Properties

Label 595.2.x.a
Level $595$
Weight $2$
Character orbit 595.x
Analytic conductor $4.751$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [595,2,Mod(16,595)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("595.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(595, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 595 = 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 595.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.75109892027\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 \zeta_{12} q^{3} + ( - 2 \zeta_{12}^{2} + 2) q^{4} + ( - \zeta_{12}^{3} + \zeta_{12}) q^{5} + ( - 3 \zeta_{12}^{3} + \zeta_{12}) q^{7} + 6 \zeta_{12}^{2} q^{9} - 2 \zeta_{12} q^{11} + ( - 6 \zeta_{12}^{3} + 6 \zeta_{12}) q^{12} + \cdots - 12 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 12 q^{9} - 8 q^{13} + 12 q^{15} - 8 q^{16} - 8 q^{17} + 8 q^{19} + 24 q^{21} + 2 q^{25} - 12 q^{33} - 2 q^{35} + 48 q^{36} + 48 q^{43} + 16 q^{47} - 22 q^{49} - 6 q^{51} - 8 q^{52} - 16 q^{53}+ \cdots - 36 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/595\mathbb{Z}\right)^\times\).

\(n\) \(71\) \(171\) \(477\)
\(\chi(n)\) \(-1\) \(-\zeta_{12}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −2.59808 + 1.50000i 1.00000 + 1.73205i −0.866025 0.500000i 0 −0.866025 2.50000i 0 3.00000 5.19615i 0
16.2 0 2.59808 1.50000i 1.00000 + 1.73205i 0.866025 + 0.500000i 0 0.866025 + 2.50000i 0 3.00000 5.19615i 0
186.1 0 −2.59808 1.50000i 1.00000 1.73205i −0.866025 + 0.500000i 0 −0.866025 + 2.50000i 0 3.00000 + 5.19615i 0
186.2 0 2.59808 + 1.50000i 1.00000 1.73205i 0.866025 0.500000i 0 0.866025 2.50000i 0 3.00000 + 5.19615i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
17.b even 2 1 inner
119.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 595.2.x.a 4
7.c even 3 1 inner 595.2.x.a 4
17.b even 2 1 inner 595.2.x.a 4
119.j even 6 1 inner 595.2.x.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
595.2.x.a 4 1.a even 1 1 trivial
595.2.x.a 4 7.c even 3 1 inner
595.2.x.a 4 17.b even 2 1 inner
595.2.x.a 4 119.j even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(595, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} + 11T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T + 2)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 8 T^{3} + \cdots + 289 \) Copy content Toggle raw display
$19$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$37$ \( T^{4} - 25T^{2} + 625 \) Copy content Toggle raw display
$41$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$43$ \( (T - 12)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T + 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 256)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 169 T^{2} + 28561 \) Copy content Toggle raw display
$79$ \( T^{4} - 64T^{2} + 4096 \) Copy content Toggle raw display
$83$ \( (T - 6)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 13 T + 169)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
show more
show less