Properties

Label 595.2.a.j.1.4
Level $595$
Weight $2$
Character 595.1
Self dual yes
Analytic conductor $4.751$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [595,2,Mod(1,595)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("595.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(595, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 595 = 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 595.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,2,2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.75109892027\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.2777.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.825785\) of defining polynomial
Character \(\chi\) \(=\) 595.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.59615 q^{2} +0.452290 q^{3} +4.74002 q^{4} +1.00000 q^{5} +1.17422 q^{6} -1.00000 q^{7} +7.11351 q^{8} -2.79543 q^{9} +2.59615 q^{10} -2.86579 q^{11} +2.14386 q^{12} +5.59615 q^{13} -2.59615 q^{14} +0.452290 q^{15} +8.98774 q^{16} -1.00000 q^{17} -7.25738 q^{18} -1.21422 q^{19} +4.74002 q^{20} -0.452290 q^{21} -7.44003 q^{22} -8.48004 q^{23} +3.21737 q^{24} +1.00000 q^{25} +14.5285 q^{26} -2.62122 q^{27} -4.74002 q^{28} +9.11351 q^{29} +1.17422 q^{30} -4.04844 q^{31} +9.10654 q^{32} -1.29617 q^{33} -2.59615 q^{34} -1.00000 q^{35} -13.2504 q^{36} -3.22266 q^{37} -3.15230 q^{38} +2.53109 q^{39} +7.11351 q^{40} +7.53545 q^{41} -1.17422 q^{42} -12.7511 q^{43} -13.5839 q^{44} -2.79543 q^{45} -22.0155 q^{46} +8.13858 q^{47} +4.06507 q^{48} +1.00000 q^{49} +2.59615 q^{50} -0.452290 q^{51} +26.5259 q^{52} -6.40968 q^{53} -6.80509 q^{54} -2.86579 q^{55} -7.11351 q^{56} -0.549180 q^{57} +23.6601 q^{58} +11.3374 q^{59} +2.14386 q^{60} -14.8716 q^{61} -10.5104 q^{62} +2.79543 q^{63} +5.66651 q^{64} +5.59615 q^{65} -3.36505 q^{66} +12.6574 q^{67} -4.74002 q^{68} -3.83544 q^{69} -2.59615 q^{70} -4.76193 q^{71} -19.8854 q^{72} +3.46891 q^{73} -8.36652 q^{74} +0.452290 q^{75} -5.75543 q^{76} +2.86579 q^{77} +6.57109 q^{78} +2.68989 q^{79} +8.98774 q^{80} +7.20075 q^{81} +19.5632 q^{82} +4.35808 q^{83} -2.14386 q^{84} -1.00000 q^{85} -33.1039 q^{86} +4.12195 q^{87} -20.3858 q^{88} -3.31111 q^{89} -7.25738 q^{90} -5.59615 q^{91} -40.1955 q^{92} -1.83107 q^{93} +21.1290 q^{94} -1.21422 q^{95} +4.11880 q^{96} +11.7015 q^{97} +2.59615 q^{98} +8.01112 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 4 q^{5} + 7 q^{6} - 4 q^{7} + 9 q^{8} + 2 q^{9} + 2 q^{10} - 5 q^{11} + 14 q^{13} - 2 q^{14} + 2 q^{15} + 6 q^{16} - 4 q^{17} - q^{18} - 3 q^{19} + 2 q^{20} - 2 q^{21}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59615 1.83576 0.917879 0.396860i \(-0.129900\pi\)
0.917879 + 0.396860i \(0.129900\pi\)
\(3\) 0.452290 0.261130 0.130565 0.991440i \(-0.458321\pi\)
0.130565 + 0.991440i \(0.458321\pi\)
\(4\) 4.74002 2.37001
\(5\) 1.00000 0.447214
\(6\) 1.17422 0.479371
\(7\) −1.00000 −0.377964
\(8\) 7.11351 2.51501
\(9\) −2.79543 −0.931811
\(10\) 2.59615 0.820976
\(11\) −2.86579 −0.864068 −0.432034 0.901857i \(-0.642204\pi\)
−0.432034 + 0.901857i \(0.642204\pi\)
\(12\) 2.14386 0.618880
\(13\) 5.59615 1.55209 0.776047 0.630675i \(-0.217222\pi\)
0.776047 + 0.630675i \(0.217222\pi\)
\(14\) −2.59615 −0.693852
\(15\) 0.452290 0.116781
\(16\) 8.98774 2.24694
\(17\) −1.00000 −0.242536
\(18\) −7.25738 −1.71058
\(19\) −1.21422 −0.278561 −0.139281 0.990253i \(-0.544479\pi\)
−0.139281 + 0.990253i \(0.544479\pi\)
\(20\) 4.74002 1.05990
\(21\) −0.452290 −0.0986978
\(22\) −7.44003 −1.58622
\(23\) −8.48004 −1.76821 −0.884105 0.467288i \(-0.845231\pi\)
−0.884105 + 0.467288i \(0.845231\pi\)
\(24\) 3.21737 0.656743
\(25\) 1.00000 0.200000
\(26\) 14.5285 2.84927
\(27\) −2.62122 −0.504454
\(28\) −4.74002 −0.895779
\(29\) 9.11351 1.69234 0.846168 0.532915i \(-0.178904\pi\)
0.846168 + 0.532915i \(0.178904\pi\)
\(30\) 1.17422 0.214381
\(31\) −4.04844 −0.727122 −0.363561 0.931570i \(-0.618439\pi\)
−0.363561 + 0.931570i \(0.618439\pi\)
\(32\) 9.10654 1.60982
\(33\) −1.29617 −0.225634
\(34\) −2.59615 −0.445237
\(35\) −1.00000 −0.169031
\(36\) −13.2504 −2.20840
\(37\) −3.22266 −0.529802 −0.264901 0.964276i \(-0.585339\pi\)
−0.264901 + 0.964276i \(0.585339\pi\)
\(38\) −3.15230 −0.511371
\(39\) 2.53109 0.405298
\(40\) 7.11351 1.12475
\(41\) 7.53545 1.17684 0.588420 0.808555i \(-0.299750\pi\)
0.588420 + 0.808555i \(0.299750\pi\)
\(42\) −1.17422 −0.181185
\(43\) −12.7511 −1.94453 −0.972266 0.233880i \(-0.924858\pi\)
−0.972266 + 0.233880i \(0.924858\pi\)
\(44\) −13.5839 −2.04785
\(45\) −2.79543 −0.416719
\(46\) −22.0155 −3.24601
\(47\) 8.13858 1.18713 0.593567 0.804785i \(-0.297719\pi\)
0.593567 + 0.804785i \(0.297719\pi\)
\(48\) 4.06507 0.586742
\(49\) 1.00000 0.142857
\(50\) 2.59615 0.367152
\(51\) −0.452290 −0.0633333
\(52\) 26.5259 3.67848
\(53\) −6.40968 −0.880438 −0.440219 0.897891i \(-0.645099\pi\)
−0.440219 + 0.897891i \(0.645099\pi\)
\(54\) −6.80509 −0.926055
\(55\) −2.86579 −0.386423
\(56\) −7.11351 −0.950583
\(57\) −0.549180 −0.0727407
\(58\) 23.6601 3.10672
\(59\) 11.3374 1.47600 0.738001 0.674800i \(-0.235770\pi\)
0.738001 + 0.674800i \(0.235770\pi\)
\(60\) 2.14386 0.276772
\(61\) −14.8716 −1.90412 −0.952058 0.305917i \(-0.901037\pi\)
−0.952058 + 0.305917i \(0.901037\pi\)
\(62\) −10.5104 −1.33482
\(63\) 2.79543 0.352192
\(64\) 5.66651 0.708314
\(65\) 5.59615 0.694118
\(66\) −3.36505 −0.414210
\(67\) 12.6574 1.54635 0.773174 0.634194i \(-0.218668\pi\)
0.773174 + 0.634194i \(0.218668\pi\)
\(68\) −4.74002 −0.574812
\(69\) −3.83544 −0.461733
\(70\) −2.59615 −0.310300
\(71\) −4.76193 −0.565137 −0.282569 0.959247i \(-0.591186\pi\)
−0.282569 + 0.959247i \(0.591186\pi\)
\(72\) −19.8854 −2.34351
\(73\) 3.46891 0.406006 0.203003 0.979178i \(-0.434930\pi\)
0.203003 + 0.979178i \(0.434930\pi\)
\(74\) −8.36652 −0.972589
\(75\) 0.452290 0.0522260
\(76\) −5.75543 −0.660193
\(77\) 2.86579 0.326587
\(78\) 6.57109 0.744030
\(79\) 2.68989 0.302637 0.151318 0.988485i \(-0.451648\pi\)
0.151318 + 0.988485i \(0.451648\pi\)
\(80\) 8.98774 1.00486
\(81\) 7.20075 0.800083
\(82\) 19.5632 2.16039
\(83\) 4.35808 0.478362 0.239181 0.970975i \(-0.423121\pi\)
0.239181 + 0.970975i \(0.423121\pi\)
\(84\) −2.14386 −0.233915
\(85\) −1.00000 −0.108465
\(86\) −33.1039 −3.56969
\(87\) 4.12195 0.441920
\(88\) −20.3858 −2.17314
\(89\) −3.31111 −0.350977 −0.175488 0.984481i \(-0.556150\pi\)
−0.175488 + 0.984481i \(0.556150\pi\)
\(90\) −7.25738 −0.764995
\(91\) −5.59615 −0.586636
\(92\) −40.1955 −4.19068
\(93\) −1.83107 −0.189873
\(94\) 21.1290 2.17929
\(95\) −1.21422 −0.124576
\(96\) 4.11880 0.420373
\(97\) 11.7015 1.18811 0.594053 0.804426i \(-0.297527\pi\)
0.594053 + 0.804426i \(0.297527\pi\)
\(98\) 2.59615 0.262251
\(99\) 8.01112 0.805148
\(100\) 4.74002 0.474002
\(101\) 1.43373 0.142661 0.0713307 0.997453i \(-0.477275\pi\)
0.0713307 + 0.997453i \(0.477275\pi\)
\(102\) −1.17422 −0.116265
\(103\) 5.51568 0.543476 0.271738 0.962371i \(-0.412402\pi\)
0.271738 + 0.962371i \(0.412402\pi\)
\(104\) 39.8083 3.90353
\(105\) −0.452290 −0.0441390
\(106\) −16.6405 −1.61627
\(107\) 5.66122 0.547291 0.273646 0.961831i \(-0.411770\pi\)
0.273646 + 0.961831i \(0.411770\pi\)
\(108\) −12.4246 −1.19556
\(109\) 5.20343 0.498399 0.249199 0.968452i \(-0.419833\pi\)
0.249199 + 0.968452i \(0.419833\pi\)
\(110\) −7.44003 −0.709379
\(111\) −1.45758 −0.138347
\(112\) −8.98774 −0.849262
\(113\) −7.29041 −0.685824 −0.342912 0.939367i \(-0.611413\pi\)
−0.342912 + 0.939367i \(0.611413\pi\)
\(114\) −1.42576 −0.133534
\(115\) −8.48004 −0.790768
\(116\) 43.1982 4.01085
\(117\) −15.6437 −1.44626
\(118\) 29.4336 2.70958
\(119\) 1.00000 0.0916698
\(120\) 3.21737 0.293705
\(121\) −2.78725 −0.253386
\(122\) −38.6090 −3.49550
\(123\) 3.40821 0.307308
\(124\) −19.1897 −1.72329
\(125\) 1.00000 0.0894427
\(126\) 7.25738 0.646539
\(127\) −2.22963 −0.197848 −0.0989238 0.995095i \(-0.531540\pi\)
−0.0989238 + 0.995095i \(0.531540\pi\)
\(128\) −3.50195 −0.309532
\(129\) −5.76722 −0.507775
\(130\) 14.5285 1.27423
\(131\) −14.5013 −1.26698 −0.633492 0.773750i \(-0.718379\pi\)
−0.633492 + 0.773750i \(0.718379\pi\)
\(132\) −6.14386 −0.534755
\(133\) 1.21422 0.105286
\(134\) 32.8606 2.83872
\(135\) −2.62122 −0.225599
\(136\) −7.11351 −0.609979
\(137\) 19.8078 1.69229 0.846146 0.532951i \(-0.178917\pi\)
0.846146 + 0.532951i \(0.178917\pi\)
\(138\) −9.95739 −0.847629
\(139\) −15.5083 −1.31539 −0.657696 0.753283i \(-0.728469\pi\)
−0.657696 + 0.753283i \(0.728469\pi\)
\(140\) −4.74002 −0.400605
\(141\) 3.68100 0.309996
\(142\) −12.3627 −1.03746
\(143\) −16.0374 −1.34111
\(144\) −25.1246 −2.09372
\(145\) 9.11351 0.756836
\(146\) 9.00584 0.745328
\(147\) 0.452290 0.0373043
\(148\) −15.2755 −1.25564
\(149\) −11.5767 −0.948398 −0.474199 0.880418i \(-0.657262\pi\)
−0.474199 + 0.880418i \(0.657262\pi\)
\(150\) 1.17422 0.0958743
\(151\) −0.712271 −0.0579638 −0.0289819 0.999580i \(-0.509227\pi\)
−0.0289819 + 0.999580i \(0.509227\pi\)
\(152\) −8.63737 −0.700584
\(153\) 2.79543 0.225997
\(154\) 7.44003 0.599535
\(155\) −4.04844 −0.325179
\(156\) 11.9974 0.960561
\(157\) −15.0058 −1.19760 −0.598798 0.800900i \(-0.704355\pi\)
−0.598798 + 0.800900i \(0.704355\pi\)
\(158\) 6.98338 0.555568
\(159\) −2.89904 −0.229909
\(160\) 9.10654 0.719936
\(161\) 8.48004 0.668321
\(162\) 18.6943 1.46876
\(163\) 7.40271 0.579825 0.289913 0.957053i \(-0.406374\pi\)
0.289913 + 0.957053i \(0.406374\pi\)
\(164\) 35.7182 2.78912
\(165\) −1.29617 −0.100907
\(166\) 11.3143 0.878157
\(167\) 8.85761 0.685422 0.342711 0.939441i \(-0.388655\pi\)
0.342711 + 0.939441i \(0.388655\pi\)
\(168\) −3.21737 −0.248226
\(169\) 18.3169 1.40900
\(170\) −2.59615 −0.199116
\(171\) 3.39427 0.259567
\(172\) −60.4407 −4.60856
\(173\) 15.5978 1.18588 0.592941 0.805246i \(-0.297967\pi\)
0.592941 + 0.805246i \(0.297967\pi\)
\(174\) 10.7012 0.811258
\(175\) −1.00000 −0.0755929
\(176\) −25.7570 −1.94151
\(177\) 5.12779 0.385428
\(178\) −8.59615 −0.644309
\(179\) 0.215435 0.0161023 0.00805117 0.999968i \(-0.497437\pi\)
0.00805117 + 0.999968i \(0.497437\pi\)
\(180\) −13.2504 −0.987627
\(181\) −7.85567 −0.583907 −0.291954 0.956432i \(-0.594305\pi\)
−0.291954 + 0.956432i \(0.594305\pi\)
\(182\) −14.5285 −1.07692
\(183\) −6.72629 −0.497222
\(184\) −60.3229 −4.44706
\(185\) −3.22266 −0.236935
\(186\) −4.75375 −0.348562
\(187\) 2.86579 0.209567
\(188\) 38.5770 2.81352
\(189\) 2.62122 0.190666
\(190\) −3.15230 −0.228692
\(191\) 11.8121 0.854690 0.427345 0.904089i \(-0.359449\pi\)
0.427345 + 0.904089i \(0.359449\pi\)
\(192\) 2.56291 0.184962
\(193\) 14.3704 1.03441 0.517203 0.855863i \(-0.326973\pi\)
0.517203 + 0.855863i \(0.326973\pi\)
\(194\) 30.3789 2.18108
\(195\) 2.53109 0.181255
\(196\) 4.74002 0.338573
\(197\) 12.7581 0.908978 0.454489 0.890752i \(-0.349822\pi\)
0.454489 + 0.890752i \(0.349822\pi\)
\(198\) 20.7981 1.47806
\(199\) −8.53109 −0.604753 −0.302376 0.953189i \(-0.597780\pi\)
−0.302376 + 0.953189i \(0.597780\pi\)
\(200\) 7.11351 0.503001
\(201\) 5.72482 0.403798
\(202\) 3.72218 0.261892
\(203\) −9.11351 −0.639643
\(204\) −2.14386 −0.150101
\(205\) 7.53545 0.526299
\(206\) 14.3196 0.997690
\(207\) 23.7054 1.64764
\(208\) 50.2968 3.48746
\(209\) 3.47970 0.240696
\(210\) −1.17422 −0.0810286
\(211\) −3.65732 −0.251781 −0.125890 0.992044i \(-0.540179\pi\)
−0.125890 + 0.992044i \(0.540179\pi\)
\(212\) −30.3820 −2.08665
\(213\) −2.15377 −0.147574
\(214\) 14.6974 1.00469
\(215\) −12.7511 −0.869621
\(216\) −18.6461 −1.26870
\(217\) 4.04844 0.274826
\(218\) 13.5089 0.914939
\(219\) 1.56896 0.106020
\(220\) −13.5839 −0.915826
\(221\) −5.59615 −0.376438
\(222\) −3.78410 −0.253972
\(223\) 16.0234 1.07300 0.536502 0.843899i \(-0.319745\pi\)
0.536502 + 0.843899i \(0.319745\pi\)
\(224\) −9.10654 −0.608457
\(225\) −2.79543 −0.186362
\(226\) −18.9270 −1.25901
\(227\) −4.86558 −0.322940 −0.161470 0.986878i \(-0.551623\pi\)
−0.161470 + 0.986878i \(0.551623\pi\)
\(228\) −2.60312 −0.172396
\(229\) 14.0018 0.925263 0.462631 0.886551i \(-0.346905\pi\)
0.462631 + 0.886551i \(0.346905\pi\)
\(230\) −22.0155 −1.45166
\(231\) 1.29617 0.0852816
\(232\) 64.8291 4.25624
\(233\) −2.49398 −0.163386 −0.0816929 0.996658i \(-0.526033\pi\)
−0.0816929 + 0.996658i \(0.526033\pi\)
\(234\) −40.6134 −2.65498
\(235\) 8.13858 0.530902
\(236\) 53.7394 3.49814
\(237\) 1.21661 0.0790274
\(238\) 2.59615 0.168284
\(239\) 5.20075 0.336409 0.168204 0.985752i \(-0.446203\pi\)
0.168204 + 0.985752i \(0.446203\pi\)
\(240\) 4.06507 0.262399
\(241\) 3.84703 0.247809 0.123905 0.992294i \(-0.460458\pi\)
0.123905 + 0.992294i \(0.460458\pi\)
\(242\) −7.23613 −0.465156
\(243\) 11.1205 0.713379
\(244\) −70.4918 −4.51277
\(245\) 1.00000 0.0638877
\(246\) 8.84824 0.564143
\(247\) −6.79497 −0.432353
\(248\) −28.7987 −1.82872
\(249\) 1.97112 0.124915
\(250\) 2.59615 0.164195
\(251\) 21.3372 1.34679 0.673395 0.739283i \(-0.264835\pi\)
0.673395 + 0.739283i \(0.264835\pi\)
\(252\) 13.2504 0.834697
\(253\) 24.3020 1.52785
\(254\) −5.78846 −0.363201
\(255\) −0.452290 −0.0283235
\(256\) −20.4246 −1.27654
\(257\) 2.61538 0.163143 0.0815715 0.996667i \(-0.474006\pi\)
0.0815715 + 0.996667i \(0.474006\pi\)
\(258\) −14.9726 −0.932153
\(259\) 3.22266 0.200246
\(260\) 26.5259 1.64507
\(261\) −25.4762 −1.57694
\(262\) −37.6476 −2.32588
\(263\) 13.9618 0.860919 0.430459 0.902610i \(-0.358352\pi\)
0.430459 + 0.902610i \(0.358352\pi\)
\(264\) −9.22031 −0.567471
\(265\) −6.40968 −0.393744
\(266\) 3.15230 0.193280
\(267\) −1.49758 −0.0916506
\(268\) 59.9963 3.66486
\(269\) 12.5795 0.766988 0.383494 0.923543i \(-0.374721\pi\)
0.383494 + 0.923543i \(0.374721\pi\)
\(270\) −6.80509 −0.414144
\(271\) 11.3099 0.687027 0.343514 0.939148i \(-0.388383\pi\)
0.343514 + 0.939148i \(0.388383\pi\)
\(272\) −8.98774 −0.544962
\(273\) −2.53109 −0.153188
\(274\) 51.4240 3.10664
\(275\) −2.86579 −0.172814
\(276\) −18.1801 −1.09431
\(277\) −26.7970 −1.61007 −0.805037 0.593224i \(-0.797855\pi\)
−0.805037 + 0.593224i \(0.797855\pi\)
\(278\) −40.2618 −2.41474
\(279\) 11.3172 0.677541
\(280\) −7.11351 −0.425114
\(281\) −17.6986 −1.05581 −0.527906 0.849303i \(-0.677023\pi\)
−0.527906 + 0.849303i \(0.677023\pi\)
\(282\) 9.55644 0.569078
\(283\) −21.2046 −1.26049 −0.630243 0.776398i \(-0.717045\pi\)
−0.630243 + 0.776398i \(0.717045\pi\)
\(284\) −22.5716 −1.33938
\(285\) −0.549180 −0.0325306
\(286\) −41.6356 −2.46196
\(287\) −7.53545 −0.444804
\(288\) −25.4567 −1.50005
\(289\) 1.00000 0.0588235
\(290\) 23.6601 1.38937
\(291\) 5.29247 0.310250
\(292\) 16.4427 0.962237
\(293\) 2.82142 0.164829 0.0824145 0.996598i \(-0.473737\pi\)
0.0824145 + 0.996598i \(0.473737\pi\)
\(294\) 1.17422 0.0684816
\(295\) 11.3374 0.660088
\(296\) −22.9244 −1.33246
\(297\) 7.51186 0.435882
\(298\) −30.0548 −1.74103
\(299\) −47.4556 −2.74443
\(300\) 2.14386 0.123776
\(301\) 12.7511 0.734964
\(302\) −1.84917 −0.106408
\(303\) 0.648461 0.0372531
\(304\) −10.9131 −0.625909
\(305\) −14.8716 −0.851547
\(306\) 7.25738 0.414877
\(307\) 8.10646 0.462660 0.231330 0.972875i \(-0.425692\pi\)
0.231330 + 0.972875i \(0.425692\pi\)
\(308\) 13.5839 0.774014
\(309\) 2.49469 0.141918
\(310\) −10.5104 −0.596950
\(311\) −28.8370 −1.63520 −0.817598 0.575790i \(-0.804695\pi\)
−0.817598 + 0.575790i \(0.804695\pi\)
\(312\) 18.0049 1.01933
\(313\) 2.55736 0.144551 0.0722754 0.997385i \(-0.476974\pi\)
0.0722754 + 0.997385i \(0.476974\pi\)
\(314\) −38.9575 −2.19850
\(315\) 2.79543 0.157505
\(316\) 12.7501 0.717251
\(317\) 13.4615 0.756072 0.378036 0.925791i \(-0.376600\pi\)
0.378036 + 0.925791i \(0.376600\pi\)
\(318\) −7.52635 −0.422057
\(319\) −26.1174 −1.46229
\(320\) 5.66651 0.316768
\(321\) 2.56052 0.142914
\(322\) 22.0155 1.22688
\(323\) 1.21422 0.0675610
\(324\) 34.1317 1.89620
\(325\) 5.59615 0.310419
\(326\) 19.2186 1.06442
\(327\) 2.35346 0.130147
\(328\) 53.6035 2.95976
\(329\) −8.13858 −0.448694
\(330\) −3.36505 −0.185240
\(331\) −33.7428 −1.85467 −0.927336 0.374231i \(-0.877907\pi\)
−0.927336 + 0.374231i \(0.877907\pi\)
\(332\) 20.6574 1.13372
\(333\) 9.00873 0.493676
\(334\) 22.9957 1.25827
\(335\) 12.6574 0.691548
\(336\) −4.06507 −0.221768
\(337\) −2.83115 −0.154223 −0.0771114 0.997022i \(-0.524570\pi\)
−0.0771114 + 0.997022i \(0.524570\pi\)
\(338\) 47.5536 2.58658
\(339\) −3.29738 −0.179089
\(340\) −4.74002 −0.257064
\(341\) 11.6020 0.628283
\(342\) 8.81206 0.476501
\(343\) −1.00000 −0.0539949
\(344\) −90.7054 −4.89051
\(345\) −3.83544 −0.206493
\(346\) 40.4944 2.17699
\(347\) 18.7953 1.00898 0.504492 0.863416i \(-0.331680\pi\)
0.504492 + 0.863416i \(0.331680\pi\)
\(348\) 19.5381 1.04735
\(349\) 20.5856 1.10192 0.550960 0.834531i \(-0.314262\pi\)
0.550960 + 0.834531i \(0.314262\pi\)
\(350\) −2.59615 −0.138770
\(351\) −14.6687 −0.782960
\(352\) −26.0974 −1.39100
\(353\) −10.4218 −0.554695 −0.277347 0.960770i \(-0.589455\pi\)
−0.277347 + 0.960770i \(0.589455\pi\)
\(354\) 13.3125 0.707553
\(355\) −4.76193 −0.252737
\(356\) −15.6947 −0.831819
\(357\) 0.452290 0.0239377
\(358\) 0.559302 0.0295600
\(359\) −20.7363 −1.09442 −0.547210 0.836996i \(-0.684310\pi\)
−0.547210 + 0.836996i \(0.684310\pi\)
\(360\) −19.8854 −1.04805
\(361\) −17.5257 −0.922404
\(362\) −20.3945 −1.07191
\(363\) −1.26065 −0.0661668
\(364\) −26.5259 −1.39033
\(365\) 3.46891 0.181571
\(366\) −17.4625 −0.912779
\(367\) 15.1547 0.791071 0.395535 0.918451i \(-0.370559\pi\)
0.395535 + 0.918451i \(0.370559\pi\)
\(368\) −76.2164 −3.97305
\(369\) −21.0649 −1.09659
\(370\) −8.36652 −0.434955
\(371\) 6.40968 0.332774
\(372\) −8.67932 −0.450002
\(373\) 13.7652 0.712733 0.356367 0.934346i \(-0.384015\pi\)
0.356367 + 0.934346i \(0.384015\pi\)
\(374\) 7.44003 0.384715
\(375\) 0.452290 0.0233562
\(376\) 57.8939 2.98565
\(377\) 51.0006 2.62667
\(378\) 6.80509 0.350016
\(379\) −4.27518 −0.219601 −0.109801 0.993954i \(-0.535021\pi\)
−0.109801 + 0.993954i \(0.535021\pi\)
\(380\) −5.75543 −0.295247
\(381\) −1.00844 −0.0516639
\(382\) 30.6659 1.56901
\(383\) −25.4774 −1.30184 −0.650918 0.759148i \(-0.725616\pi\)
−0.650918 + 0.759148i \(0.725616\pi\)
\(384\) −1.58390 −0.0808279
\(385\) 2.86579 0.146054
\(386\) 37.3078 1.89892
\(387\) 35.6450 1.81194
\(388\) 55.4653 2.81582
\(389\) 15.7776 0.799958 0.399979 0.916524i \(-0.369017\pi\)
0.399979 + 0.916524i \(0.369017\pi\)
\(390\) 6.57109 0.332740
\(391\) 8.48004 0.428854
\(392\) 7.11351 0.359287
\(393\) −6.55879 −0.330847
\(394\) 33.1220 1.66866
\(395\) 2.68989 0.135343
\(396\) 37.9729 1.90821
\(397\) 25.9120 1.30048 0.650242 0.759727i \(-0.274667\pi\)
0.650242 + 0.759727i \(0.274667\pi\)
\(398\) −22.1480 −1.11018
\(399\) 0.549180 0.0274934
\(400\) 8.98774 0.449387
\(401\) −5.66169 −0.282731 −0.141366 0.989957i \(-0.545149\pi\)
−0.141366 + 0.989957i \(0.545149\pi\)
\(402\) 14.8625 0.741275
\(403\) −22.6557 −1.12856
\(404\) 6.79590 0.338109
\(405\) 7.20075 0.357808
\(406\) −23.6601 −1.17423
\(407\) 9.23547 0.457785
\(408\) −3.21737 −0.159284
\(409\) −29.0408 −1.43598 −0.717988 0.696056i \(-0.754937\pi\)
−0.717988 + 0.696056i \(0.754937\pi\)
\(410\) 19.5632 0.966158
\(411\) 8.95886 0.441908
\(412\) 26.1444 1.28804
\(413\) −11.3374 −0.557876
\(414\) 61.5428 3.02467
\(415\) 4.35808 0.213930
\(416\) 50.9616 2.49860
\(417\) −7.01423 −0.343488
\(418\) 9.03384 0.441860
\(419\) 18.9910 0.927770 0.463885 0.885895i \(-0.346455\pi\)
0.463885 + 0.885895i \(0.346455\pi\)
\(420\) −2.14386 −0.104610
\(421\) −9.05643 −0.441383 −0.220692 0.975344i \(-0.570831\pi\)
−0.220692 + 0.975344i \(0.570831\pi\)
\(422\) −9.49498 −0.462208
\(423\) −22.7509 −1.10618
\(424\) −45.5954 −2.21431
\(425\) −1.00000 −0.0485071
\(426\) −5.59153 −0.270911
\(427\) 14.8716 0.719688
\(428\) 26.8343 1.29709
\(429\) −7.25356 −0.350205
\(430\) −33.1039 −1.59641
\(431\) 12.8182 0.617429 0.308714 0.951155i \(-0.400101\pi\)
0.308714 + 0.951155i \(0.400101\pi\)
\(432\) −23.5588 −1.13347
\(433\) −34.1671 −1.64197 −0.820984 0.570952i \(-0.806574\pi\)
−0.820984 + 0.570952i \(0.806574\pi\)
\(434\) 10.5104 0.504515
\(435\) 4.12195 0.197633
\(436\) 24.6644 1.18121
\(437\) 10.2966 0.492555
\(438\) 4.07325 0.194628
\(439\) −24.1152 −1.15096 −0.575478 0.817817i \(-0.695184\pi\)
−0.575478 + 0.817817i \(0.695184\pi\)
\(440\) −20.3858 −0.971856
\(441\) −2.79543 −0.133116
\(442\) −14.5285 −0.691049
\(443\) −32.5868 −1.54825 −0.774123 0.633036i \(-0.781809\pi\)
−0.774123 + 0.633036i \(0.781809\pi\)
\(444\) −6.90895 −0.327884
\(445\) −3.31111 −0.156962
\(446\) 41.5992 1.96978
\(447\) −5.23602 −0.247655
\(448\) −5.66651 −0.267717
\(449\) 3.22153 0.152033 0.0760166 0.997107i \(-0.475780\pi\)
0.0760166 + 0.997107i \(0.475780\pi\)
\(450\) −7.25738 −0.342116
\(451\) −21.5950 −1.01687
\(452\) −34.5567 −1.62541
\(453\) −0.322153 −0.0151361
\(454\) −12.6318 −0.592839
\(455\) −5.59615 −0.262352
\(456\) −3.90660 −0.182943
\(457\) −11.9868 −0.560720 −0.280360 0.959895i \(-0.590454\pi\)
−0.280360 + 0.959895i \(0.590454\pi\)
\(458\) 36.3507 1.69856
\(459\) 2.62122 0.122348
\(460\) −40.1955 −1.87413
\(461\) −13.9659 −0.650457 −0.325229 0.945635i \(-0.605441\pi\)
−0.325229 + 0.945635i \(0.605441\pi\)
\(462\) 3.36505 0.156557
\(463\) −18.8041 −0.873900 −0.436950 0.899486i \(-0.643941\pi\)
−0.436950 + 0.899486i \(0.643941\pi\)
\(464\) 81.9099 3.80257
\(465\) −1.83107 −0.0849139
\(466\) −6.47475 −0.299937
\(467\) −5.91415 −0.273674 −0.136837 0.990594i \(-0.543694\pi\)
−0.136837 + 0.990594i \(0.543694\pi\)
\(468\) −74.1513 −3.42765
\(469\) −12.6574 −0.584465
\(470\) 21.1290 0.974608
\(471\) −6.78699 −0.312728
\(472\) 80.6487 3.71216
\(473\) 36.5421 1.68021
\(474\) 3.15851 0.145075
\(475\) −1.21422 −0.0557123
\(476\) 4.74002 0.217258
\(477\) 17.9178 0.820402
\(478\) 13.5019 0.617565
\(479\) 10.9586 0.500711 0.250356 0.968154i \(-0.419452\pi\)
0.250356 + 0.968154i \(0.419452\pi\)
\(480\) 4.11880 0.187997
\(481\) −18.0345 −0.822303
\(482\) 9.98749 0.454918
\(483\) 3.83544 0.174518
\(484\) −13.2116 −0.600528
\(485\) 11.7015 0.531337
\(486\) 28.8705 1.30959
\(487\) −22.6589 −1.02677 −0.513386 0.858158i \(-0.671609\pi\)
−0.513386 + 0.858158i \(0.671609\pi\)
\(488\) −105.790 −4.78887
\(489\) 3.34817 0.151410
\(490\) 2.59615 0.117282
\(491\) 4.50992 0.203530 0.101765 0.994808i \(-0.467551\pi\)
0.101765 + 0.994808i \(0.467551\pi\)
\(492\) 16.1550 0.728323
\(493\) −9.11351 −0.410452
\(494\) −17.6408 −0.793696
\(495\) 8.01112 0.360073
\(496\) −36.3864 −1.63380
\(497\) 4.76193 0.213602
\(498\) 5.11733 0.229313
\(499\) 11.2510 0.503662 0.251831 0.967771i \(-0.418967\pi\)
0.251831 + 0.967771i \(0.418967\pi\)
\(500\) 4.74002 0.211980
\(501\) 4.00621 0.178984
\(502\) 55.3946 2.47238
\(503\) 15.4671 0.689644 0.344822 0.938668i \(-0.387939\pi\)
0.344822 + 0.938668i \(0.387939\pi\)
\(504\) 19.8854 0.885764
\(505\) 1.43373 0.0638001
\(506\) 63.0918 2.80477
\(507\) 8.28458 0.367931
\(508\) −10.5685 −0.468901
\(509\) −4.81621 −0.213475 −0.106737 0.994287i \(-0.534040\pi\)
−0.106737 + 0.994287i \(0.534040\pi\)
\(510\) −1.17422 −0.0519951
\(511\) −3.46891 −0.153456
\(512\) −46.0216 −2.03389
\(513\) 3.18274 0.140521
\(514\) 6.78993 0.299491
\(515\) 5.51568 0.243050
\(516\) −27.3367 −1.20343
\(517\) −23.3234 −1.02576
\(518\) 8.36652 0.367604
\(519\) 7.05475 0.309669
\(520\) 39.8083 1.74571
\(521\) 18.5828 0.814126 0.407063 0.913400i \(-0.366553\pi\)
0.407063 + 0.913400i \(0.366553\pi\)
\(522\) −66.1402 −2.89488
\(523\) 21.8117 0.953758 0.476879 0.878969i \(-0.341768\pi\)
0.476879 + 0.878969i \(0.341768\pi\)
\(524\) −68.7364 −3.00276
\(525\) −0.452290 −0.0197396
\(526\) 36.2469 1.58044
\(527\) 4.04844 0.176353
\(528\) −11.6496 −0.506985
\(529\) 48.9110 2.12657
\(530\) −16.6405 −0.722818
\(531\) −31.6929 −1.37536
\(532\) 5.75543 0.249529
\(533\) 42.1696 1.82657
\(534\) −3.88796 −0.168248
\(535\) 5.66122 0.244756
\(536\) 90.0386 3.88908
\(537\) 0.0974390 0.00420480
\(538\) 32.6584 1.40800
\(539\) −2.86579 −0.123438
\(540\) −12.4246 −0.534671
\(541\) −21.2276 −0.912644 −0.456322 0.889815i \(-0.650834\pi\)
−0.456322 + 0.889815i \(0.650834\pi\)
\(542\) 29.3622 1.26122
\(543\) −3.55304 −0.152476
\(544\) −9.10654 −0.390440
\(545\) 5.20343 0.222891
\(546\) −6.57109 −0.281217
\(547\) −42.2300 −1.80563 −0.902813 0.430033i \(-0.858502\pi\)
−0.902813 + 0.430033i \(0.858502\pi\)
\(548\) 93.8892 4.01075
\(549\) 41.5726 1.77428
\(550\) −7.44003 −0.317244
\(551\) −11.0658 −0.471420
\(552\) −27.2834 −1.16126
\(553\) −2.68989 −0.114386
\(554\) −69.5691 −2.95571
\(555\) −1.45758 −0.0618707
\(556\) −73.5094 −3.11749
\(557\) −15.5181 −0.657523 −0.328762 0.944413i \(-0.606631\pi\)
−0.328762 + 0.944413i \(0.606631\pi\)
\(558\) 29.3811 1.24380
\(559\) −71.3574 −3.01810
\(560\) −8.98774 −0.379801
\(561\) 1.29617 0.0547243
\(562\) −45.9484 −1.93821
\(563\) 3.55636 0.149883 0.0749414 0.997188i \(-0.476123\pi\)
0.0749414 + 0.997188i \(0.476123\pi\)
\(564\) 17.4480 0.734694
\(565\) −7.29041 −0.306710
\(566\) −55.0505 −2.31395
\(567\) −7.20075 −0.302403
\(568\) −33.8741 −1.42132
\(569\) −34.4148 −1.44274 −0.721372 0.692548i \(-0.756488\pi\)
−0.721372 + 0.692548i \(0.756488\pi\)
\(570\) −1.42576 −0.0597184
\(571\) −1.83262 −0.0766929 −0.0383465 0.999265i \(-0.512209\pi\)
−0.0383465 + 0.999265i \(0.512209\pi\)
\(572\) −76.0176 −3.17846
\(573\) 5.34248 0.223185
\(574\) −19.5632 −0.816552
\(575\) −8.48004 −0.353642
\(576\) −15.8404 −0.660015
\(577\) −23.4428 −0.975936 −0.487968 0.872861i \(-0.662262\pi\)
−0.487968 + 0.872861i \(0.662262\pi\)
\(578\) 2.59615 0.107986
\(579\) 6.49960 0.270114
\(580\) 43.1982 1.79371
\(581\) −4.35808 −0.180804
\(582\) 13.7401 0.569544
\(583\) 18.3688 0.760758
\(584\) 24.6762 1.02111
\(585\) −15.6437 −0.646787
\(586\) 7.32484 0.302586
\(587\) −22.1098 −0.912568 −0.456284 0.889834i \(-0.650820\pi\)
−0.456284 + 0.889834i \(0.650820\pi\)
\(588\) 2.14386 0.0884115
\(589\) 4.91570 0.202548
\(590\) 29.4336 1.21176
\(591\) 5.77037 0.237361
\(592\) −28.9644 −1.19043
\(593\) 15.8819 0.652193 0.326097 0.945336i \(-0.394267\pi\)
0.326097 + 0.945336i \(0.394267\pi\)
\(594\) 19.5019 0.800175
\(595\) 1.00000 0.0409960
\(596\) −54.8736 −2.24771
\(597\) −3.85853 −0.157919
\(598\) −123.202 −5.03811
\(599\) −21.3918 −0.874047 −0.437024 0.899450i \(-0.643967\pi\)
−0.437024 + 0.899450i \(0.643967\pi\)
\(600\) 3.21737 0.131349
\(601\) −37.0490 −1.51126 −0.755630 0.654999i \(-0.772669\pi\)
−0.755630 + 0.654999i \(0.772669\pi\)
\(602\) 33.1039 1.34922
\(603\) −35.3829 −1.44090
\(604\) −3.37618 −0.137375
\(605\) −2.78725 −0.113318
\(606\) 1.68351 0.0683878
\(607\) −2.60573 −0.105763 −0.0528816 0.998601i \(-0.516841\pi\)
−0.0528816 + 0.998601i \(0.516841\pi\)
\(608\) −11.0574 −0.448435
\(609\) −4.12195 −0.167030
\(610\) −38.6090 −1.56323
\(611\) 45.5447 1.84254
\(612\) 13.2504 0.535616
\(613\) −40.9542 −1.65412 −0.827062 0.562110i \(-0.809990\pi\)
−0.827062 + 0.562110i \(0.809990\pi\)
\(614\) 21.0456 0.849333
\(615\) 3.40821 0.137432
\(616\) 20.3858 0.821369
\(617\) 9.24097 0.372027 0.186014 0.982547i \(-0.440443\pi\)
0.186014 + 0.982547i \(0.440443\pi\)
\(618\) 6.47659 0.260527
\(619\) 32.5908 1.30993 0.654967 0.755658i \(-0.272683\pi\)
0.654967 + 0.755658i \(0.272683\pi\)
\(620\) −19.1897 −0.770677
\(621\) 22.2280 0.891980
\(622\) −74.8653 −3.00182
\(623\) 3.31111 0.132657
\(624\) 22.7488 0.910679
\(625\) 1.00000 0.0400000
\(626\) 6.63931 0.265360
\(627\) 1.57383 0.0628529
\(628\) −71.1280 −2.83831
\(629\) 3.22266 0.128496
\(630\) 7.25738 0.289141
\(631\) 11.4959 0.457645 0.228823 0.973468i \(-0.426512\pi\)
0.228823 + 0.973468i \(0.426512\pi\)
\(632\) 19.1346 0.761133
\(633\) −1.65417 −0.0657474
\(634\) 34.9481 1.38797
\(635\) −2.22963 −0.0884802
\(636\) −13.7415 −0.544886
\(637\) 5.59615 0.221728
\(638\) −67.8048 −2.68442
\(639\) 13.3117 0.526601
\(640\) −3.50195 −0.138427
\(641\) 13.1161 0.518055 0.259028 0.965870i \(-0.416598\pi\)
0.259028 + 0.965870i \(0.416598\pi\)
\(642\) 6.64750 0.262356
\(643\) −33.4191 −1.31792 −0.658961 0.752177i \(-0.729004\pi\)
−0.658961 + 0.752177i \(0.729004\pi\)
\(644\) 40.1955 1.58393
\(645\) −5.76722 −0.227084
\(646\) 3.15230 0.124026
\(647\) −28.0465 −1.10262 −0.551310 0.834300i \(-0.685872\pi\)
−0.551310 + 0.834300i \(0.685872\pi\)
\(648\) 51.2226 2.01221
\(649\) −32.4906 −1.27537
\(650\) 14.5285 0.569854
\(651\) 1.83107 0.0717654
\(652\) 35.0890 1.37419
\(653\) 15.4213 0.603481 0.301740 0.953390i \(-0.402432\pi\)
0.301740 + 0.953390i \(0.402432\pi\)
\(654\) 6.10995 0.238918
\(655\) −14.5013 −0.566612
\(656\) 67.7267 2.64428
\(657\) −9.69712 −0.378321
\(658\) −21.1290 −0.823694
\(659\) 6.27300 0.244361 0.122181 0.992508i \(-0.461011\pi\)
0.122181 + 0.992508i \(0.461011\pi\)
\(660\) −6.14386 −0.239150
\(661\) −37.0627 −1.44157 −0.720786 0.693157i \(-0.756219\pi\)
−0.720786 + 0.693157i \(0.756219\pi\)
\(662\) −87.6015 −3.40473
\(663\) −2.53109 −0.0982992
\(664\) 31.0013 1.20308
\(665\) 1.21422 0.0470855
\(666\) 23.3881 0.906269
\(667\) −77.2829 −2.99241
\(668\) 41.9852 1.62446
\(669\) 7.24722 0.280194
\(670\) 32.8606 1.26952
\(671\) 42.6190 1.64529
\(672\) −4.11880 −0.158886
\(673\) 19.0649 0.734898 0.367449 0.930044i \(-0.380231\pi\)
0.367449 + 0.930044i \(0.380231\pi\)
\(674\) −7.35011 −0.283116
\(675\) −2.62122 −0.100891
\(676\) 86.8227 3.33933
\(677\) 30.8522 1.18575 0.592873 0.805296i \(-0.297994\pi\)
0.592873 + 0.805296i \(0.297994\pi\)
\(678\) −8.56052 −0.328765
\(679\) −11.7015 −0.449062
\(680\) −7.11351 −0.272791
\(681\) −2.20065 −0.0843292
\(682\) 30.1206 1.15338
\(683\) −44.3013 −1.69514 −0.847572 0.530681i \(-0.821936\pi\)
−0.847572 + 0.530681i \(0.821936\pi\)
\(684\) 16.0889 0.615175
\(685\) 19.8078 0.756816
\(686\) −2.59615 −0.0991216
\(687\) 6.33286 0.241614
\(688\) −114.604 −4.36924
\(689\) −35.8696 −1.36652
\(690\) −9.95739 −0.379071
\(691\) −8.94782 −0.340391 −0.170196 0.985410i \(-0.554440\pi\)
−0.170196 + 0.985410i \(0.554440\pi\)
\(692\) 73.9340 2.81055
\(693\) −8.01112 −0.304317
\(694\) 48.7955 1.85225
\(695\) −15.5083 −0.588262
\(696\) 29.3216 1.11143
\(697\) −7.53545 −0.285426
\(698\) 53.4433 2.02286
\(699\) −1.12800 −0.0426649
\(700\) −4.74002 −0.179156
\(701\) −21.5436 −0.813692 −0.406846 0.913497i \(-0.633371\pi\)
−0.406846 + 0.913497i \(0.633371\pi\)
\(702\) −38.0823 −1.43732
\(703\) 3.91302 0.147582
\(704\) −16.2390 −0.612031
\(705\) 3.68100 0.138634
\(706\) −27.0565 −1.01829
\(707\) −1.43373 −0.0539209
\(708\) 24.3058 0.913469
\(709\) 16.7160 0.627782 0.313891 0.949459i \(-0.398367\pi\)
0.313891 + 0.949459i \(0.398367\pi\)
\(710\) −12.3627 −0.463964
\(711\) −7.51942 −0.282000
\(712\) −23.5536 −0.882710
\(713\) 34.3310 1.28570
\(714\) 1.17422 0.0439439
\(715\) −16.0374 −0.599765
\(716\) 1.02116 0.0381627
\(717\) 2.35225 0.0878463
\(718\) −53.8346 −2.00909
\(719\) −13.8420 −0.516219 −0.258110 0.966116i \(-0.583100\pi\)
−0.258110 + 0.966116i \(0.583100\pi\)
\(720\) −25.1246 −0.936340
\(721\) −5.51568 −0.205415
\(722\) −45.4993 −1.69331
\(723\) 1.73997 0.0647103
\(724\) −37.2360 −1.38387
\(725\) 9.11351 0.338467
\(726\) −3.27283 −0.121466
\(727\) 32.8280 1.21752 0.608762 0.793353i \(-0.291666\pi\)
0.608762 + 0.793353i \(0.291666\pi\)
\(728\) −39.8083 −1.47539
\(729\) −16.5726 −0.613799
\(730\) 9.00584 0.333321
\(731\) 12.7511 0.471618
\(732\) −31.8828 −1.17842
\(733\) −38.5618 −1.42431 −0.712157 0.702021i \(-0.752281\pi\)
−0.712157 + 0.702021i \(0.752281\pi\)
\(734\) 39.3440 1.45221
\(735\) 0.452290 0.0166830
\(736\) −77.2238 −2.84651
\(737\) −36.2735 −1.33615
\(738\) −54.6876 −2.01308
\(739\) −1.21373 −0.0446478 −0.0223239 0.999751i \(-0.507107\pi\)
−0.0223239 + 0.999751i \(0.507107\pi\)
\(740\) −15.2755 −0.561538
\(741\) −3.07330 −0.112900
\(742\) 16.6405 0.610893
\(743\) 39.2459 1.43979 0.719897 0.694081i \(-0.244189\pi\)
0.719897 + 0.694081i \(0.244189\pi\)
\(744\) −13.0254 −0.477533
\(745\) −11.5767 −0.424136
\(746\) 35.7365 1.30841
\(747\) −12.1827 −0.445743
\(748\) 13.5839 0.496676
\(749\) −5.66122 −0.206857
\(750\) 1.17422 0.0428763
\(751\) 13.1726 0.480676 0.240338 0.970689i \(-0.422742\pi\)
0.240338 + 0.970689i \(0.422742\pi\)
\(752\) 73.1474 2.66741
\(753\) 9.65060 0.351687
\(754\) 132.406 4.82192
\(755\) −0.712271 −0.0259222
\(756\) 12.4246 0.451879
\(757\) 16.9841 0.617298 0.308649 0.951176i \(-0.400123\pi\)
0.308649 + 0.951176i \(0.400123\pi\)
\(758\) −11.0990 −0.403135
\(759\) 10.9916 0.398968
\(760\) −8.63737 −0.313310
\(761\) −42.8792 −1.55437 −0.777185 0.629273i \(-0.783353\pi\)
−0.777185 + 0.629273i \(0.783353\pi\)
\(762\) −2.61807 −0.0948425
\(763\) −5.20343 −0.188377
\(764\) 55.9894 2.02562
\(765\) 2.79543 0.101069
\(766\) −66.1434 −2.38986
\(767\) 63.4458 2.29089
\(768\) −9.23786 −0.333342
\(769\) 5.93648 0.214075 0.107038 0.994255i \(-0.465863\pi\)
0.107038 + 0.994255i \(0.465863\pi\)
\(770\) 7.44003 0.268120
\(771\) 1.18291 0.0426015
\(772\) 68.1161 2.45155
\(773\) 50.6181 1.82061 0.910304 0.413940i \(-0.135848\pi\)
0.910304 + 0.413940i \(0.135848\pi\)
\(774\) 92.5399 3.32628
\(775\) −4.04844 −0.145424
\(776\) 83.2387 2.98809
\(777\) 1.45758 0.0522903
\(778\) 40.9612 1.46853
\(779\) −9.14970 −0.327822
\(780\) 11.9974 0.429576
\(781\) 13.6467 0.488317
\(782\) 22.0155 0.787272
\(783\) −23.8885 −0.853706
\(784\) 8.98774 0.320991
\(785\) −15.0058 −0.535581
\(786\) −17.0276 −0.607356
\(787\) 22.9203 0.817020 0.408510 0.912754i \(-0.366049\pi\)
0.408510 + 0.912754i \(0.366049\pi\)
\(788\) 60.4737 2.15429
\(789\) 6.31477 0.224812
\(790\) 6.98338 0.248457
\(791\) 7.29041 0.259217
\(792\) 56.9872 2.02495
\(793\) −83.2239 −2.95537
\(794\) 67.2715 2.38738
\(795\) −2.89904 −0.102818
\(796\) −40.4375 −1.43327
\(797\) 27.4169 0.971155 0.485578 0.874194i \(-0.338609\pi\)
0.485578 + 0.874194i \(0.338609\pi\)
\(798\) 1.42576 0.0504712
\(799\) −8.13858 −0.287922
\(800\) 9.10654 0.321965
\(801\) 9.25599 0.327044
\(802\) −14.6986 −0.519026
\(803\) −9.94118 −0.350817
\(804\) 27.1358 0.957005
\(805\) 8.48004 0.298882
\(806\) −58.8178 −2.07177
\(807\) 5.68960 0.200283
\(808\) 10.1988 0.358794
\(809\) 14.3764 0.505449 0.252724 0.967538i \(-0.418673\pi\)
0.252724 + 0.967538i \(0.418673\pi\)
\(810\) 18.6943 0.656849
\(811\) 5.55958 0.195223 0.0976116 0.995225i \(-0.468880\pi\)
0.0976116 + 0.995225i \(0.468880\pi\)
\(812\) −43.1982 −1.51596
\(813\) 5.11536 0.179403
\(814\) 23.9767 0.840383
\(815\) 7.40271 0.259306
\(816\) −4.06507 −0.142306
\(817\) 15.4827 0.541671
\(818\) −75.3944 −2.63610
\(819\) 15.6437 0.546634
\(820\) 35.7182 1.24733
\(821\) −42.2108 −1.47317 −0.736584 0.676346i \(-0.763562\pi\)
−0.736584 + 0.676346i \(0.763562\pi\)
\(822\) 23.2586 0.811237
\(823\) 50.4347 1.75804 0.879022 0.476782i \(-0.158197\pi\)
0.879022 + 0.476782i \(0.158197\pi\)
\(824\) 39.2358 1.36685
\(825\) −1.29617 −0.0451268
\(826\) −29.4336 −1.02413
\(827\) −40.7726 −1.41780 −0.708902 0.705307i \(-0.750809\pi\)
−0.708902 + 0.705307i \(0.750809\pi\)
\(828\) 112.364 3.90492
\(829\) −55.6516 −1.93286 −0.966429 0.256933i \(-0.917288\pi\)
−0.966429 + 0.256933i \(0.917288\pi\)
\(830\) 11.3143 0.392724
\(831\) −12.1200 −0.420439
\(832\) 31.7107 1.09937
\(833\) −1.00000 −0.0346479
\(834\) −18.2100 −0.630562
\(835\) 8.85761 0.306530
\(836\) 16.4938 0.570452
\(837\) 10.6119 0.366799
\(838\) 49.3035 1.70316
\(839\) 38.7562 1.33801 0.669007 0.743256i \(-0.266720\pi\)
0.669007 + 0.743256i \(0.266720\pi\)
\(840\) −3.21737 −0.111010
\(841\) 54.0561 1.86400
\(842\) −23.5119 −0.810273
\(843\) −8.00492 −0.275704
\(844\) −17.3358 −0.596722
\(845\) 18.3169 0.630122
\(846\) −59.0647 −2.03069
\(847\) 2.78725 0.0957710
\(848\) −57.6086 −1.97829
\(849\) −9.59066 −0.329150
\(850\) −2.59615 −0.0890474
\(851\) 27.3283 0.936801
\(852\) −10.2089 −0.349752
\(853\) 30.2359 1.03526 0.517629 0.855605i \(-0.326815\pi\)
0.517629 + 0.855605i \(0.326815\pi\)
\(854\) 38.6090 1.32117
\(855\) 3.39427 0.116082
\(856\) 40.2712 1.37644
\(857\) −17.1033 −0.584237 −0.292118 0.956382i \(-0.594360\pi\)
−0.292118 + 0.956382i \(0.594360\pi\)
\(858\) −18.8314 −0.642892
\(859\) 12.8854 0.439645 0.219823 0.975540i \(-0.429452\pi\)
0.219823 + 0.975540i \(0.429452\pi\)
\(860\) −60.4407 −2.06101
\(861\) −3.40821 −0.116152
\(862\) 33.2779 1.13345
\(863\) 7.98942 0.271963 0.135982 0.990711i \(-0.456581\pi\)
0.135982 + 0.990711i \(0.456581\pi\)
\(864\) −23.8702 −0.812082
\(865\) 15.5978 0.530342
\(866\) −88.7032 −3.01426
\(867\) 0.452290 0.0153606
\(868\) 19.1897 0.651341
\(869\) −7.70867 −0.261499
\(870\) 10.7012 0.362806
\(871\) 70.8328 2.40008
\(872\) 37.0147 1.25348
\(873\) −32.7107 −1.10709
\(874\) 26.7317 0.904212
\(875\) −1.00000 −0.0338062
\(876\) 7.43688 0.251269
\(877\) 33.7493 1.13963 0.569816 0.821772i \(-0.307014\pi\)
0.569816 + 0.821772i \(0.307014\pi\)
\(878\) −62.6068 −2.11288
\(879\) 1.27610 0.0430418
\(880\) −25.7570 −0.868268
\(881\) 51.3850 1.73121 0.865603 0.500731i \(-0.166935\pi\)
0.865603 + 0.500731i \(0.166935\pi\)
\(882\) −7.25738 −0.244369
\(883\) 18.5775 0.625181 0.312591 0.949888i \(-0.398803\pi\)
0.312591 + 0.949888i \(0.398803\pi\)
\(884\) −26.5259 −0.892162
\(885\) 5.12779 0.172369
\(886\) −84.6004 −2.84220
\(887\) 5.88342 0.197546 0.0987729 0.995110i \(-0.468508\pi\)
0.0987729 + 0.995110i \(0.468508\pi\)
\(888\) −10.3685 −0.347944
\(889\) 2.22963 0.0747794
\(890\) −8.59615 −0.288144
\(891\) −20.6358 −0.691326
\(892\) 75.9511 2.54303
\(893\) −9.88203 −0.330689
\(894\) −13.5935 −0.454635
\(895\) 0.215435 0.00720119
\(896\) 3.50195 0.116992
\(897\) −21.4637 −0.716652
\(898\) 8.36358 0.279096
\(899\) −36.8956 −1.23054
\(900\) −13.2504 −0.441680
\(901\) 6.40968 0.213537
\(902\) −56.0640 −1.86673
\(903\) 5.76722 0.191921
\(904\) −51.8605 −1.72485
\(905\) −7.85567 −0.261131
\(906\) −0.836360 −0.0277862
\(907\) −13.1073 −0.435220 −0.217610 0.976036i \(-0.569826\pi\)
−0.217610 + 0.976036i \(0.569826\pi\)
\(908\) −23.0629 −0.765370
\(909\) −4.00789 −0.132933
\(910\) −14.5285 −0.481615
\(911\) −28.4645 −0.943071 −0.471536 0.881847i \(-0.656300\pi\)
−0.471536 + 0.881847i \(0.656300\pi\)
\(912\) −4.93589 −0.163444
\(913\) −12.4894 −0.413337
\(914\) −31.1196 −1.02935
\(915\) −6.72629 −0.222364
\(916\) 66.3686 2.19288
\(917\) 14.5013 0.478875
\(918\) 6.80509 0.224601
\(919\) −7.63166 −0.251745 −0.125873 0.992046i \(-0.540173\pi\)
−0.125873 + 0.992046i \(0.540173\pi\)
\(920\) −60.3229 −1.98879
\(921\) 3.66647 0.120814
\(922\) −36.2577 −1.19408
\(923\) −26.6485 −0.877146
\(924\) 6.14386 0.202118
\(925\) −3.22266 −0.105960
\(926\) −48.8183 −1.60427
\(927\) −15.4187 −0.506417
\(928\) 82.9926 2.72437
\(929\) −13.9684 −0.458289 −0.229145 0.973392i \(-0.573593\pi\)
−0.229145 + 0.973392i \(0.573593\pi\)
\(930\) −4.75375 −0.155881
\(931\) −1.21422 −0.0397945
\(932\) −11.8215 −0.387226
\(933\) −13.0427 −0.426998
\(934\) −15.3541 −0.502400
\(935\) 2.86579 0.0937213
\(936\) −111.282 −3.63735
\(937\) 37.8268 1.23575 0.617874 0.786277i \(-0.287994\pi\)
0.617874 + 0.786277i \(0.287994\pi\)
\(938\) −32.8606 −1.07294
\(939\) 1.15667 0.0377465
\(940\) 38.5770 1.25824
\(941\) 21.7798 0.710003 0.355001 0.934866i \(-0.384480\pi\)
0.355001 + 0.934866i \(0.384480\pi\)
\(942\) −17.6201 −0.574093
\(943\) −63.9009 −2.08090
\(944\) 101.898 3.31648
\(945\) 2.62122 0.0852682
\(946\) 94.8689 3.08445
\(947\) −16.2268 −0.527299 −0.263650 0.964619i \(-0.584926\pi\)
−0.263650 + 0.964619i \(0.584926\pi\)
\(948\) 5.76676 0.187296
\(949\) 19.4126 0.630159
\(950\) −3.15230 −0.102274
\(951\) 6.08849 0.197433
\(952\) 7.11351 0.230550
\(953\) 46.2440 1.49799 0.748995 0.662576i \(-0.230537\pi\)
0.748995 + 0.662576i \(0.230537\pi\)
\(954\) 46.5175 1.50606
\(955\) 11.8121 0.382229
\(956\) 24.6517 0.797291
\(957\) −11.8127 −0.381849
\(958\) 28.4502 0.919185
\(959\) −19.8078 −0.639626
\(960\) 2.56291 0.0827175
\(961\) −14.6101 −0.471293
\(962\) −46.8204 −1.50955
\(963\) −15.8256 −0.509972
\(964\) 18.2350 0.587310
\(965\) 14.3704 0.462600
\(966\) 9.95739 0.320374
\(967\) −26.0444 −0.837532 −0.418766 0.908094i \(-0.637537\pi\)
−0.418766 + 0.908094i \(0.637537\pi\)
\(968\) −19.8271 −0.637268
\(969\) 0.549180 0.0176422
\(970\) 30.3789 0.975407
\(971\) 54.9208 1.76249 0.881247 0.472657i \(-0.156705\pi\)
0.881247 + 0.472657i \(0.156705\pi\)
\(972\) 52.7113 1.69072
\(973\) 15.5083 0.497172
\(974\) −58.8259 −1.88490
\(975\) 2.53109 0.0810596
\(976\) −133.662 −4.27843
\(977\) −28.7675 −0.920354 −0.460177 0.887827i \(-0.652214\pi\)
−0.460177 + 0.887827i \(0.652214\pi\)
\(978\) 8.69238 0.277952
\(979\) 9.48895 0.303268
\(980\) 4.74002 0.151414
\(981\) −14.5459 −0.464413
\(982\) 11.7085 0.373632
\(983\) 49.4927 1.57857 0.789286 0.614025i \(-0.210451\pi\)
0.789286 + 0.614025i \(0.210451\pi\)
\(984\) 24.2444 0.772882
\(985\) 12.7581 0.406507
\(986\) −23.6601 −0.753491
\(987\) −3.68100 −0.117167
\(988\) −32.2083 −1.02468
\(989\) 108.130 3.43834
\(990\) 20.7981 0.661008
\(991\) −31.9271 −1.01420 −0.507099 0.861888i \(-0.669282\pi\)
−0.507099 + 0.861888i \(0.669282\pi\)
\(992\) −36.8673 −1.17054
\(993\) −15.2615 −0.484310
\(994\) 12.3627 0.392121
\(995\) −8.53109 −0.270454
\(996\) 9.34314 0.296049
\(997\) 16.2094 0.513358 0.256679 0.966497i \(-0.417372\pi\)
0.256679 + 0.966497i \(0.417372\pi\)
\(998\) 29.2092 0.924602
\(999\) 8.44730 0.267261
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 595.2.a.j.1.4 4
3.2 odd 2 5355.2.a.bi.1.1 4
4.3 odd 2 9520.2.a.bh.1.3 4
5.4 even 2 2975.2.a.i.1.1 4
7.6 odd 2 4165.2.a.be.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
595.2.a.j.1.4 4 1.1 even 1 trivial
2975.2.a.i.1.1 4 5.4 even 2
4165.2.a.be.1.4 4 7.6 odd 2
5355.2.a.bi.1.1 4 3.2 odd 2
9520.2.a.bh.1.3 4 4.3 odd 2