22.5000 + 38.9711i −0.711868 + 1.23299i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 595.2.x.a.16.1 4
7.4 even 3 inner 595.2.x.a.186.2 yes 4
17.16 even 2 inner 595.2.x.a.16.2 yes 4
119.67 even 6 inner 595.2.x.a.186.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
595.2.x.a.16.1 4 1.1 even 1 trivial
595.2.x.a.16.2 yes 4 17.16 even 2 inner
595.2.x.a.186.1 yes 4 119.67 even 6 inner
595.2.x.a.186.2 yes 4 7.4 even 3 inner