Properties

Label 5929.2.a.v.1.2
Level $5929$
Weight $2$
Character 5929.1
Self dual yes
Analytic conductor $47.343$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5929,2,Mod(1,5929)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5929, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5929.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5929 = 7^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5929.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(47.3433033584\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 77)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.91223\) of defining polynomial
Character \(\chi\) \(=\) 5929.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.656620 q^{2} +1.91223 q^{3} -1.56885 q^{4} -3.56885 q^{5} -1.25561 q^{6} +2.34338 q^{8} +0.656620 q^{9} +O(q^{10})\) \(q-0.656620 q^{2} +1.91223 q^{3} -1.56885 q^{4} -3.56885 q^{5} -1.25561 q^{6} +2.34338 q^{8} +0.656620 q^{9} +2.34338 q^{10} -3.00000 q^{12} +5.91223 q^{13} -6.82446 q^{15} +1.59899 q^{16} +1.65662 q^{17} -0.431150 q^{18} -1.48108 q^{19} +5.59899 q^{20} +3.34338 q^{23} +4.48108 q^{24} +7.73669 q^{25} -3.88209 q^{26} -4.48108 q^{27} -3.08007 q^{29} +4.48108 q^{30} -7.08007 q^{31} -5.73669 q^{32} -1.08777 q^{34} -1.03014 q^{36} -4.51122 q^{37} +0.972507 q^{38} +11.3055 q^{39} -8.36317 q^{40} +1.28575 q^{41} -1.59899 q^{43} -2.34338 q^{45} -2.19533 q^{46} -1.65662 q^{47} +3.05763 q^{48} -5.08007 q^{50} +3.16784 q^{51} -9.27540 q^{52} +9.22547 q^{53} +2.94237 q^{54} -2.83216 q^{57} +2.02243 q^{58} +8.85195 q^{59} +10.7065 q^{60} +6.68676 q^{61} +4.64892 q^{62} +0.568850 q^{64} -21.0999 q^{65} -9.82446 q^{67} -2.59899 q^{68} +6.39331 q^{69} -8.61878 q^{71} +1.53871 q^{72} -4.56115 q^{73} +2.96216 q^{74} +14.7943 q^{75} +2.32359 q^{76} -7.42345 q^{78} +6.39331 q^{79} -5.70655 q^{80} -10.5387 q^{81} -0.844248 q^{82} -0.167838 q^{83} -5.91223 q^{85} +1.04993 q^{86} -5.88979 q^{87} -2.56885 q^{89} +1.53871 q^{90} -5.24526 q^{92} -13.5387 q^{93} +1.08777 q^{94} +5.28575 q^{95} -10.9699 q^{96} +9.73669 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{3} + 4 q^{4} - 2 q^{5} + q^{6} + 9 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{3} + 4 q^{4} - 2 q^{5} + q^{6} + 9 q^{8} + 9 q^{10} - 9 q^{12} + 11 q^{13} - 7 q^{15} + 2 q^{16} + 3 q^{17} - 10 q^{18} + 11 q^{19} + 14 q^{20} + 12 q^{23} - 2 q^{24} + 3 q^{25} + q^{26} + 2 q^{27} + 9 q^{29} - 2 q^{30} - 3 q^{31} + 3 q^{32} - 10 q^{34} - 9 q^{36} - 4 q^{37} + 8 q^{38} + 5 q^{39} + 3 q^{40} + 5 q^{41} - 2 q^{43} - 9 q^{45} + 10 q^{46} - 3 q^{47} + 10 q^{48} + 3 q^{50} - 2 q^{51} + 7 q^{52} + 17 q^{53} + 8 q^{54} - 20 q^{57} - 13 q^{58} + 8 q^{59} + 6 q^{60} + 24 q^{61} - 13 q^{62} - 7 q^{64} - 15 q^{65} - 16 q^{67} - 5 q^{68} - 3 q^{69} + 7 q^{71} - 10 q^{72} + 20 q^{73} - 22 q^{74} + 25 q^{75} + 39 q^{76} - 6 q^{78} - 3 q^{79} + 9 q^{80} - 17 q^{81} + 41 q^{82} + 11 q^{83} - 11 q^{85} - 21 q^{86} - 30 q^{87} + q^{89} - 10 q^{90} + 25 q^{92} - 26 q^{93} + 10 q^{94} + 17 q^{95} - 27 q^{96} + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.656620 −0.464301 −0.232150 0.972680i \(-0.574576\pi\)
−0.232150 + 0.972680i \(0.574576\pi\)
\(3\) 1.91223 1.10403 0.552013 0.833835i \(-0.313860\pi\)
0.552013 + 0.833835i \(0.313860\pi\)
\(4\) −1.56885 −0.784425
\(5\) −3.56885 −1.59604 −0.798019 0.602632i \(-0.794119\pi\)
−0.798019 + 0.602632i \(0.794119\pi\)
\(6\) −1.25561 −0.512600
\(7\) 0 0
\(8\) 2.34338 0.828510
\(9\) 0.656620 0.218873
\(10\) 2.34338 0.741042
\(11\) 0 0
\(12\) −3.00000 −0.866025
\(13\) 5.91223 1.63976 0.819879 0.572537i \(-0.194041\pi\)
0.819879 + 0.572537i \(0.194041\pi\)
\(14\) 0 0
\(15\) −6.82446 −1.76207
\(16\) 1.59899 0.399747
\(17\) 1.65662 0.401789 0.200895 0.979613i \(-0.435615\pi\)
0.200895 + 0.979613i \(0.435615\pi\)
\(18\) −0.431150 −0.101623
\(19\) −1.48108 −0.339783 −0.169891 0.985463i \(-0.554342\pi\)
−0.169891 + 0.985463i \(0.554342\pi\)
\(20\) 5.59899 1.25197
\(21\) 0 0
\(22\) 0 0
\(23\) 3.34338 0.697143 0.348571 0.937282i \(-0.386667\pi\)
0.348571 + 0.937282i \(0.386667\pi\)
\(24\) 4.48108 0.914696
\(25\) 7.73669 1.54734
\(26\) −3.88209 −0.761341
\(27\) −4.48108 −0.862384
\(28\) 0 0
\(29\) −3.08007 −0.571954 −0.285977 0.958236i \(-0.592318\pi\)
−0.285977 + 0.958236i \(0.592318\pi\)
\(30\) 4.48108 0.818129
\(31\) −7.08007 −1.27162 −0.635809 0.771847i \(-0.719333\pi\)
−0.635809 + 0.771847i \(0.719333\pi\)
\(32\) −5.73669 −1.01411
\(33\) 0 0
\(34\) −1.08777 −0.186551
\(35\) 0 0
\(36\) −1.03014 −0.171690
\(37\) −4.51122 −0.741640 −0.370820 0.928705i \(-0.620923\pi\)
−0.370820 + 0.928705i \(0.620923\pi\)
\(38\) 0.972507 0.157761
\(39\) 11.3055 1.81033
\(40\) −8.36317 −1.32233
\(41\) 1.28575 0.200800 0.100400 0.994947i \(-0.467988\pi\)
0.100400 + 0.994947i \(0.467988\pi\)
\(42\) 0 0
\(43\) −1.59899 −0.243843 −0.121922 0.992540i \(-0.538906\pi\)
−0.121922 + 0.992540i \(0.538906\pi\)
\(44\) 0 0
\(45\) −2.34338 −0.349330
\(46\) −2.19533 −0.323684
\(47\) −1.65662 −0.241643 −0.120821 0.992674i \(-0.538553\pi\)
−0.120821 + 0.992674i \(0.538553\pi\)
\(48\) 3.05763 0.441331
\(49\) 0 0
\(50\) −5.08007 −0.718430
\(51\) 3.16784 0.443586
\(52\) −9.27540 −1.28627
\(53\) 9.22547 1.26722 0.633608 0.773654i \(-0.281573\pi\)
0.633608 + 0.773654i \(0.281573\pi\)
\(54\) 2.94237 0.400406
\(55\) 0 0
\(56\) 0 0
\(57\) −2.83216 −0.375129
\(58\) 2.02243 0.265559
\(59\) 8.85195 1.15243 0.576213 0.817300i \(-0.304530\pi\)
0.576213 + 0.817300i \(0.304530\pi\)
\(60\) 10.7065 1.38221
\(61\) 6.68676 0.856152 0.428076 0.903743i \(-0.359192\pi\)
0.428076 + 0.903743i \(0.359192\pi\)
\(62\) 4.64892 0.590413
\(63\) 0 0
\(64\) 0.568850 0.0711062
\(65\) −21.0999 −2.61712
\(66\) 0 0
\(67\) −9.82446 −1.20025 −0.600124 0.799907i \(-0.704882\pi\)
−0.600124 + 0.799907i \(0.704882\pi\)
\(68\) −2.59899 −0.315174
\(69\) 6.39331 0.769664
\(70\) 0 0
\(71\) −8.61878 −1.02286 −0.511430 0.859325i \(-0.670884\pi\)
−0.511430 + 0.859325i \(0.670884\pi\)
\(72\) 1.53871 0.181339
\(73\) −4.56115 −0.533842 −0.266921 0.963718i \(-0.586006\pi\)
−0.266921 + 0.963718i \(0.586006\pi\)
\(74\) 2.96216 0.344344
\(75\) 14.7943 1.70830
\(76\) 2.32359 0.266534
\(77\) 0 0
\(78\) −7.42345 −0.840540
\(79\) 6.39331 0.719303 0.359652 0.933087i \(-0.382896\pi\)
0.359652 + 0.933087i \(0.382896\pi\)
\(80\) −5.70655 −0.638012
\(81\) −10.5387 −1.17097
\(82\) −0.844248 −0.0932316
\(83\) −0.167838 −0.0184226 −0.00921130 0.999958i \(-0.502932\pi\)
−0.00921130 + 0.999958i \(0.502932\pi\)
\(84\) 0 0
\(85\) −5.91223 −0.641271
\(86\) 1.04993 0.113217
\(87\) −5.88979 −0.631452
\(88\) 0 0
\(89\) −2.56885 −0.272298 −0.136149 0.990688i \(-0.543473\pi\)
−0.136149 + 0.990688i \(0.543473\pi\)
\(90\) 1.53871 0.162194
\(91\) 0 0
\(92\) −5.24526 −0.546856
\(93\) −13.5387 −1.40390
\(94\) 1.08777 0.112195
\(95\) 5.28575 0.542306
\(96\) −10.9699 −1.11961
\(97\) 9.73669 0.988611 0.494305 0.869288i \(-0.335422\pi\)
0.494305 + 0.869288i \(0.335422\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −12.1377 −1.21377
\(101\) −1.85460 −0.184539 −0.0922697 0.995734i \(-0.529412\pi\)
−0.0922697 + 0.995734i \(0.529412\pi\)
\(102\) −2.08007 −0.205957
\(103\) −3.16784 −0.312136 −0.156068 0.987746i \(-0.549882\pi\)
−0.156068 + 0.987746i \(0.549882\pi\)
\(104\) 13.8546 1.35856
\(105\) 0 0
\(106\) −6.05763 −0.588369
\(107\) 4.76683 0.460826 0.230413 0.973093i \(-0.425992\pi\)
0.230413 + 0.973093i \(0.425992\pi\)
\(108\) 7.03014 0.676475
\(109\) 14.8821 1.42545 0.712723 0.701446i \(-0.247462\pi\)
0.712723 + 0.701446i \(0.247462\pi\)
\(110\) 0 0
\(111\) −8.62648 −0.818789
\(112\) 0 0
\(113\) 12.4432 1.17056 0.585281 0.810831i \(-0.300984\pi\)
0.585281 + 0.810831i \(0.300984\pi\)
\(114\) 1.85966 0.174173
\(115\) −11.9320 −1.11267
\(116\) 4.83216 0.448655
\(117\) 3.88209 0.358899
\(118\) −5.81237 −0.535072
\(119\) 0 0
\(120\) −15.9923 −1.45989
\(121\) 0 0
\(122\) −4.39066 −0.397512
\(123\) 2.45864 0.221688
\(124\) 11.1076 0.997488
\(125\) −9.76683 −0.873571
\(126\) 0 0
\(127\) 6.62142 0.587556 0.293778 0.955874i \(-0.405087\pi\)
0.293778 + 0.955874i \(0.405087\pi\)
\(128\) 11.0999 0.981098
\(129\) −3.05763 −0.269209
\(130\) 13.8546 1.21513
\(131\) 6.05763 0.529258 0.264629 0.964350i \(-0.414751\pi\)
0.264629 + 0.964350i \(0.414751\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 6.45094 0.557276
\(135\) 15.9923 1.37640
\(136\) 3.88209 0.332887
\(137\) −7.42345 −0.634228 −0.317114 0.948387i \(-0.602714\pi\)
−0.317114 + 0.948387i \(0.602714\pi\)
\(138\) −4.19798 −0.357356
\(139\) 10.8245 0.918119 0.459059 0.888406i \(-0.348187\pi\)
0.459059 + 0.888406i \(0.348187\pi\)
\(140\) 0 0
\(141\) −3.16784 −0.266780
\(142\) 5.65927 0.474915
\(143\) 0 0
\(144\) 1.04993 0.0874940
\(145\) 10.9923 0.912861
\(146\) 2.99494 0.247863
\(147\) 0 0
\(148\) 7.07742 0.581760
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) −9.71425 −0.793165
\(151\) −16.4234 −1.33652 −0.668261 0.743927i \(-0.732961\pi\)
−0.668261 + 0.743927i \(0.732961\pi\)
\(152\) −3.47073 −0.281513
\(153\) 1.08777 0.0879411
\(154\) 0 0
\(155\) 25.2677 2.02955
\(156\) −17.7367 −1.42007
\(157\) −11.4509 −0.913885 −0.456942 0.889496i \(-0.651055\pi\)
−0.456942 + 0.889496i \(0.651055\pi\)
\(158\) −4.19798 −0.333973
\(159\) 17.6412 1.39904
\(160\) 20.4734 1.61856
\(161\) 0 0
\(162\) 6.91993 0.543681
\(163\) −8.93972 −0.700213 −0.350107 0.936710i \(-0.613855\pi\)
−0.350107 + 0.936710i \(0.613855\pi\)
\(164\) −2.01714 −0.157513
\(165\) 0 0
\(166\) 0.110206 0.00855363
\(167\) 18.2178 1.40973 0.704867 0.709340i \(-0.251007\pi\)
0.704867 + 0.709340i \(0.251007\pi\)
\(168\) 0 0
\(169\) 21.9545 1.68880
\(170\) 3.88209 0.297743
\(171\) −0.972507 −0.0743694
\(172\) 2.50857 0.191277
\(173\) −19.5611 −1.48721 −0.743603 0.668621i \(-0.766885\pi\)
−0.743603 + 0.668621i \(0.766885\pi\)
\(174\) 3.86736 0.293184
\(175\) 0 0
\(176\) 0 0
\(177\) 16.9270 1.27231
\(178\) 1.68676 0.126428
\(179\) 3.24791 0.242760 0.121380 0.992606i \(-0.461268\pi\)
0.121380 + 0.992606i \(0.461268\pi\)
\(180\) 3.67641 0.274023
\(181\) −10.3407 −0.768621 −0.384310 0.923204i \(-0.625561\pi\)
−0.384310 + 0.923204i \(0.625561\pi\)
\(182\) 0 0
\(183\) 12.7866 0.945214
\(184\) 7.83481 0.577590
\(185\) 16.0999 1.18369
\(186\) 8.88979 0.651831
\(187\) 0 0
\(188\) 2.59899 0.189551
\(189\) 0 0
\(190\) −3.47073 −0.251793
\(191\) 10.0224 0.725198 0.362599 0.931945i \(-0.381889\pi\)
0.362599 + 0.931945i \(0.381889\pi\)
\(192\) 1.08777 0.0785031
\(193\) −25.3253 −1.82296 −0.911478 0.411348i \(-0.865058\pi\)
−0.911478 + 0.411348i \(0.865058\pi\)
\(194\) −6.39331 −0.459013
\(195\) −40.3478 −2.88936
\(196\) 0 0
\(197\) 24.5809 1.75132 0.875660 0.482929i \(-0.160427\pi\)
0.875660 + 0.482929i \(0.160427\pi\)
\(198\) 0 0
\(199\) 5.59128 0.396356 0.198178 0.980166i \(-0.436498\pi\)
0.198178 + 0.980166i \(0.436498\pi\)
\(200\) 18.1300 1.28198
\(201\) −18.7866 −1.32511
\(202\) 1.21777 0.0856817
\(203\) 0 0
\(204\) −4.96986 −0.347960
\(205\) −4.58864 −0.320484
\(206\) 2.08007 0.144925
\(207\) 2.19533 0.152586
\(208\) 9.45359 0.655488
\(209\) 0 0
\(210\) 0 0
\(211\) −12.0999 −0.832988 −0.416494 0.909138i \(-0.636741\pi\)
−0.416494 + 0.909138i \(0.636741\pi\)
\(212\) −14.4734 −0.994035
\(213\) −16.4811 −1.12926
\(214\) −3.13000 −0.213962
\(215\) 5.70655 0.389183
\(216\) −10.5009 −0.714494
\(217\) 0 0
\(218\) −9.77188 −0.661836
\(219\) −8.72196 −0.589375
\(220\) 0 0
\(221\) 9.79432 0.658837
\(222\) 5.66432 0.380165
\(223\) 15.6265 1.04643 0.523213 0.852202i \(-0.324733\pi\)
0.523213 + 0.852202i \(0.324733\pi\)
\(224\) 0 0
\(225\) 5.08007 0.338671
\(226\) −8.17048 −0.543492
\(227\) 15.6687 1.03997 0.519984 0.854176i \(-0.325938\pi\)
0.519984 + 0.854176i \(0.325938\pi\)
\(228\) 4.44324 0.294261
\(229\) −5.57149 −0.368175 −0.184087 0.982910i \(-0.558933\pi\)
−0.184087 + 0.982910i \(0.558933\pi\)
\(230\) 7.83481 0.516612
\(231\) 0 0
\(232\) −7.21777 −0.473870
\(233\) 19.2754 1.26277 0.631387 0.775468i \(-0.282486\pi\)
0.631387 + 0.775468i \(0.282486\pi\)
\(234\) −2.54906 −0.166637
\(235\) 5.91223 0.385671
\(236\) −13.8874 −0.903992
\(237\) 12.2255 0.794130
\(238\) 0 0
\(239\) 22.1575 1.43325 0.716624 0.697459i \(-0.245686\pi\)
0.716624 + 0.697459i \(0.245686\pi\)
\(240\) −10.9122 −0.704381
\(241\) 19.8744 1.28022 0.640111 0.768283i \(-0.278888\pi\)
0.640111 + 0.768283i \(0.278888\pi\)
\(242\) 0 0
\(243\) −6.70919 −0.430395
\(244\) −10.4905 −0.671587
\(245\) 0 0
\(246\) −1.61440 −0.102930
\(247\) −8.75648 −0.557161
\(248\) −16.5913 −1.05355
\(249\) −0.320945 −0.0203390
\(250\) 6.41310 0.405600
\(251\) 22.1076 1.39542 0.697708 0.716382i \(-0.254203\pi\)
0.697708 + 0.716382i \(0.254203\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −4.34776 −0.272803
\(255\) −11.3055 −0.707980
\(256\) −8.42609 −0.526631
\(257\) 29.1196 1.81643 0.908217 0.418500i \(-0.137444\pi\)
0.908217 + 0.418500i \(0.137444\pi\)
\(258\) 2.00770 0.124994
\(259\) 0 0
\(260\) 33.1025 2.05293
\(261\) −2.02243 −0.125186
\(262\) −3.97757 −0.245735
\(263\) 15.5035 0.955988 0.477994 0.878363i \(-0.341364\pi\)
0.477994 + 0.878363i \(0.341364\pi\)
\(264\) 0 0
\(265\) −32.9243 −2.02252
\(266\) 0 0
\(267\) −4.91223 −0.300624
\(268\) 15.4131 0.941505
\(269\) 1.70655 0.104050 0.0520251 0.998646i \(-0.483432\pi\)
0.0520251 + 0.998646i \(0.483432\pi\)
\(270\) −10.5009 −0.639063
\(271\) 20.5284 1.24701 0.623505 0.781820i \(-0.285708\pi\)
0.623505 + 0.781820i \(0.285708\pi\)
\(272\) 2.64892 0.160614
\(273\) 0 0
\(274\) 4.87439 0.294472
\(275\) 0 0
\(276\) −10.0301 −0.603743
\(277\) 26.6610 1.60190 0.800952 0.598728i \(-0.204327\pi\)
0.800952 + 0.598728i \(0.204327\pi\)
\(278\) −7.10756 −0.426283
\(279\) −4.64892 −0.278323
\(280\) 0 0
\(281\) −15.7444 −0.939232 −0.469616 0.882871i \(-0.655608\pi\)
−0.469616 + 0.882871i \(0.655608\pi\)
\(282\) 2.08007 0.123866
\(283\) 16.0697 0.955246 0.477623 0.878565i \(-0.341499\pi\)
0.477623 + 0.878565i \(0.341499\pi\)
\(284\) 13.5216 0.802357
\(285\) 10.1076 0.598720
\(286\) 0 0
\(287\) 0 0
\(288\) −3.76683 −0.221962
\(289\) −14.2556 −0.838565
\(290\) −7.21777 −0.423842
\(291\) 18.6188 1.09145
\(292\) 7.15575 0.418759
\(293\) −15.3357 −0.895920 −0.447960 0.894054i \(-0.647849\pi\)
−0.447960 + 0.894054i \(0.647849\pi\)
\(294\) 0 0
\(295\) −31.5913 −1.83932
\(296\) −10.5715 −0.614456
\(297\) 0 0
\(298\) −0.656620 −0.0380370
\(299\) 19.7668 1.14315
\(300\) −23.2101 −1.34003
\(301\) 0 0
\(302\) 10.7840 0.620548
\(303\) −3.54641 −0.203736
\(304\) −2.36823 −0.135827
\(305\) −23.8640 −1.36645
\(306\) −0.714253 −0.0408311
\(307\) 16.4707 0.940034 0.470017 0.882657i \(-0.344248\pi\)
0.470017 + 0.882657i \(0.344248\pi\)
\(308\) 0 0
\(309\) −6.05763 −0.344607
\(310\) −16.5913 −0.942322
\(311\) 21.6291 1.22648 0.613238 0.789898i \(-0.289867\pi\)
0.613238 + 0.789898i \(0.289867\pi\)
\(312\) 26.4932 1.49988
\(313\) 16.3882 0.926319 0.463159 0.886275i \(-0.346716\pi\)
0.463159 + 0.886275i \(0.346716\pi\)
\(314\) 7.51892 0.424317
\(315\) 0 0
\(316\) −10.0301 −0.564239
\(317\) 4.46129 0.250571 0.125285 0.992121i \(-0.460015\pi\)
0.125285 + 0.992121i \(0.460015\pi\)
\(318\) −11.5836 −0.649575
\(319\) 0 0
\(320\) −2.03014 −0.113488
\(321\) 9.11526 0.508764
\(322\) 0 0
\(323\) −2.45359 −0.136521
\(324\) 16.5337 0.918536
\(325\) 45.7411 2.53726
\(326\) 5.87000 0.325109
\(327\) 28.4580 1.57373
\(328\) 3.01299 0.166365
\(329\) 0 0
\(330\) 0 0
\(331\) 19.0396 1.04651 0.523255 0.852176i \(-0.324718\pi\)
0.523255 + 0.852176i \(0.324718\pi\)
\(332\) 0.263312 0.0144511
\(333\) −2.96216 −0.162325
\(334\) −11.9622 −0.654540
\(335\) 35.0620 1.91564
\(336\) 0 0
\(337\) −27.0147 −1.47159 −0.735793 0.677206i \(-0.763190\pi\)
−0.735793 + 0.677206i \(0.763190\pi\)
\(338\) −14.4157 −0.784113
\(339\) 23.7943 1.29233
\(340\) 9.27540 0.503029
\(341\) 0 0
\(342\) 0.638568 0.0345298
\(343\) 0 0
\(344\) −3.74704 −0.202027
\(345\) −22.8168 −1.22841
\(346\) 12.8442 0.690511
\(347\) 20.2178 1.08535 0.542673 0.839944i \(-0.317412\pi\)
0.542673 + 0.839944i \(0.317412\pi\)
\(348\) 9.24020 0.495327
\(349\) 12.0224 0.643546 0.321773 0.946817i \(-0.395721\pi\)
0.321773 + 0.946817i \(0.395721\pi\)
\(350\) 0 0
\(351\) −26.4932 −1.41410
\(352\) 0 0
\(353\) −10.7591 −0.572650 −0.286325 0.958133i \(-0.592434\pi\)
−0.286325 + 0.958133i \(0.592434\pi\)
\(354\) −11.1146 −0.590734
\(355\) 30.7591 1.63252
\(356\) 4.03014 0.213597
\(357\) 0 0
\(358\) −2.13264 −0.112714
\(359\) −24.2901 −1.28198 −0.640992 0.767548i \(-0.721477\pi\)
−0.640992 + 0.767548i \(0.721477\pi\)
\(360\) −5.49143 −0.289424
\(361\) −16.8064 −0.884548
\(362\) 6.78994 0.356871
\(363\) 0 0
\(364\) 0 0
\(365\) 16.2780 0.852032
\(366\) −8.39595 −0.438864
\(367\) 10.8442 0.566065 0.283033 0.959110i \(-0.408660\pi\)
0.283033 + 0.959110i \(0.408660\pi\)
\(368\) 5.34602 0.278681
\(369\) 0.844248 0.0439498
\(370\) −10.5715 −0.549586
\(371\) 0 0
\(372\) 21.2402 1.10125
\(373\) 33.0242 1.70993 0.854963 0.518688i \(-0.173579\pi\)
0.854963 + 0.518688i \(0.173579\pi\)
\(374\) 0 0
\(375\) −18.6764 −0.964446
\(376\) −3.88209 −0.200204
\(377\) −18.2101 −0.937866
\(378\) 0 0
\(379\) −21.9320 −1.12657 −0.563286 0.826262i \(-0.690463\pi\)
−0.563286 + 0.826262i \(0.690463\pi\)
\(380\) −8.29254 −0.425398
\(381\) 12.6617 0.648677
\(382\) −6.58094 −0.336710
\(383\) 36.4630 1.86317 0.931587 0.363519i \(-0.118425\pi\)
0.931587 + 0.363519i \(0.118425\pi\)
\(384\) 21.2255 1.08316
\(385\) 0 0
\(386\) 16.6291 0.846400
\(387\) −1.04993 −0.0533709
\(388\) −15.2754 −0.775491
\(389\) 19.4760 0.987473 0.493737 0.869611i \(-0.335631\pi\)
0.493737 + 0.869611i \(0.335631\pi\)
\(390\) 26.4932 1.34153
\(391\) 5.53871 0.280105
\(392\) 0 0
\(393\) 11.5836 0.584314
\(394\) −16.1403 −0.813139
\(395\) −22.8168 −1.14804
\(396\) 0 0
\(397\) −7.83987 −0.393472 −0.196736 0.980457i \(-0.563034\pi\)
−0.196736 + 0.980457i \(0.563034\pi\)
\(398\) −3.67135 −0.184028
\(399\) 0 0
\(400\) 12.3709 0.618544
\(401\) −24.4459 −1.22077 −0.610385 0.792105i \(-0.708985\pi\)
−0.610385 + 0.792105i \(0.708985\pi\)
\(402\) 12.3357 0.615248
\(403\) −41.8590 −2.08514
\(404\) 2.90958 0.144757
\(405\) 37.6111 1.86891
\(406\) 0 0
\(407\) 0 0
\(408\) 7.42345 0.367515
\(409\) 2.35373 0.116384 0.0581922 0.998305i \(-0.481466\pi\)
0.0581922 + 0.998305i \(0.481466\pi\)
\(410\) 3.01299 0.148801
\(411\) −14.1953 −0.700204
\(412\) 4.96986 0.244847
\(413\) 0 0
\(414\) −1.44150 −0.0708458
\(415\) 0.598988 0.0294032
\(416\) −33.9166 −1.66290
\(417\) 20.6988 1.01363
\(418\) 0 0
\(419\) 9.29081 0.453886 0.226943 0.973908i \(-0.427127\pi\)
0.226943 + 0.973908i \(0.427127\pi\)
\(420\) 0 0
\(421\) −39.0319 −1.90230 −0.951149 0.308733i \(-0.900095\pi\)
−0.951149 + 0.308733i \(0.900095\pi\)
\(422\) 7.94501 0.386757
\(423\) −1.08777 −0.0528892
\(424\) 21.6188 1.04990
\(425\) 12.8168 0.621704
\(426\) 10.8218 0.524319
\(427\) 0 0
\(428\) −7.47843 −0.361484
\(429\) 0 0
\(430\) −3.74704 −0.180698
\(431\) 3.80202 0.183137 0.0915685 0.995799i \(-0.470812\pi\)
0.0915685 + 0.995799i \(0.470812\pi\)
\(432\) −7.16519 −0.344735
\(433\) 8.22041 0.395048 0.197524 0.980298i \(-0.436710\pi\)
0.197524 + 0.980298i \(0.436710\pi\)
\(434\) 0 0
\(435\) 21.0198 1.00782
\(436\) −23.3478 −1.11815
\(437\) −4.95181 −0.236877
\(438\) 5.72701 0.273647
\(439\) −4.54136 −0.216747 −0.108374 0.994110i \(-0.534564\pi\)
−0.108374 + 0.994110i \(0.534564\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −6.43115 −0.305899
\(443\) 13.7444 0.653016 0.326508 0.945194i \(-0.394128\pi\)
0.326508 + 0.945194i \(0.394128\pi\)
\(444\) 13.5337 0.642279
\(445\) 9.16784 0.434597
\(446\) −10.2607 −0.485857
\(447\) 1.91223 0.0904453
\(448\) 0 0
\(449\) 21.5662 1.01777 0.508886 0.860834i \(-0.330057\pi\)
0.508886 + 0.860834i \(0.330057\pi\)
\(450\) −3.33568 −0.157245
\(451\) 0 0
\(452\) −19.5216 −0.918217
\(453\) −31.4054 −1.47555
\(454\) −10.2884 −0.482858
\(455\) 0 0
\(456\) −6.63683 −0.310798
\(457\) 3.30554 0.154627 0.0773133 0.997007i \(-0.475366\pi\)
0.0773133 + 0.997007i \(0.475366\pi\)
\(458\) 3.65836 0.170944
\(459\) −7.42345 −0.346497
\(460\) 18.7195 0.872803
\(461\) 32.1524 1.49749 0.748744 0.662859i \(-0.230657\pi\)
0.748744 + 0.662859i \(0.230657\pi\)
\(462\) 0 0
\(463\) 5.82181 0.270563 0.135281 0.990807i \(-0.456806\pi\)
0.135281 + 0.990807i \(0.456806\pi\)
\(464\) −4.92499 −0.228637
\(465\) 48.3176 2.24068
\(466\) −12.6566 −0.586307
\(467\) −6.01473 −0.278329 −0.139164 0.990269i \(-0.544442\pi\)
−0.139164 + 0.990269i \(0.544442\pi\)
\(468\) −6.09042 −0.281530
\(469\) 0 0
\(470\) −3.88209 −0.179067
\(471\) −21.8968 −1.00895
\(472\) 20.7435 0.954796
\(473\) 0 0
\(474\) −8.02749 −0.368715
\(475\) −11.4586 −0.525759
\(476\) 0 0
\(477\) 6.05763 0.277360
\(478\) −14.5491 −0.665459
\(479\) −17.1351 −0.782921 −0.391460 0.920195i \(-0.628030\pi\)
−0.391460 + 0.920195i \(0.628030\pi\)
\(480\) 39.1498 1.78694
\(481\) −26.6714 −1.21611
\(482\) −13.0499 −0.594408
\(483\) 0 0
\(484\) 0 0
\(485\) −34.7488 −1.57786
\(486\) 4.40539 0.199833
\(487\) 5.71425 0.258937 0.129469 0.991584i \(-0.458673\pi\)
0.129469 + 0.991584i \(0.458673\pi\)
\(488\) 15.6696 0.709330
\(489\) −17.0948 −0.773054
\(490\) 0 0
\(491\) −24.0673 −1.08614 −0.543071 0.839687i \(-0.682739\pi\)
−0.543071 + 0.839687i \(0.682739\pi\)
\(492\) −3.85724 −0.173898
\(493\) −5.10250 −0.229805
\(494\) 5.74968 0.258690
\(495\) 0 0
\(496\) −11.3209 −0.508325
\(497\) 0 0
\(498\) 0.210739 0.00944343
\(499\) 10.7893 0.482994 0.241497 0.970402i \(-0.422362\pi\)
0.241497 + 0.970402i \(0.422362\pi\)
\(500\) 15.3227 0.685251
\(501\) 34.8365 1.55638
\(502\) −14.5163 −0.647893
\(503\) −28.0121 −1.24900 −0.624499 0.781026i \(-0.714697\pi\)
−0.624499 + 0.781026i \(0.714697\pi\)
\(504\) 0 0
\(505\) 6.61878 0.294532
\(506\) 0 0
\(507\) 41.9819 1.86448
\(508\) −10.3880 −0.460894
\(509\) −1.91487 −0.0848753 −0.0424377 0.999099i \(-0.513512\pi\)
−0.0424377 + 0.999099i \(0.513512\pi\)
\(510\) 7.42345 0.328716
\(511\) 0 0
\(512\) −16.6670 −0.736583
\(513\) 6.63683 0.293023
\(514\) −19.1206 −0.843372
\(515\) 11.3055 0.498181
\(516\) 4.79696 0.211175
\(517\) 0 0
\(518\) 0 0
\(519\) −37.4054 −1.64191
\(520\) −49.4450 −2.16831
\(521\) 1.57920 0.0691859 0.0345930 0.999401i \(-0.488987\pi\)
0.0345930 + 0.999401i \(0.488987\pi\)
\(522\) 1.32797 0.0581238
\(523\) 8.96986 0.392225 0.196112 0.980581i \(-0.437168\pi\)
0.196112 + 0.980581i \(0.437168\pi\)
\(524\) −9.50351 −0.415163
\(525\) 0 0
\(526\) −10.1799 −0.443866
\(527\) −11.7290 −0.510923
\(528\) 0 0
\(529\) −11.8218 −0.513992
\(530\) 21.6188 0.939060
\(531\) 5.81237 0.252235
\(532\) 0 0
\(533\) 7.60163 0.329263
\(534\) 3.22547 0.139580
\(535\) −17.0121 −0.735497
\(536\) −23.0224 −0.994418
\(537\) 6.21074 0.268013
\(538\) −1.12055 −0.0483105
\(539\) 0 0
\(540\) −25.0895 −1.07968
\(541\) −18.1025 −0.778287 −0.389144 0.921177i \(-0.627229\pi\)
−0.389144 + 0.921177i \(0.627229\pi\)
\(542\) −13.4793 −0.578987
\(543\) −19.7739 −0.848577
\(544\) −9.50351 −0.407460
\(545\) −53.1119 −2.27507
\(546\) 0 0
\(547\) −22.6885 −0.970090 −0.485045 0.874489i \(-0.661197\pi\)
−0.485045 + 0.874489i \(0.661197\pi\)
\(548\) 11.6463 0.497504
\(549\) 4.39066 0.187389
\(550\) 0 0
\(551\) 4.56182 0.194340
\(552\) 14.9819 0.637674
\(553\) 0 0
\(554\) −17.5062 −0.743765
\(555\) 30.7866 1.30682
\(556\) −16.9819 −0.720195
\(557\) −38.3555 −1.62517 −0.812587 0.582840i \(-0.801941\pi\)
−0.812587 + 0.582840i \(0.801941\pi\)
\(558\) 3.05257 0.129226
\(559\) −9.45359 −0.399844
\(560\) 0 0
\(561\) 0 0
\(562\) 10.3381 0.436086
\(563\) 41.7739 1.76056 0.880279 0.474456i \(-0.157355\pi\)
0.880279 + 0.474456i \(0.157355\pi\)
\(564\) 4.96986 0.209269
\(565\) −44.4080 −1.86826
\(566\) −10.5517 −0.443521
\(567\) 0 0
\(568\) −20.1971 −0.847450
\(569\) 11.8700 0.497616 0.248808 0.968553i \(-0.419961\pi\)
0.248808 + 0.968553i \(0.419961\pi\)
\(570\) −6.63683 −0.277986
\(571\) −19.8013 −0.828661 −0.414330 0.910127i \(-0.635984\pi\)
−0.414330 + 0.910127i \(0.635984\pi\)
\(572\) 0 0
\(573\) 19.1652 0.800637
\(574\) 0 0
\(575\) 25.8667 1.07872
\(576\) 0.373518 0.0155633
\(577\) 28.6791 1.19392 0.596962 0.802269i \(-0.296374\pi\)
0.596962 + 0.802269i \(0.296374\pi\)
\(578\) 9.36052 0.389346
\(579\) −48.4278 −2.01259
\(580\) −17.2453 −0.716070
\(581\) 0 0
\(582\) −12.2255 −0.506762
\(583\) 0 0
\(584\) −10.6885 −0.442293
\(585\) −13.8546 −0.572817
\(586\) 10.0697 0.415976
\(587\) 1.01209 0.0417733 0.0208866 0.999782i \(-0.493351\pi\)
0.0208866 + 0.999782i \(0.493351\pi\)
\(588\) 0 0
\(589\) 10.4861 0.432074
\(590\) 20.7435 0.853996
\(591\) 47.0044 1.93350
\(592\) −7.21338 −0.296468
\(593\) −14.2332 −0.584486 −0.292243 0.956344i \(-0.594402\pi\)
−0.292243 + 0.956344i \(0.594402\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.56885 −0.0642626
\(597\) 10.6918 0.437587
\(598\) −12.9793 −0.530763
\(599\) −26.5457 −1.08463 −0.542315 0.840175i \(-0.682452\pi\)
−0.542315 + 0.840175i \(0.682452\pi\)
\(600\) 34.6687 1.41534
\(601\) 12.1558 0.495843 0.247922 0.968780i \(-0.420252\pi\)
0.247922 + 0.968780i \(0.420252\pi\)
\(602\) 0 0
\(603\) −6.45094 −0.262703
\(604\) 25.7659 1.04840
\(605\) 0 0
\(606\) 2.32865 0.0945949
\(607\) −13.9672 −0.566912 −0.283456 0.958985i \(-0.591481\pi\)
−0.283456 + 0.958985i \(0.591481\pi\)
\(608\) 8.49649 0.344578
\(609\) 0 0
\(610\) 15.6696 0.634444
\(611\) −9.79432 −0.396236
\(612\) −1.70655 −0.0689831
\(613\) −4.64189 −0.187484 −0.0937421 0.995597i \(-0.529883\pi\)
−0.0937421 + 0.995597i \(0.529883\pi\)
\(614\) −10.8150 −0.436459
\(615\) −8.77453 −0.353823
\(616\) 0 0
\(617\) −26.3960 −1.06266 −0.531331 0.847165i \(-0.678308\pi\)
−0.531331 + 0.847165i \(0.678308\pi\)
\(618\) 3.97757 0.160001
\(619\) 14.6815 0.590098 0.295049 0.955482i \(-0.404664\pi\)
0.295049 + 0.955482i \(0.404664\pi\)
\(620\) −39.6412 −1.59203
\(621\) −14.9819 −0.601205
\(622\) −14.2021 −0.569453
\(623\) 0 0
\(624\) 18.0774 0.723676
\(625\) −3.82710 −0.153084
\(626\) −10.7609 −0.430090
\(627\) 0 0
\(628\) 17.9648 0.716874
\(629\) −7.47338 −0.297983
\(630\) 0 0
\(631\) −30.1498 −1.20024 −0.600122 0.799908i \(-0.704881\pi\)
−0.600122 + 0.799908i \(0.704881\pi\)
\(632\) 14.9819 0.595950
\(633\) −23.1377 −0.919641
\(634\) −2.92937 −0.116340
\(635\) −23.6309 −0.937762
\(636\) −27.6764 −1.09744
\(637\) 0 0
\(638\) 0 0
\(639\) −5.65927 −0.223877
\(640\) −39.6137 −1.56587
\(641\) −16.1782 −0.639000 −0.319500 0.947586i \(-0.603515\pi\)
−0.319500 + 0.947586i \(0.603515\pi\)
\(642\) −5.98527 −0.236220
\(643\) −2.33568 −0.0921101 −0.0460550 0.998939i \(-0.514665\pi\)
−0.0460550 + 0.998939i \(0.514665\pi\)
\(644\) 0 0
\(645\) 10.9122 0.429669
\(646\) 1.61107 0.0633869
\(647\) 14.9622 0.588223 0.294112 0.955771i \(-0.404976\pi\)
0.294112 + 0.955771i \(0.404976\pi\)
\(648\) −24.6962 −0.970158
\(649\) 0 0
\(650\) −30.0345 −1.17805
\(651\) 0 0
\(652\) 14.0251 0.549265
\(653\) −22.8898 −0.895747 −0.447873 0.894097i \(-0.647818\pi\)
−0.447873 + 0.894097i \(0.647818\pi\)
\(654\) −18.6861 −0.730684
\(655\) −21.6188 −0.844716
\(656\) 2.05590 0.0802692
\(657\) −2.99494 −0.116844
\(658\) 0 0
\(659\) 2.20568 0.0859211 0.0429606 0.999077i \(-0.486321\pi\)
0.0429606 + 0.999077i \(0.486321\pi\)
\(660\) 0 0
\(661\) −0.682377 −0.0265414 −0.0132707 0.999912i \(-0.504224\pi\)
−0.0132707 + 0.999912i \(0.504224\pi\)
\(662\) −12.5018 −0.485895
\(663\) 18.7290 0.727373
\(664\) −0.393308 −0.0152633
\(665\) 0 0
\(666\) 1.94501 0.0753677
\(667\) −10.2978 −0.398734
\(668\) −28.5809 −1.10583
\(669\) 29.8814 1.15528
\(670\) −23.0224 −0.889434
\(671\) 0 0
\(672\) 0 0
\(673\) 10.8865 0.419643 0.209821 0.977740i \(-0.432712\pi\)
0.209821 + 0.977740i \(0.432712\pi\)
\(674\) 17.7384 0.683259
\(675\) −34.6687 −1.33440
\(676\) −34.4432 −1.32474
\(677\) −45.6654 −1.75506 −0.877532 0.479519i \(-0.840811\pi\)
−0.877532 + 0.479519i \(0.840811\pi\)
\(678\) −15.6238 −0.600030
\(679\) 0 0
\(680\) −13.8546 −0.531300
\(681\) 29.9622 1.14815
\(682\) 0 0
\(683\) 6.48372 0.248093 0.124046 0.992276i \(-0.460413\pi\)
0.124046 + 0.992276i \(0.460413\pi\)
\(684\) 1.52572 0.0583372
\(685\) 26.4932 1.01225
\(686\) 0 0
\(687\) −10.6540 −0.406475
\(688\) −2.55676 −0.0974757
\(689\) 54.5431 2.07793
\(690\) 14.9819 0.570353
\(691\) 10.9468 0.416434 0.208217 0.978083i \(-0.433234\pi\)
0.208217 + 0.978083i \(0.433234\pi\)
\(692\) 30.6885 1.16660
\(693\) 0 0
\(694\) −13.2754 −0.503927
\(695\) −38.6309 −1.46535
\(696\) −13.8020 −0.523164
\(697\) 2.13000 0.0806793
\(698\) −7.89418 −0.298799
\(699\) 36.8590 1.39413
\(700\) 0 0
\(701\) 0.914874 0.0345543 0.0172772 0.999851i \(-0.494500\pi\)
0.0172772 + 0.999851i \(0.494500\pi\)
\(702\) 17.3960 0.656568
\(703\) 6.68147 0.251996
\(704\) 0 0
\(705\) 11.3055 0.425791
\(706\) 7.06466 0.265882
\(707\) 0 0
\(708\) −26.5559 −0.998030
\(709\) 44.3123 1.66418 0.832092 0.554637i \(-0.187143\pi\)
0.832092 + 0.554637i \(0.187143\pi\)
\(710\) −20.1971 −0.757982
\(711\) 4.19798 0.157436
\(712\) −6.01979 −0.225601
\(713\) −23.6714 −0.886499
\(714\) 0 0
\(715\) 0 0
\(716\) −5.09547 −0.190427
\(717\) 42.3702 1.58234
\(718\) 15.9494 0.595226
\(719\) −5.20236 −0.194015 −0.0970076 0.995284i \(-0.530927\pi\)
−0.0970076 + 0.995284i \(0.530927\pi\)
\(720\) −3.74704 −0.139644
\(721\) 0 0
\(722\) 11.0354 0.410696
\(723\) 38.0044 1.41340
\(724\) 16.2231 0.602925
\(725\) −23.8295 −0.885006
\(726\) 0 0
\(727\) 50.0871 1.85763 0.928814 0.370547i \(-0.120830\pi\)
0.928814 + 0.370547i \(0.120830\pi\)
\(728\) 0 0
\(729\) 18.7866 0.695801
\(730\) −10.6885 −0.395599
\(731\) −2.64892 −0.0979737
\(732\) −20.0603 −0.741449
\(733\) 47.0697 1.73856 0.869280 0.494320i \(-0.164583\pi\)
0.869280 + 0.494320i \(0.164583\pi\)
\(734\) −7.12055 −0.262824
\(735\) 0 0
\(736\) −19.1799 −0.706981
\(737\) 0 0
\(738\) −0.554351 −0.0204059
\(739\) −46.9914 −1.72861 −0.864303 0.502971i \(-0.832240\pi\)
−0.864303 + 0.502971i \(0.832240\pi\)
\(740\) −25.2583 −0.928512
\(741\) −16.7444 −0.615121
\(742\) 0 0
\(743\) 5.19533 0.190598 0.0952991 0.995449i \(-0.469619\pi\)
0.0952991 + 0.995449i \(0.469619\pi\)
\(744\) −31.7263 −1.16314
\(745\) −3.56885 −0.130753
\(746\) −21.6843 −0.793920
\(747\) −0.110206 −0.00403222
\(748\) 0 0
\(749\) 0 0
\(750\) 12.2633 0.447793
\(751\) 33.4536 1.22074 0.610369 0.792117i \(-0.291021\pi\)
0.610369 + 0.792117i \(0.291021\pi\)
\(752\) −2.64892 −0.0965961
\(753\) 42.2747 1.54058
\(754\) 11.9571 0.435452
\(755\) 58.6128 2.13314
\(756\) 0 0
\(757\) 40.0440 1.45542 0.727711 0.685884i \(-0.240584\pi\)
0.727711 + 0.685884i \(0.240584\pi\)
\(758\) 14.4010 0.523068
\(759\) 0 0
\(760\) 12.3865 0.449306
\(761\) 7.55850 0.273995 0.136998 0.990571i \(-0.456255\pi\)
0.136998 + 0.990571i \(0.456255\pi\)
\(762\) −8.31392 −0.301181
\(763\) 0 0
\(764\) −15.7237 −0.568863
\(765\) −3.88209 −0.140357
\(766\) −23.9424 −0.865073
\(767\) 52.3348 1.88970
\(768\) −16.1126 −0.581414
\(769\) −51.5407 −1.85860 −0.929302 0.369320i \(-0.879591\pi\)
−0.929302 + 0.369320i \(0.879591\pi\)
\(770\) 0 0
\(771\) 55.6834 2.00539
\(772\) 39.7316 1.42997
\(773\) −15.4657 −0.556262 −0.278131 0.960543i \(-0.589715\pi\)
−0.278131 + 0.960543i \(0.589715\pi\)
\(774\) 0.689404 0.0247801
\(775\) −54.7763 −1.96762
\(776\) 22.8168 0.819074
\(777\) 0 0
\(778\) −12.7884 −0.458485
\(779\) −1.90429 −0.0682284
\(780\) 63.2996 2.26649
\(781\) 0 0
\(782\) −3.63683 −0.130053
\(783\) 13.8020 0.493244
\(784\) 0 0
\(785\) 40.8667 1.45859
\(786\) −7.60602 −0.271298
\(787\) −21.9518 −0.782497 −0.391249 0.920285i \(-0.627957\pi\)
−0.391249 + 0.920285i \(0.627957\pi\)
\(788\) −38.5638 −1.37378
\(789\) 29.6463 1.05544
\(790\) 14.9819 0.533034
\(791\) 0 0
\(792\) 0 0
\(793\) 39.5337 1.40388
\(794\) 5.14782 0.182689
\(795\) −62.9588 −2.23292
\(796\) −8.77188 −0.310911
\(797\) 42.6258 1.50988 0.754942 0.655792i \(-0.227665\pi\)
0.754942 + 0.655792i \(0.227665\pi\)
\(798\) 0 0
\(799\) −2.74439 −0.0970896
\(800\) −44.3830 −1.56917
\(801\) −1.68676 −0.0595987
\(802\) 16.0517 0.566804
\(803\) 0 0
\(804\) 29.4734 1.03945
\(805\) 0 0
\(806\) 27.4855 0.968134
\(807\) 3.26331 0.114874
\(808\) −4.34602 −0.152893
\(809\) −3.96745 −0.139488 −0.0697440 0.997565i \(-0.522218\pi\)
−0.0697440 + 0.997565i \(0.522218\pi\)
\(810\) −24.6962 −0.867736
\(811\) 46.9217 1.64764 0.823821 0.566850i \(-0.191838\pi\)
0.823821 + 0.566850i \(0.191838\pi\)
\(812\) 0 0
\(813\) 39.2549 1.37673
\(814\) 0 0
\(815\) 31.9045 1.11757
\(816\) 5.06534 0.177322
\(817\) 2.36823 0.0828538
\(818\) −1.54551 −0.0540374
\(819\) 0 0
\(820\) 7.19888 0.251396
\(821\) 50.6000 1.76595 0.882977 0.469416i \(-0.155536\pi\)
0.882977 + 0.469416i \(0.155536\pi\)
\(822\) 9.32094 0.325105
\(823\) 0.398599 0.0138943 0.00694714 0.999976i \(-0.497789\pi\)
0.00694714 + 0.999976i \(0.497789\pi\)
\(824\) −7.42345 −0.258608
\(825\) 0 0
\(826\) 0 0
\(827\) 20.4234 0.710193 0.355096 0.934830i \(-0.384448\pi\)
0.355096 + 0.934830i \(0.384448\pi\)
\(828\) −3.44414 −0.119692
\(829\) −23.2633 −0.807968 −0.403984 0.914766i \(-0.632375\pi\)
−0.403984 + 0.914766i \(0.632375\pi\)
\(830\) −0.393308 −0.0136519
\(831\) 50.9819 1.76854
\(832\) 3.36317 0.116597
\(833\) 0 0
\(834\) −13.5913 −0.470628
\(835\) −65.0165 −2.24999
\(836\) 0 0
\(837\) 31.7263 1.09662
\(838\) −6.10053 −0.210739
\(839\) −16.4861 −0.569165 −0.284582 0.958652i \(-0.591855\pi\)
−0.284582 + 0.958652i \(0.591855\pi\)
\(840\) 0 0
\(841\) −19.5132 −0.672869
\(842\) 25.6291 0.883238
\(843\) −30.1069 −1.03694
\(844\) 18.9829 0.653417
\(845\) −78.3521 −2.69540
\(846\) 0.714253 0.0245565
\(847\) 0 0
\(848\) 14.7514 0.506566
\(849\) 30.7290 1.05462
\(850\) −8.41574 −0.288658
\(851\) −15.0827 −0.517029
\(852\) 25.8563 0.885823
\(853\) 14.8315 0.507820 0.253910 0.967228i \(-0.418283\pi\)
0.253910 + 0.967228i \(0.418283\pi\)
\(854\) 0 0
\(855\) 3.47073 0.118696
\(856\) 11.1705 0.381799
\(857\) 5.03188 0.171886 0.0859428 0.996300i \(-0.472610\pi\)
0.0859428 + 0.996300i \(0.472610\pi\)
\(858\) 0 0
\(859\) −56.0363 −1.91193 −0.955966 0.293477i \(-0.905188\pi\)
−0.955966 + 0.293477i \(0.905188\pi\)
\(860\) −8.95272 −0.305285
\(861\) 0 0
\(862\) −2.49649 −0.0850307
\(863\) −36.4760 −1.24166 −0.620829 0.783946i \(-0.713204\pi\)
−0.620829 + 0.783946i \(0.713204\pi\)
\(864\) 25.7065 0.874555
\(865\) 69.8108 2.37364
\(866\) −5.39769 −0.183421
\(867\) −27.2600 −0.925798
\(868\) 0 0
\(869\) 0 0
\(870\) −13.8020 −0.467932
\(871\) −58.0844 −1.96812
\(872\) 34.8744 1.18100
\(873\) 6.39331 0.216381
\(874\) 3.25146 0.109982
\(875\) 0 0
\(876\) 13.6834 0.462321
\(877\) 6.61613 0.223411 0.111705 0.993741i \(-0.464369\pi\)
0.111705 + 0.993741i \(0.464369\pi\)
\(878\) 2.98195 0.100636
\(879\) −29.3253 −0.989119
\(880\) 0 0
\(881\) −22.5286 −0.759008 −0.379504 0.925190i \(-0.623905\pi\)
−0.379504 + 0.925190i \(0.623905\pi\)
\(882\) 0 0
\(883\) −51.1652 −1.72185 −0.860923 0.508735i \(-0.830113\pi\)
−0.860923 + 0.508735i \(0.830113\pi\)
\(884\) −15.3658 −0.516808
\(885\) −60.4098 −2.03065
\(886\) −9.02485 −0.303196
\(887\) 6.33809 0.212812 0.106406 0.994323i \(-0.466066\pi\)
0.106406 + 0.994323i \(0.466066\pi\)
\(888\) −20.2151 −0.678375
\(889\) 0 0
\(890\) −6.01979 −0.201784
\(891\) 0 0
\(892\) −24.5156 −0.820843
\(893\) 2.45359 0.0821061
\(894\) −1.25561 −0.0419938
\(895\) −11.5913 −0.387454
\(896\) 0 0
\(897\) 37.7987 1.26206
\(898\) −14.1608 −0.472552
\(899\) 21.8071 0.727307
\(900\) −7.96986 −0.265662
\(901\) 15.2831 0.509154
\(902\) 0 0
\(903\) 0 0
\(904\) 29.1592 0.969821
\(905\) 36.9045 1.22675
\(906\) 20.6214 0.685101
\(907\) −6.88474 −0.228604 −0.114302 0.993446i \(-0.536463\pi\)
−0.114302 + 0.993446i \(0.536463\pi\)
\(908\) −24.5818 −0.815777
\(909\) −1.21777 −0.0403908
\(910\) 0 0
\(911\) −41.0818 −1.36110 −0.680550 0.732701i \(-0.738259\pi\)
−0.680550 + 0.732701i \(0.738259\pi\)
\(912\) −4.52859 −0.149957
\(913\) 0 0
\(914\) −2.17048 −0.0717932
\(915\) −45.6335 −1.50860
\(916\) 8.74084 0.288805
\(917\) 0 0
\(918\) 4.87439 0.160879
\(919\) 11.6265 0.383522 0.191761 0.981442i \(-0.438580\pi\)
0.191761 + 0.981442i \(0.438580\pi\)
\(920\) −27.9612 −0.921855
\(921\) 31.4958 1.03782
\(922\) −21.1119 −0.695285
\(923\) −50.9562 −1.67724
\(924\) 0 0
\(925\) −34.9019 −1.14757
\(926\) −3.82272 −0.125622
\(927\) −2.08007 −0.0683184
\(928\) 17.6694 0.580026
\(929\) 24.7668 0.812573 0.406287 0.913746i \(-0.366823\pi\)
0.406287 + 0.913746i \(0.366823\pi\)
\(930\) −31.7263 −1.04035
\(931\) 0 0
\(932\) −30.2402 −0.990551
\(933\) 41.3598 1.35406
\(934\) 3.94940 0.129228
\(935\) 0 0
\(936\) 9.09721 0.297352
\(937\) −1.15046 −0.0375839 −0.0187920 0.999823i \(-0.505982\pi\)
−0.0187920 + 0.999823i \(0.505982\pi\)
\(938\) 0 0
\(939\) 31.3381 1.02268
\(940\) −9.27540 −0.302530
\(941\) −10.1102 −0.329583 −0.164792 0.986328i \(-0.552695\pi\)
−0.164792 + 0.986328i \(0.552695\pi\)
\(942\) 14.3779 0.468457
\(943\) 4.29874 0.139986
\(944\) 14.1542 0.460679
\(945\) 0 0
\(946\) 0 0
\(947\) −24.4553 −0.794691 −0.397346 0.917669i \(-0.630069\pi\)
−0.397346 + 0.917669i \(0.630069\pi\)
\(948\) −19.1799 −0.622935
\(949\) −26.9665 −0.875371
\(950\) 7.52398 0.244110
\(951\) 8.53101 0.276637
\(952\) 0 0
\(953\) 16.1696 0.523784 0.261892 0.965097i \(-0.415654\pi\)
0.261892 + 0.965097i \(0.415654\pi\)
\(954\) −3.97757 −0.128778
\(955\) −35.7686 −1.15744
\(956\) −34.7618 −1.12428
\(957\) 0 0
\(958\) 11.2512 0.363511
\(959\) 0 0
\(960\) −3.88209 −0.125294
\(961\) 19.1274 0.617011
\(962\) 17.5130 0.564640
\(963\) 3.13000 0.100863
\(964\) −31.1799 −1.00424
\(965\) 90.3823 2.90951
\(966\) 0 0
\(967\) 1.55941 0.0501472 0.0250736 0.999686i \(-0.492018\pi\)
0.0250736 + 0.999686i \(0.492018\pi\)
\(968\) 0 0
\(969\) −4.69182 −0.150723
\(970\) 22.8168 0.732602
\(971\) −9.04728 −0.290341 −0.145171 0.989407i \(-0.546373\pi\)
−0.145171 + 0.989407i \(0.546373\pi\)
\(972\) 10.5257 0.337613
\(973\) 0 0
\(974\) −3.75209 −0.120225
\(975\) 87.4674 2.80120
\(976\) 10.6920 0.342244
\(977\) −6.75648 −0.216159 −0.108079 0.994142i \(-0.534470\pi\)
−0.108079 + 0.994142i \(0.534470\pi\)
\(978\) 11.2248 0.358929
\(979\) 0 0
\(980\) 0 0
\(981\) 9.77188 0.311992
\(982\) 15.8031 0.504297
\(983\) 26.4305 0.843001 0.421501 0.906828i \(-0.361504\pi\)
0.421501 + 0.906828i \(0.361504\pi\)
\(984\) 5.76154 0.183671
\(985\) −87.7257 −2.79517
\(986\) 3.35041 0.106699
\(987\) 0 0
\(988\) 13.7376 0.437051
\(989\) −5.34602 −0.169994
\(990\) 0 0
\(991\) −0.634185 −0.0201456 −0.0100728 0.999949i \(-0.503206\pi\)
−0.0100728 + 0.999949i \(0.503206\pi\)
\(992\) 40.6161 1.28956
\(993\) 36.4080 1.15537
\(994\) 0 0
\(995\) −19.9545 −0.632599
\(996\) 0.503514 0.0159544
\(997\) −10.1274 −0.320736 −0.160368 0.987057i \(-0.551268\pi\)
−0.160368 + 0.987057i \(0.551268\pi\)
\(998\) −7.08445 −0.224254
\(999\) 20.2151 0.639578
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5929.2.a.v.1.2 3
7.2 even 3 847.2.e.d.606.2 6
7.4 even 3 847.2.e.d.485.2 6
7.6 odd 2 5929.2.a.w.1.2 3
11.10 odd 2 539.2.a.h.1.2 3
33.32 even 2 4851.2.a.bo.1.2 3
44.43 even 2 8624.2.a.cl.1.1 3
77.2 odd 30 847.2.n.e.81.2 24
77.4 even 15 847.2.n.d.632.2 24
77.9 even 15 847.2.n.d.81.2 24
77.10 even 6 539.2.e.l.177.2 6
77.16 even 15 847.2.n.d.487.2 24
77.18 odd 30 847.2.n.e.632.2 24
77.25 even 15 847.2.n.d.9.2 24
77.30 odd 30 847.2.n.e.130.2 24
77.32 odd 6 77.2.e.b.23.2 6
77.37 even 15 847.2.n.d.753.2 24
77.39 odd 30 847.2.n.e.366.2 24
77.46 odd 30 847.2.n.e.807.2 24
77.51 odd 30 847.2.n.e.753.2 24
77.53 even 15 847.2.n.d.807.2 24
77.54 even 6 539.2.e.l.67.2 6
77.58 even 15 847.2.n.d.130.2 24
77.60 even 15 847.2.n.d.366.2 24
77.65 odd 6 77.2.e.b.67.2 yes 6
77.72 odd 30 847.2.n.e.487.2 24
77.74 odd 30 847.2.n.e.9.2 24
77.76 even 2 539.2.a.i.1.2 3
231.32 even 6 693.2.i.g.100.2 6
231.65 even 6 693.2.i.g.298.2 6
231.230 odd 2 4851.2.a.bn.1.2 3
308.219 even 6 1232.2.q.k.529.3 6
308.263 even 6 1232.2.q.k.177.3 6
308.307 odd 2 8624.2.a.ck.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.e.b.23.2 6 77.32 odd 6
77.2.e.b.67.2 yes 6 77.65 odd 6
539.2.a.h.1.2 3 11.10 odd 2
539.2.a.i.1.2 3 77.76 even 2
539.2.e.l.67.2 6 77.54 even 6
539.2.e.l.177.2 6 77.10 even 6
693.2.i.g.100.2 6 231.32 even 6
693.2.i.g.298.2 6 231.65 even 6
847.2.e.d.485.2 6 7.4 even 3
847.2.e.d.606.2 6 7.2 even 3
847.2.n.d.9.2 24 77.25 even 15
847.2.n.d.81.2 24 77.9 even 15
847.2.n.d.130.2 24 77.58 even 15
847.2.n.d.366.2 24 77.60 even 15
847.2.n.d.487.2 24 77.16 even 15
847.2.n.d.632.2 24 77.4 even 15
847.2.n.d.753.2 24 77.37 even 15
847.2.n.d.807.2 24 77.53 even 15
847.2.n.e.9.2 24 77.74 odd 30
847.2.n.e.81.2 24 77.2 odd 30
847.2.n.e.130.2 24 77.30 odd 30
847.2.n.e.366.2 24 77.39 odd 30
847.2.n.e.487.2 24 77.72 odd 30
847.2.n.e.632.2 24 77.18 odd 30
847.2.n.e.753.2 24 77.51 odd 30
847.2.n.e.807.2 24 77.46 odd 30
1232.2.q.k.177.3 6 308.263 even 6
1232.2.q.k.529.3 6 308.219 even 6
4851.2.a.bn.1.2 3 231.230 odd 2
4851.2.a.bo.1.2 3 33.32 even 2
5929.2.a.v.1.2 3 1.1 even 1 trivial
5929.2.a.w.1.2 3 7.6 odd 2
8624.2.a.ck.1.3 3 308.307 odd 2
8624.2.a.cl.1.1 3 44.43 even 2