Properties

Label 592.2.w.f.529.1
Level $592$
Weight $2$
Character 592.529
Analytic conductor $4.727$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [592,2,Mod(529,592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("592.529"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(592, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,2,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 28 x^{18} + 320 x^{16} + 1984 x^{14} + 7388 x^{12} + 17136 x^{10} + 24692 x^{8} + 21256 x^{6} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 296)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 529.1
Root \(2.07608i\) of defining polynomial
Character \(\chi\) \(=\) 592.529
Dual form 592.2.w.f.545.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61426 + 2.79599i) q^{3} +(0.539298 + 0.311364i) q^{5} +(0.278439 - 0.482271i) q^{7} +(-3.71170 - 6.42885i) q^{9} -4.40317 q^{11} +(0.211099 + 0.121878i) q^{13} +(-1.74114 + 1.00525i) q^{15} +(-5.61985 + 3.24462i) q^{17} +(-0.309666 - 0.178786i) q^{19} +(0.898950 + 1.55703i) q^{21} -0.840354i q^{23} +(-2.30611 - 3.99429i) q^{25} +14.2811 q^{27} -0.996730i q^{29} -9.34379i q^{31} +(7.10787 - 12.3112i) q^{33} +(0.300323 - 0.173392i) q^{35} +(2.15231 + 5.68925i) q^{37} +(-0.681538 + 0.393486i) q^{39} +(3.36708 - 5.83196i) q^{41} +1.77846i q^{43} -4.62275i q^{45} -11.5380 q^{47} +(3.34494 + 5.79361i) q^{49} -20.9507i q^{51} +(5.80817 + 10.0600i) q^{53} +(-2.37462 - 1.37099i) q^{55} +(0.999766 - 0.577215i) q^{57} +(0.357898 - 0.206632i) q^{59} +(-12.2063 - 7.04728i) q^{61} -4.13393 q^{63} +(0.0758967 + 0.131457i) q^{65} +(0.0422812 - 0.0732332i) q^{67} +(2.34962 + 1.35655i) q^{69} +(-5.91365 + 10.2428i) q^{71} -9.52922 q^{73} +14.8907 q^{75} +(-1.22602 + 2.12352i) q^{77} +(6.67792 + 3.85550i) q^{79} +(-11.9183 + 20.6431i) q^{81} +(-3.84557 - 6.66072i) q^{83} -4.04103 q^{85} +(2.78685 + 1.60899i) q^{87} +(6.34345 - 3.66239i) q^{89} +(0.117556 - 0.0678712i) q^{91} +(26.1251 + 15.0833i) q^{93} +(-0.111335 - 0.192838i) q^{95} +10.8199i q^{97} +(16.3432 + 28.3073i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{3} + 6 q^{5} + 2 q^{7} - 12 q^{9} - 16 q^{11} - 6 q^{13} + 18 q^{15} - 6 q^{17} + 6 q^{19} + 2 q^{21} + 20 q^{25} + 20 q^{27} - 4 q^{33} + 6 q^{35} + 24 q^{37} - 18 q^{39} + 14 q^{41} + 8 q^{47}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61426 + 2.79599i −0.931996 + 1.61426i −0.152091 + 0.988367i \(0.548601\pi\)
−0.779905 + 0.625898i \(0.784733\pi\)
\(4\) 0 0
\(5\) 0.539298 + 0.311364i 0.241181 + 0.139246i 0.615720 0.787965i \(-0.288865\pi\)
−0.374538 + 0.927211i \(0.622199\pi\)
\(6\) 0 0
\(7\) 0.278439 0.482271i 0.105240 0.182281i −0.808596 0.588364i \(-0.799772\pi\)
0.913836 + 0.406083i \(0.133106\pi\)
\(8\) 0 0
\(9\) −3.71170 6.42885i −1.23723 2.14295i
\(10\) 0 0
\(11\) −4.40317 −1.32760 −0.663802 0.747908i \(-0.731058\pi\)
−0.663802 + 0.747908i \(0.731058\pi\)
\(12\) 0 0
\(13\) 0.211099 + 0.121878i 0.0585482 + 0.0338028i 0.528988 0.848629i \(-0.322572\pi\)
−0.470440 + 0.882432i \(0.655905\pi\)
\(14\) 0 0
\(15\) −1.74114 + 1.00525i −0.449560 + 0.259554i
\(16\) 0 0
\(17\) −5.61985 + 3.24462i −1.36301 + 0.786937i −0.990024 0.140899i \(-0.955001\pi\)
−0.372990 + 0.927835i \(0.621667\pi\)
\(18\) 0 0
\(19\) −0.309666 0.178786i −0.0710423 0.0410163i 0.464058 0.885805i \(-0.346393\pi\)
−0.535100 + 0.844788i \(0.679726\pi\)
\(20\) 0 0
\(21\) 0.898950 + 1.55703i 0.196167 + 0.339771i
\(22\) 0 0
\(23\) 0.840354i 0.175226i −0.996155 0.0876129i \(-0.972076\pi\)
0.996155 0.0876129i \(-0.0279239\pi\)
\(24\) 0 0
\(25\) −2.30611 3.99429i −0.461221 0.798858i
\(26\) 0 0
\(27\) 14.2811 2.74839
\(28\) 0 0
\(29\) 0.996730i 0.185088i −0.995709 0.0925441i \(-0.970500\pi\)
0.995709 0.0925441i \(-0.0294999\pi\)
\(30\) 0 0
\(31\) 9.34379i 1.67819i −0.543982 0.839097i \(-0.683084\pi\)
0.543982 0.839097i \(-0.316916\pi\)
\(32\) 0 0
\(33\) 7.10787 12.3112i 1.23732 2.14310i
\(34\) 0 0
\(35\) 0.300323 0.173392i 0.0507639 0.0293086i
\(36\) 0 0
\(37\) 2.15231 + 5.68925i 0.353838 + 0.935307i
\(38\) 0 0
\(39\) −0.681538 + 0.393486i −0.109133 + 0.0630082i
\(40\) 0 0
\(41\) 3.36708 5.83196i 0.525850 0.910799i −0.473697 0.880688i \(-0.657081\pi\)
0.999547 0.0301108i \(-0.00958600\pi\)
\(42\) 0 0
\(43\) 1.77846i 0.271212i 0.990763 + 0.135606i \(0.0432982\pi\)
−0.990763 + 0.135606i \(0.956702\pi\)
\(44\) 0 0
\(45\) 4.62275i 0.689119i
\(46\) 0 0
\(47\) −11.5380 −1.68299 −0.841494 0.540267i \(-0.818323\pi\)
−0.841494 + 0.540267i \(0.818323\pi\)
\(48\) 0 0
\(49\) 3.34494 + 5.79361i 0.477849 + 0.827659i
\(50\) 0 0
\(51\) 20.9507i 2.93369i
\(52\) 0 0
\(53\) 5.80817 + 10.0600i 0.797814 + 1.38185i 0.921037 + 0.389475i \(0.127343\pi\)
−0.123223 + 0.992379i \(0.539323\pi\)
\(54\) 0 0
\(55\) −2.37462 1.37099i −0.320193 0.184864i
\(56\) 0 0
\(57\) 0.999766 0.577215i 0.132422 0.0764540i
\(58\) 0 0
\(59\) 0.357898 0.206632i 0.0465943 0.0269012i −0.476522 0.879163i \(-0.658103\pi\)
0.523116 + 0.852261i \(0.324769\pi\)
\(60\) 0 0
\(61\) −12.2063 7.04728i −1.56285 0.902312i −0.996967 0.0778272i \(-0.975202\pi\)
−0.565884 0.824485i \(-0.691465\pi\)
\(62\) 0 0
\(63\) −4.13393 −0.520827
\(64\) 0 0
\(65\) 0.0758967 + 0.131457i 0.00941382 + 0.0163052i
\(66\) 0 0
\(67\) 0.0422812 0.0732332i 0.00516547 0.00894685i −0.863431 0.504467i \(-0.831689\pi\)
0.868597 + 0.495520i \(0.165022\pi\)
\(68\) 0 0
\(69\) 2.34962 + 1.35655i 0.282861 + 0.163310i
\(70\) 0 0
\(71\) −5.91365 + 10.2428i −0.701822 + 1.21559i 0.266005 + 0.963972i \(0.414296\pi\)
−0.967826 + 0.251619i \(0.919037\pi\)
\(72\) 0 0
\(73\) −9.52922 −1.11531 −0.557656 0.830072i \(-0.688299\pi\)
−0.557656 + 0.830072i \(0.688299\pi\)
\(74\) 0 0
\(75\) 14.8907 1.71942
\(76\) 0 0
\(77\) −1.22602 + 2.12352i −0.139717 + 0.241998i
\(78\) 0 0
\(79\) 6.67792 + 3.85550i 0.751324 + 0.433777i 0.826172 0.563418i \(-0.190514\pi\)
−0.0748480 + 0.997195i \(0.523847\pi\)
\(80\) 0 0
\(81\) −11.9183 + 20.6431i −1.32426 + 2.29368i
\(82\) 0 0
\(83\) −3.84557 6.66072i −0.422106 0.731109i 0.574039 0.818828i \(-0.305376\pi\)
−0.996145 + 0.0877189i \(0.972042\pi\)
\(84\) 0 0
\(85\) −4.04103 −0.438311
\(86\) 0 0
\(87\) 2.78685 + 1.60899i 0.298781 + 0.172501i
\(88\) 0 0
\(89\) 6.34345 3.66239i 0.672404 0.388213i −0.124583 0.992209i \(-0.539759\pi\)
0.796987 + 0.603996i \(0.206426\pi\)
\(90\) 0 0
\(91\) 0.117556 0.0678712i 0.0123233 0.00711484i
\(92\) 0 0
\(93\) 26.1251 + 15.0833i 2.70905 + 1.56407i
\(94\) 0 0
\(95\) −0.111335 0.192838i −0.0114227 0.0197847i
\(96\) 0 0
\(97\) 10.8199i 1.09860i 0.835626 + 0.549299i \(0.185105\pi\)
−0.835626 + 0.549299i \(0.814895\pi\)
\(98\) 0 0
\(99\) 16.3432 + 28.3073i 1.64256 + 2.84499i
\(100\) 0 0
\(101\) −13.7189 −1.36508 −0.682539 0.730849i \(-0.739124\pi\)
−0.682539 + 0.730849i \(0.739124\pi\)
\(102\) 0 0
\(103\) 8.18754i 0.806742i −0.915037 0.403371i \(-0.867838\pi\)
0.915037 0.403371i \(-0.132162\pi\)
\(104\) 0 0
\(105\) 1.11960i 0.109262i
\(106\) 0 0
\(107\) 0.286432 0.496114i 0.0276904 0.0479612i −0.851848 0.523789i \(-0.824518\pi\)
0.879539 + 0.475828i \(0.157851\pi\)
\(108\) 0 0
\(109\) −10.0885 + 5.82460i −0.966303 + 0.557895i −0.898107 0.439777i \(-0.855058\pi\)
−0.0681958 + 0.997672i \(0.521724\pi\)
\(110\) 0 0
\(111\) −19.3815 3.16611i −1.83961 0.300514i
\(112\) 0 0
\(113\) −0.463229 + 0.267445i −0.0435769 + 0.0251592i −0.521630 0.853172i \(-0.674676\pi\)
0.478053 + 0.878331i \(0.341343\pi\)
\(114\) 0 0
\(115\) 0.261656 0.453201i 0.0243995 0.0422612i
\(116\) 0 0
\(117\) 1.80950i 0.167288i
\(118\) 0 0
\(119\) 3.61372i 0.331269i
\(120\) 0 0
\(121\) 8.38787 0.762534
\(122\) 0 0
\(123\) 10.8707 + 18.8286i 0.980180 + 1.69772i
\(124\) 0 0
\(125\) 5.98579i 0.535385i
\(126\) 0 0
\(127\) 1.27993 + 2.21690i 0.113575 + 0.196718i 0.917209 0.398406i \(-0.130436\pi\)
−0.803634 + 0.595124i \(0.797103\pi\)
\(128\) 0 0
\(129\) −4.97255 2.87090i −0.437808 0.252769i
\(130\) 0 0
\(131\) −15.2856 + 8.82515i −1.33551 + 0.771057i −0.986138 0.165927i \(-0.946938\pi\)
−0.349372 + 0.936984i \(0.613605\pi\)
\(132\) 0 0
\(133\) −0.172447 + 0.0995621i −0.0149530 + 0.00863313i
\(134\) 0 0
\(135\) 7.70174 + 4.44660i 0.662861 + 0.382703i
\(136\) 0 0
\(137\) −5.87002 −0.501509 −0.250755 0.968051i \(-0.580679\pi\)
−0.250755 + 0.968051i \(0.580679\pi\)
\(138\) 0 0
\(139\) 4.64314 + 8.04216i 0.393826 + 0.682127i 0.992951 0.118529i \(-0.0378178\pi\)
−0.599124 + 0.800656i \(0.704484\pi\)
\(140\) 0 0
\(141\) 18.6253 32.2600i 1.56854 2.71679i
\(142\) 0 0
\(143\) −0.929503 0.536649i −0.0777289 0.0448768i
\(144\) 0 0
\(145\) 0.310346 0.537534i 0.0257728 0.0446398i
\(146\) 0 0
\(147\) −21.5985 −1.78141
\(148\) 0 0
\(149\) −17.5184 −1.43516 −0.717581 0.696475i \(-0.754751\pi\)
−0.717581 + 0.696475i \(0.754751\pi\)
\(150\) 0 0
\(151\) −0.729085 + 1.26281i −0.0593321 + 0.102766i −0.894166 0.447736i \(-0.852230\pi\)
0.834834 + 0.550502i \(0.185564\pi\)
\(152\) 0 0
\(153\) 41.7184 + 24.0861i 3.37273 + 1.94725i
\(154\) 0 0
\(155\) 2.90932 5.03908i 0.233682 0.404749i
\(156\) 0 0
\(157\) −6.80957 11.7945i −0.543463 0.941305i −0.998702 0.0509361i \(-0.983780\pi\)
0.455239 0.890369i \(-0.349554\pi\)
\(158\) 0 0
\(159\) −37.5037 −2.97424
\(160\) 0 0
\(161\) −0.405278 0.233988i −0.0319404 0.0184408i
\(162\) 0 0
\(163\) 4.70610 2.71707i 0.368610 0.212817i −0.304241 0.952595i \(-0.598403\pi\)
0.672851 + 0.739778i \(0.265069\pi\)
\(164\) 0 0
\(165\) 7.66652 4.42627i 0.596838 0.344584i
\(166\) 0 0
\(167\) 16.0783 + 9.28282i 1.24418 + 0.718327i 0.969942 0.243336i \(-0.0782417\pi\)
0.274236 + 0.961662i \(0.411575\pi\)
\(168\) 0 0
\(169\) −6.47029 11.2069i −0.497715 0.862067i
\(170\) 0 0
\(171\) 2.65440i 0.202987i
\(172\) 0 0
\(173\) 10.4147 + 18.0387i 0.791812 + 1.37146i 0.924844 + 0.380347i \(0.124195\pi\)
−0.133032 + 0.991112i \(0.542471\pi\)
\(174\) 0 0
\(175\) −2.56844 −0.194156
\(176\) 0 0
\(177\) 1.33424i 0.100287i
\(178\) 0 0
\(179\) 18.0463i 1.34884i 0.738346 + 0.674422i \(0.235607\pi\)
−0.738346 + 0.674422i \(0.764393\pi\)
\(180\) 0 0
\(181\) 3.10368 5.37574i 0.230695 0.399575i −0.727318 0.686301i \(-0.759233\pi\)
0.958013 + 0.286725i \(0.0925667\pi\)
\(182\) 0 0
\(183\) 39.4082 22.7524i 2.91314 1.68190i
\(184\) 0 0
\(185\) −0.610687 + 3.73835i −0.0448986 + 0.274849i
\(186\) 0 0
\(187\) 24.7451 14.2866i 1.80954 1.04474i
\(188\) 0 0
\(189\) 3.97641 6.88735i 0.289241 0.500981i
\(190\) 0 0
\(191\) 19.0987i 1.38194i 0.722885 + 0.690968i \(0.242816\pi\)
−0.722885 + 0.690968i \(0.757184\pi\)
\(192\) 0 0
\(193\) 13.2910i 0.956706i −0.878168 0.478353i \(-0.841234\pi\)
0.878168 0.478353i \(-0.158766\pi\)
\(194\) 0 0
\(195\) −0.490069 −0.0350946
\(196\) 0 0
\(197\) −3.31555 5.74270i −0.236223 0.409150i 0.723404 0.690425i \(-0.242576\pi\)
−0.959627 + 0.281274i \(0.909243\pi\)
\(198\) 0 0
\(199\) 14.0446i 0.995596i −0.867293 0.497798i \(-0.834142\pi\)
0.867293 0.497798i \(-0.165858\pi\)
\(200\) 0 0
\(201\) 0.136506 + 0.236435i 0.00962839 + 0.0166769i
\(202\) 0 0
\(203\) −0.480694 0.277529i −0.0337381 0.0194787i
\(204\) 0 0
\(205\) 3.63172 2.09677i 0.253650 0.146445i
\(206\) 0 0
\(207\) −5.40251 + 3.11914i −0.375500 + 0.216795i
\(208\) 0 0
\(209\) 1.36351 + 0.787224i 0.0943161 + 0.0544534i
\(210\) 0 0
\(211\) 23.8336 1.64077 0.820385 0.571811i \(-0.193759\pi\)
0.820385 + 0.571811i \(0.193759\pi\)
\(212\) 0 0
\(213\) −19.0924 33.0690i −1.30819 2.26585i
\(214\) 0 0
\(215\) −0.553747 + 0.959118i −0.0377653 + 0.0654113i
\(216\) 0 0
\(217\) −4.50624 2.60168i −0.305903 0.176613i
\(218\) 0 0
\(219\) 15.3827 26.6436i 1.03947 1.80041i
\(220\) 0 0
\(221\) −1.58179 −0.106403
\(222\) 0 0
\(223\) −2.82732 −0.189331 −0.0946655 0.995509i \(-0.530178\pi\)
−0.0946655 + 0.995509i \(0.530178\pi\)
\(224\) 0 0
\(225\) −17.1191 + 29.6512i −1.14128 + 1.97675i
\(226\) 0 0
\(227\) −20.3704 11.7608i −1.35203 0.780595i −0.363496 0.931596i \(-0.618417\pi\)
−0.988534 + 0.151001i \(0.951750\pi\)
\(228\) 0 0
\(229\) −7.87969 + 13.6480i −0.520704 + 0.901886i 0.479006 + 0.877812i \(0.340997\pi\)
−0.999710 + 0.0240745i \(0.992336\pi\)
\(230\) 0 0
\(231\) −3.95822 6.85585i −0.260432 0.451082i
\(232\) 0 0
\(233\) 13.3104 0.871994 0.435997 0.899948i \(-0.356396\pi\)
0.435997 + 0.899948i \(0.356396\pi\)
\(234\) 0 0
\(235\) −6.22241 3.59251i −0.405905 0.234349i
\(236\) 0 0
\(237\) −21.5598 + 12.4476i −1.40046 + 0.808557i
\(238\) 0 0
\(239\) −5.62492 + 3.24755i −0.363846 + 0.210067i −0.670767 0.741669i \(-0.734035\pi\)
0.306921 + 0.951735i \(0.400701\pi\)
\(240\) 0 0
\(241\) 3.50787 + 2.02527i 0.225962 + 0.130459i 0.608708 0.793395i \(-0.291688\pi\)
−0.382746 + 0.923854i \(0.625022\pi\)
\(242\) 0 0
\(243\) −17.0570 29.5436i −1.09421 1.89522i
\(244\) 0 0
\(245\) 4.16597i 0.266154i
\(246\) 0 0
\(247\) −0.0435801 0.0754829i −0.00277293 0.00480286i
\(248\) 0 0
\(249\) 24.8310 1.57360
\(250\) 0 0
\(251\) 12.2725i 0.774636i −0.921946 0.387318i \(-0.873402\pi\)
0.921946 0.387318i \(-0.126598\pi\)
\(252\) 0 0
\(253\) 3.70022i 0.232631i
\(254\) 0 0
\(255\) 6.52329 11.2987i 0.408504 0.707550i
\(256\) 0 0
\(257\) −0.296780 + 0.171346i −0.0185126 + 0.0106883i −0.509228 0.860632i \(-0.670069\pi\)
0.490715 + 0.871320i \(0.336736\pi\)
\(258\) 0 0
\(259\) 3.34305 + 0.546112i 0.207727 + 0.0339337i
\(260\) 0 0
\(261\) −6.40783 + 3.69956i −0.396635 + 0.228997i
\(262\) 0 0
\(263\) −6.78573 + 11.7532i −0.418426 + 0.724735i −0.995781 0.0917580i \(-0.970751\pi\)
0.577355 + 0.816493i \(0.304085\pi\)
\(264\) 0 0
\(265\) 7.23381i 0.444370i
\(266\) 0 0
\(267\) 23.6483i 1.44725i
\(268\) 0 0
\(269\) −8.00914 −0.488326 −0.244163 0.969734i \(-0.578513\pi\)
−0.244163 + 0.969734i \(0.578513\pi\)
\(270\) 0 0
\(271\) 5.94709 + 10.3007i 0.361260 + 0.625721i 0.988168 0.153372i \(-0.0490133\pi\)
−0.626908 + 0.779093i \(0.715680\pi\)
\(272\) 0 0
\(273\) 0.438248i 0.0265240i
\(274\) 0 0
\(275\) 10.1542 + 17.5875i 0.612319 + 1.06057i
\(276\) 0 0
\(277\) 8.43779 + 4.87156i 0.506978 + 0.292704i 0.731590 0.681744i \(-0.238778\pi\)
−0.224613 + 0.974448i \(0.572112\pi\)
\(278\) 0 0
\(279\) −60.0698 + 34.6813i −3.59628 + 2.07632i
\(280\) 0 0
\(281\) −12.3336 + 7.12080i −0.735761 + 0.424792i −0.820526 0.571609i \(-0.806319\pi\)
0.0847653 + 0.996401i \(0.472986\pi\)
\(282\) 0 0
\(283\) −6.02500 3.47853i −0.358149 0.206777i 0.310120 0.950698i \(-0.399631\pi\)
−0.668268 + 0.743920i \(0.732964\pi\)
\(284\) 0 0
\(285\) 0.718895 0.0425837
\(286\) 0 0
\(287\) −1.87506 3.24769i −0.110681 0.191705i
\(288\) 0 0
\(289\) 12.5552 21.7462i 0.738538 1.27919i
\(290\) 0 0
\(291\) −30.2524 17.4662i −1.77343 1.02389i
\(292\) 0 0
\(293\) 3.78613 6.55777i 0.221188 0.383109i −0.733981 0.679170i \(-0.762340\pi\)
0.955169 + 0.296061i \(0.0956732\pi\)
\(294\) 0 0
\(295\) 0.257351 0.0149836
\(296\) 0 0
\(297\) −62.8819 −3.64878
\(298\) 0 0
\(299\) 0.102421 0.177398i 0.00592313 0.0102592i
\(300\) 0 0
\(301\) 0.857699 + 0.495193i 0.0494370 + 0.0285424i
\(302\) 0 0
\(303\) 22.1459 38.3578i 1.27225 2.20360i
\(304\) 0 0
\(305\) −4.38854 7.60117i −0.251287 0.435242i
\(306\) 0 0
\(307\) 11.6979 0.667635 0.333818 0.942638i \(-0.391663\pi\)
0.333818 + 0.942638i \(0.391663\pi\)
\(308\) 0 0
\(309\) 22.8923 + 13.2168i 1.30229 + 0.751880i
\(310\) 0 0
\(311\) 17.8428 10.3016i 1.01177 0.584148i 0.100063 0.994981i \(-0.468095\pi\)
0.911711 + 0.410833i \(0.134762\pi\)
\(312\) 0 0
\(313\) 13.1698 7.60361i 0.744404 0.429782i −0.0792646 0.996854i \(-0.525257\pi\)
0.823668 + 0.567072i \(0.191924\pi\)
\(314\) 0 0
\(315\) −2.22942 1.28716i −0.125614 0.0725230i
\(316\) 0 0
\(317\) 4.77408 + 8.26895i 0.268139 + 0.464431i 0.968381 0.249475i \(-0.0802580\pi\)
−0.700242 + 0.713905i \(0.746925\pi\)
\(318\) 0 0
\(319\) 4.38877i 0.245724i
\(320\) 0 0
\(321\) 0.924753 + 1.60172i 0.0516147 + 0.0893992i
\(322\) 0 0
\(323\) 2.32037 0.129109
\(324\) 0 0
\(325\) 1.12425i 0.0623623i
\(326\) 0 0
\(327\) 37.6098i 2.07982i
\(328\) 0 0
\(329\) −3.21263 + 5.56444i −0.177118 + 0.306777i
\(330\) 0 0
\(331\) −27.0009 + 15.5890i −1.48411 + 0.856849i −0.999837 0.0180703i \(-0.994248\pi\)
−0.484269 + 0.874919i \(0.660914\pi\)
\(332\) 0 0
\(333\) 28.5866 34.9537i 1.56654 1.91545i
\(334\) 0 0
\(335\) 0.0456043 0.0263296i 0.00249163 0.00143854i
\(336\) 0 0
\(337\) 5.39361 9.34201i 0.293809 0.508892i −0.680898 0.732378i \(-0.738410\pi\)
0.974707 + 0.223486i \(0.0717438\pi\)
\(338\) 0 0
\(339\) 1.72691i 0.0937929i
\(340\) 0 0
\(341\) 41.1422i 2.22798i
\(342\) 0 0
\(343\) 7.62361 0.411636
\(344\) 0 0
\(345\) 0.844763 + 1.46317i 0.0454805 + 0.0787745i
\(346\) 0 0
\(347\) 0.764409i 0.0410356i −0.999789 0.0205178i \(-0.993469\pi\)
0.999789 0.0205178i \(-0.00653148\pi\)
\(348\) 0 0
\(349\) 13.2111 + 22.8823i 0.707173 + 1.22486i 0.965902 + 0.258910i \(0.0833631\pi\)
−0.258729 + 0.965950i \(0.583304\pi\)
\(350\) 0 0
\(351\) 3.01471 + 1.74055i 0.160913 + 0.0929034i
\(352\) 0 0
\(353\) −0.656786 + 0.379195i −0.0349572 + 0.0201825i −0.517377 0.855758i \(-0.673091\pi\)
0.482420 + 0.875940i \(0.339758\pi\)
\(354\) 0 0
\(355\) −6.37844 + 3.68259i −0.338532 + 0.195452i
\(356\) 0 0
\(357\) −10.1039 5.83350i −0.534756 0.308742i
\(358\) 0 0
\(359\) −1.79946 −0.0949719 −0.0474860 0.998872i \(-0.515121\pi\)
−0.0474860 + 0.998872i \(0.515121\pi\)
\(360\) 0 0
\(361\) −9.43607 16.3438i −0.496635 0.860198i
\(362\) 0 0
\(363\) −13.5402 + 23.4524i −0.710678 + 1.23093i
\(364\) 0 0
\(365\) −5.13909 2.96705i −0.268992 0.155303i
\(366\) 0 0
\(367\) 9.63461 16.6876i 0.502923 0.871087i −0.497072 0.867709i \(-0.665591\pi\)
0.999994 0.00337799i \(-0.00107525\pi\)
\(368\) 0 0
\(369\) −49.9904 −2.60240
\(370\) 0 0
\(371\) 6.46890 0.335848
\(372\) 0 0
\(373\) 1.39281 2.41242i 0.0721172 0.124911i −0.827712 0.561153i \(-0.810358\pi\)
0.899829 + 0.436243i \(0.143691\pi\)
\(374\) 0 0
\(375\) 16.7362 + 9.66264i 0.864253 + 0.498977i
\(376\) 0 0
\(377\) 0.121479 0.210408i 0.00625651 0.0108366i
\(378\) 0 0
\(379\) −14.2716 24.7191i −0.733081 1.26973i −0.955560 0.294796i \(-0.904748\pi\)
0.222480 0.974937i \(-0.428585\pi\)
\(380\) 0 0
\(381\) −8.26455 −0.423406
\(382\) 0 0
\(383\) 20.0941 + 11.6013i 1.02676 + 0.592801i 0.916055 0.401052i \(-0.131355\pi\)
0.110706 + 0.993853i \(0.464689\pi\)
\(384\) 0 0
\(385\) −1.32237 + 0.763473i −0.0673944 + 0.0389102i
\(386\) 0 0
\(387\) 11.4334 6.60110i 0.581194 0.335553i
\(388\) 0 0
\(389\) −10.4727 6.04641i −0.530986 0.306565i 0.210432 0.977609i \(-0.432513\pi\)
−0.741418 + 0.671043i \(0.765846\pi\)
\(390\) 0 0
\(391\) 2.72663 + 4.72266i 0.137892 + 0.238835i
\(392\) 0 0
\(393\) 56.9845i 2.87449i
\(394\) 0 0
\(395\) 2.40092 + 4.15852i 0.120804 + 0.209238i
\(396\) 0 0
\(397\) −4.57948 −0.229837 −0.114919 0.993375i \(-0.536661\pi\)
−0.114919 + 0.993375i \(0.536661\pi\)
\(398\) 0 0
\(399\) 0.642878i 0.0321842i
\(400\) 0 0
\(401\) 19.6468i 0.981116i −0.871408 0.490558i \(-0.836793\pi\)
0.871408 0.490558i \(-0.163207\pi\)
\(402\) 0 0
\(403\) 1.13880 1.97246i 0.0567277 0.0982553i
\(404\) 0 0
\(405\) −12.8550 + 7.42186i −0.638772 + 0.368795i
\(406\) 0 0
\(407\) −9.47700 25.0507i −0.469757 1.24172i
\(408\) 0 0
\(409\) 27.1868 15.6963i 1.34430 0.776132i 0.356864 0.934156i \(-0.383846\pi\)
0.987435 + 0.158024i \(0.0505125\pi\)
\(410\) 0 0
\(411\) 9.47576 16.4125i 0.467405 0.809569i
\(412\) 0 0
\(413\) 0.230138i 0.0113244i
\(414\) 0 0
\(415\) 4.78948i 0.235106i
\(416\) 0 0
\(417\) −29.9810 −1.46818
\(418\) 0 0
\(419\) −4.68134 8.10832i −0.228698 0.396117i 0.728724 0.684807i \(-0.240114\pi\)
−0.957423 + 0.288690i \(0.906780\pi\)
\(420\) 0 0
\(421\) 22.6491i 1.10385i 0.833893 + 0.551926i \(0.186107\pi\)
−0.833893 + 0.551926i \(0.813893\pi\)
\(422\) 0 0
\(423\) 42.8255 + 74.1759i 2.08225 + 3.60656i
\(424\) 0 0
\(425\) 25.9199 + 14.9649i 1.25730 + 0.725903i
\(426\) 0 0
\(427\) −6.79740 + 3.92448i −0.328949 + 0.189919i
\(428\) 0 0
\(429\) 3.00093 1.73259i 0.144886 0.0836500i
\(430\) 0 0
\(431\) 9.13478 + 5.27397i 0.440007 + 0.254038i 0.703601 0.710596i \(-0.251574\pi\)
−0.263594 + 0.964634i \(0.584908\pi\)
\(432\) 0 0
\(433\) 10.7984 0.518937 0.259469 0.965752i \(-0.416453\pi\)
0.259469 + 0.965752i \(0.416453\pi\)
\(434\) 0 0
\(435\) 1.00196 + 1.73545i 0.0480403 + 0.0832082i
\(436\) 0 0
\(437\) −0.150243 + 0.260229i −0.00718712 + 0.0124485i
\(438\) 0 0
\(439\) −18.1902 10.5021i −0.868170 0.501238i −0.00143027 0.999999i \(-0.500455\pi\)
−0.866740 + 0.498761i \(0.833789\pi\)
\(440\) 0 0
\(441\) 24.8308 43.0083i 1.18242 2.04801i
\(442\) 0 0
\(443\) −2.51855 −0.119660 −0.0598300 0.998209i \(-0.519056\pi\)
−0.0598300 + 0.998209i \(0.519056\pi\)
\(444\) 0 0
\(445\) 4.56134 0.216228
\(446\) 0 0
\(447\) 28.2793 48.9812i 1.33756 2.31673i
\(448\) 0 0
\(449\) 10.4622 + 6.04035i 0.493741 + 0.285062i 0.726125 0.687562i \(-0.241319\pi\)
−0.232384 + 0.972624i \(0.574653\pi\)
\(450\) 0 0
\(451\) −14.8258 + 25.6791i −0.698121 + 1.20918i
\(452\) 0 0
\(453\) −2.35387 4.07703i −0.110595 0.191555i
\(454\) 0 0
\(455\) 0.0845305 0.00396285
\(456\) 0 0
\(457\) 22.3387 + 12.8972i 1.04496 + 0.603307i 0.921234 0.389010i \(-0.127183\pi\)
0.123724 + 0.992317i \(0.460516\pi\)
\(458\) 0 0
\(459\) −80.2574 + 46.3367i −3.74610 + 2.16281i
\(460\) 0 0
\(461\) 18.6937 10.7928i 0.870653 0.502672i 0.00308800 0.999995i \(-0.499017\pi\)
0.867565 + 0.497323i \(0.165684\pi\)
\(462\) 0 0
\(463\) 9.51536 + 5.49370i 0.442216 + 0.255314i 0.704537 0.709667i \(-0.251155\pi\)
−0.262321 + 0.964981i \(0.584488\pi\)
\(464\) 0 0
\(465\) 9.39281 + 16.2688i 0.435581 + 0.754448i
\(466\) 0 0
\(467\) 24.8812i 1.15136i −0.817674 0.575681i \(-0.804737\pi\)
0.817674 0.575681i \(-0.195263\pi\)
\(468\) 0 0
\(469\) −0.0235455 0.0407820i −0.00108723 0.00188314i
\(470\) 0 0
\(471\) 43.9698 2.02602
\(472\) 0 0
\(473\) 7.83085i 0.360063i
\(474\) 0 0
\(475\) 1.64920i 0.0756703i
\(476\) 0 0
\(477\) 43.1164 74.6797i 1.97416 3.41935i
\(478\) 0 0
\(479\) −23.8814 + 13.7879i −1.09117 + 0.629986i −0.933887 0.357568i \(-0.883606\pi\)
−0.157281 + 0.987554i \(0.550273\pi\)
\(480\) 0 0
\(481\) −0.239043 + 1.46331i −0.0108994 + 0.0667213i
\(482\) 0 0
\(483\) 1.30845 0.755436i 0.0595367 0.0343735i
\(484\) 0 0
\(485\) −3.36893 + 5.83516i −0.152975 + 0.264961i
\(486\) 0 0
\(487\) 7.49345i 0.339561i −0.985482 0.169780i \(-0.945694\pi\)
0.985482 0.169780i \(-0.0543058\pi\)
\(488\) 0 0
\(489\) 17.5443i 0.793379i
\(490\) 0 0
\(491\) 1.03405 0.0466661 0.0233331 0.999728i \(-0.492572\pi\)
0.0233331 + 0.999728i \(0.492572\pi\)
\(492\) 0 0
\(493\) 3.23401 + 5.60148i 0.145653 + 0.252278i
\(494\) 0 0
\(495\) 20.3547i 0.914878i
\(496\) 0 0
\(497\) 3.29319 + 5.70397i 0.147720 + 0.255858i
\(498\) 0 0
\(499\) 32.0161 + 18.4845i 1.43324 + 0.827480i 0.997366 0.0725293i \(-0.0231071\pi\)
0.435871 + 0.900009i \(0.356440\pi\)
\(500\) 0 0
\(501\) −51.9093 + 29.9699i −2.31914 + 1.33895i
\(502\) 0 0
\(503\) −18.1279 + 10.4662i −0.808283 + 0.466663i −0.846359 0.532612i \(-0.821210\pi\)
0.0380760 + 0.999275i \(0.487877\pi\)
\(504\) 0 0
\(505\) −7.39855 4.27156i −0.329231 0.190082i
\(506\) 0 0
\(507\) 41.7790 1.85547
\(508\) 0 0
\(509\) 13.0860 + 22.6656i 0.580027 + 1.00464i 0.995475 + 0.0950196i \(0.0302914\pi\)
−0.415448 + 0.909617i \(0.636375\pi\)
\(510\) 0 0
\(511\) −2.65331 + 4.59567i −0.117376 + 0.203301i
\(512\) 0 0
\(513\) −4.42236 2.55325i −0.195252 0.112729i
\(514\) 0 0
\(515\) 2.54930 4.41552i 0.112336 0.194571i
\(516\) 0 0
\(517\) 50.8036 2.23434
\(518\) 0 0
\(519\) −67.2480 −2.95186
\(520\) 0 0
\(521\) 11.6448 20.1694i 0.510168 0.883636i −0.489763 0.871856i \(-0.662917\pi\)
0.999931 0.0117807i \(-0.00375000\pi\)
\(522\) 0 0
\(523\) 7.52851 + 4.34659i 0.329199 + 0.190063i 0.655485 0.755208i \(-0.272464\pi\)
−0.326287 + 0.945271i \(0.605797\pi\)
\(524\) 0 0
\(525\) 4.14615 7.18133i 0.180953 0.313419i
\(526\) 0 0
\(527\) 30.3171 + 52.5107i 1.32063 + 2.28740i
\(528\) 0 0
\(529\) 22.2938 0.969296
\(530\) 0 0
\(531\) −2.65682 1.53391i −0.115296 0.0665662i
\(532\) 0 0
\(533\) 1.42157 0.820746i 0.0615752 0.0355504i
\(534\) 0 0
\(535\) 0.308944 0.178369i 0.0133568 0.00771155i
\(536\) 0 0
\(537\) −50.4573 29.1315i −2.17739 1.25712i
\(538\) 0 0
\(539\) −14.7283 25.5102i −0.634395 1.09880i
\(540\) 0 0
\(541\) 2.39581i 0.103004i 0.998673 + 0.0515019i \(0.0164008\pi\)
−0.998673 + 0.0515019i \(0.983599\pi\)
\(542\) 0 0
\(543\) 10.0203 + 17.3557i 0.430014 + 0.744805i
\(544\) 0 0
\(545\) −7.25427 −0.310739
\(546\) 0 0
\(547\) 45.2864i 1.93630i 0.250362 + 0.968152i \(0.419450\pi\)
−0.250362 + 0.968152i \(0.580550\pi\)
\(548\) 0 0
\(549\) 104.630i 4.46548i
\(550\) 0 0
\(551\) −0.178201 + 0.308654i −0.00759163 + 0.0131491i
\(552\) 0 0
\(553\) 3.71879 2.14704i 0.158139 0.0913016i
\(554\) 0 0
\(555\) −9.46657 7.74216i −0.401834 0.328636i
\(556\) 0 0
\(557\) −29.1161 + 16.8102i −1.23369 + 0.712271i −0.967797 0.251732i \(-0.919000\pi\)
−0.265893 + 0.964003i \(0.585667\pi\)
\(558\) 0 0
\(559\) −0.216755 + 0.375430i −0.00916775 + 0.0158790i
\(560\) 0 0
\(561\) 92.2495i 3.89478i
\(562\) 0 0
\(563\) 17.8580i 0.752627i −0.926492 0.376313i \(-0.877192\pi\)
0.926492 0.376313i \(-0.122808\pi\)
\(564\) 0 0
\(565\) −0.333091 −0.0140133
\(566\) 0 0
\(567\) 6.63706 + 11.4957i 0.278730 + 0.482775i
\(568\) 0 0
\(569\) 10.4276i 0.437149i 0.975820 + 0.218575i \(0.0701407\pi\)
−0.975820 + 0.218575i \(0.929859\pi\)
\(570\) 0 0
\(571\) −18.3170 31.7259i −0.766541 1.32769i −0.939428 0.342746i \(-0.888643\pi\)
0.172887 0.984942i \(-0.444690\pi\)
\(572\) 0 0
\(573\) −53.3998 30.8304i −2.23081 1.28796i
\(574\) 0 0
\(575\) −3.35662 + 1.93794i −0.139981 + 0.0808179i
\(576\) 0 0
\(577\) −25.7296 + 14.8550i −1.07114 + 0.618421i −0.928492 0.371353i \(-0.878894\pi\)
−0.142644 + 0.989774i \(0.545561\pi\)
\(578\) 0 0
\(579\) 37.1614 + 21.4552i 1.54438 + 0.891646i
\(580\) 0 0
\(581\) −4.28303 −0.177690
\(582\) 0 0
\(583\) −25.5743 44.2961i −1.05918 1.83456i
\(584\) 0 0
\(585\) 0.563411 0.975857i 0.0232942 0.0403467i
\(586\) 0 0
\(587\) −18.3392 10.5882i −0.756941 0.437020i 0.0712553 0.997458i \(-0.477300\pi\)
−0.828196 + 0.560438i \(0.810633\pi\)
\(588\) 0 0
\(589\) −1.67054 + 2.89345i −0.0688333 + 0.119223i
\(590\) 0 0
\(591\) 21.4087 0.880636
\(592\) 0 0
\(593\) −17.1280 −0.703364 −0.351682 0.936120i \(-0.614390\pi\)
−0.351682 + 0.936120i \(0.614390\pi\)
\(594\) 0 0
\(595\) −1.12518 + 1.94887i −0.0461280 + 0.0798960i
\(596\) 0 0
\(597\) 39.2685 + 22.6717i 1.60715 + 0.927891i
\(598\) 0 0
\(599\) 8.59578 14.8883i 0.351214 0.608321i −0.635248 0.772308i \(-0.719102\pi\)
0.986462 + 0.163987i \(0.0524356\pi\)
\(600\) 0 0
\(601\) −14.1946 24.5858i −0.579011 1.00288i −0.995593 0.0937786i \(-0.970105\pi\)
0.416582 0.909098i \(-0.363228\pi\)
\(602\) 0 0
\(603\) −0.627740 −0.0255635
\(604\) 0 0
\(605\) 4.52356 + 2.61168i 0.183909 + 0.106180i
\(606\) 0 0
\(607\) −25.0454 + 14.4599i −1.01656 + 0.586911i −0.913106 0.407723i \(-0.866323\pi\)
−0.103454 + 0.994634i \(0.532990\pi\)
\(608\) 0 0
\(609\) 1.55194 0.896010i 0.0628876 0.0363082i
\(610\) 0 0
\(611\) −2.43565 1.40622i −0.0985359 0.0568897i
\(612\) 0 0
\(613\) 3.55272 + 6.15349i 0.143493 + 0.248537i 0.928810 0.370557i \(-0.120833\pi\)
−0.785317 + 0.619094i \(0.787500\pi\)
\(614\) 0 0
\(615\) 13.5390i 0.545945i
\(616\) 0 0
\(617\) −1.78768 3.09635i −0.0719693 0.124654i 0.827795 0.561031i \(-0.189595\pi\)
−0.899764 + 0.436376i \(0.856262\pi\)
\(618\) 0 0
\(619\) −19.0006 −0.763700 −0.381850 0.924224i \(-0.624713\pi\)
−0.381850 + 0.924224i \(0.624713\pi\)
\(620\) 0 0
\(621\) 12.0011i 0.481589i
\(622\) 0 0
\(623\) 4.07902i 0.163422i
\(624\) 0 0
\(625\) −9.66677 + 16.7433i −0.386671 + 0.669734i
\(626\) 0 0
\(627\) −4.40214 + 2.54157i −0.175804 + 0.101501i
\(628\) 0 0
\(629\) −30.5551 24.9893i −1.21831 0.996388i
\(630\) 0 0
\(631\) −35.3370 + 20.4018i −1.40674 + 0.812183i −0.995072 0.0991504i \(-0.968388\pi\)
−0.411669 + 0.911333i \(0.635054\pi\)
\(632\) 0 0
\(633\) −38.4737 + 66.6384i −1.52919 + 2.64864i
\(634\) 0 0
\(635\) 1.59409i 0.0632595i
\(636\) 0 0
\(637\) 1.63070i 0.0646106i
\(638\) 0 0
\(639\) 87.7988 3.47327
\(640\) 0 0
\(641\) 7.86693 + 13.6259i 0.310725 + 0.538191i 0.978520 0.206154i \(-0.0660949\pi\)
−0.667795 + 0.744346i \(0.732762\pi\)
\(642\) 0 0
\(643\) 9.87544i 0.389449i −0.980858 0.194725i \(-0.937619\pi\)
0.980858 0.194725i \(-0.0623813\pi\)
\(644\) 0 0
\(645\) −1.78779 3.09654i −0.0703941 0.121926i
\(646\) 0 0
\(647\) 34.1370 + 19.7090i 1.34207 + 0.774842i 0.987110 0.160042i \(-0.0511629\pi\)
0.354955 + 0.934883i \(0.384496\pi\)
\(648\) 0 0
\(649\) −1.57588 + 0.909836i −0.0618588 + 0.0357142i
\(650\) 0 0
\(651\) 14.5485 8.39959i 0.570201 0.329206i
\(652\) 0 0
\(653\) −12.9570 7.48075i −0.507048 0.292744i 0.224571 0.974458i \(-0.427902\pi\)
−0.731619 + 0.681713i \(0.761235\pi\)
\(654\) 0 0
\(655\) −10.9913 −0.429467
\(656\) 0 0
\(657\) 35.3696 + 61.2620i 1.37990 + 2.39006i
\(658\) 0 0
\(659\) 13.8932 24.0636i 0.541200 0.937387i −0.457635 0.889140i \(-0.651303\pi\)
0.998835 0.0482465i \(-0.0153633\pi\)
\(660\) 0 0
\(661\) −13.4620 7.77230i −0.523612 0.302308i 0.214799 0.976658i \(-0.431090\pi\)
−0.738411 + 0.674351i \(0.764424\pi\)
\(662\) 0 0
\(663\) 2.55343 4.42267i 0.0991669 0.171762i
\(664\) 0 0
\(665\) −0.124000 −0.00480852
\(666\) 0 0
\(667\) −0.837606 −0.0324322
\(668\) 0 0
\(669\) 4.56403 7.90514i 0.176456 0.305630i
\(670\) 0 0
\(671\) 53.7462 + 31.0304i 2.07485 + 1.19791i
\(672\) 0 0
\(673\) 8.62708 14.9425i 0.332550 0.575993i −0.650461 0.759539i \(-0.725424\pi\)
0.983011 + 0.183547i \(0.0587578\pi\)
\(674\) 0 0
\(675\) −32.9336 57.0427i −1.26762 2.19558i
\(676\) 0 0
\(677\) −3.38410 −0.130062 −0.0650308 0.997883i \(-0.520715\pi\)
−0.0650308 + 0.997883i \(0.520715\pi\)
\(678\) 0 0
\(679\) 5.21814 + 3.01269i 0.200254 + 0.115617i
\(680\) 0 0
\(681\) 65.7664 37.9702i 2.52017 1.45502i
\(682\) 0 0
\(683\) 10.3844 5.99541i 0.397346 0.229408i −0.287992 0.957633i \(-0.592988\pi\)
0.685338 + 0.728225i \(0.259654\pi\)
\(684\) 0 0
\(685\) −3.16569 1.82771i −0.120955 0.0698332i
\(686\) 0 0
\(687\) −25.4398 44.0630i −0.970588 1.68111i
\(688\) 0 0
\(689\) 2.83155i 0.107873i
\(690\) 0 0
\(691\) 9.68904 + 16.7819i 0.368589 + 0.638414i 0.989345 0.145589i \(-0.0465078\pi\)
−0.620757 + 0.784003i \(0.713174\pi\)
\(692\) 0 0
\(693\) 18.2024 0.691452
\(694\) 0 0
\(695\) 5.78282i 0.219355i
\(696\) 0 0
\(697\) 43.6996i 1.65524i
\(698\) 0 0
\(699\) −21.4865 + 37.2157i −0.812695 + 1.40763i
\(700\) 0 0
\(701\) 39.0366 22.5378i 1.47439 0.851240i 0.474806 0.880090i \(-0.342518\pi\)
0.999584 + 0.0288507i \(0.00918474\pi\)
\(702\) 0 0
\(703\) 0.350658 2.14657i 0.0132253 0.0809595i
\(704\) 0 0
\(705\) 20.0892 11.5985i 0.756604 0.436825i
\(706\) 0 0
\(707\) −3.81987 + 6.61622i −0.143661 + 0.248828i
\(708\) 0 0
\(709\) 37.7864i 1.41910i −0.704657 0.709548i \(-0.748899\pi\)
0.704657 0.709548i \(-0.251101\pi\)
\(710\) 0 0
\(711\) 57.2418i 2.14673i
\(712\) 0 0
\(713\) −7.85209 −0.294063
\(714\) 0 0
\(715\) −0.334186 0.578827i −0.0124978 0.0216469i
\(716\) 0 0
\(717\) 20.9696i 0.783125i
\(718\) 0 0
\(719\) −17.7702 30.7789i −0.662718 1.14786i −0.979899 0.199496i \(-0.936070\pi\)
0.317181 0.948365i \(-0.397264\pi\)
\(720\) 0 0
\(721\) −3.94861 2.27973i −0.147054 0.0849017i
\(722\) 0 0
\(723\) −11.3253 + 6.53864i −0.421191 + 0.243175i
\(724\) 0 0
\(725\) −3.98123 + 2.29857i −0.147859 + 0.0853666i
\(726\) 0 0
\(727\) 17.8900 + 10.3288i 0.663504 + 0.383074i 0.793611 0.608426i \(-0.208199\pi\)
−0.130107 + 0.991500i \(0.541532\pi\)
\(728\) 0 0
\(729\) 38.6283 1.43068
\(730\) 0 0
\(731\) −5.77043 9.99467i −0.213427 0.369666i
\(732\) 0 0
\(733\) −1.15118 + 1.99390i −0.0425197 + 0.0736462i −0.886502 0.462725i \(-0.846872\pi\)
0.843982 + 0.536371i \(0.180205\pi\)
\(734\) 0 0
\(735\) −11.6480 6.72498i −0.429643 0.248055i
\(736\) 0 0
\(737\) −0.186171 + 0.322458i −0.00685770 + 0.0118779i
\(738\) 0 0
\(739\) −20.8269 −0.766131 −0.383066 0.923721i \(-0.625132\pi\)
−0.383066 + 0.923721i \(0.625132\pi\)
\(740\) 0 0
\(741\) 0.281399 0.0103375
\(742\) 0 0
\(743\) 1.19119 2.06321i 0.0437006 0.0756917i −0.843348 0.537368i \(-0.819419\pi\)
0.887048 + 0.461676i \(0.152752\pi\)
\(744\) 0 0
\(745\) −9.44762 5.45459i −0.346134 0.199841i
\(746\) 0 0
\(747\) −28.5472 + 49.4451i −1.04449 + 1.80910i
\(748\) 0 0
\(749\) −0.159508 0.276275i −0.00582828 0.0100949i
\(750\) 0 0
\(751\) 17.0259 0.621283 0.310641 0.950527i \(-0.399456\pi\)
0.310641 + 0.950527i \(0.399456\pi\)
\(752\) 0 0
\(753\) 34.3139 + 19.8111i 1.25047 + 0.721957i
\(754\) 0 0
\(755\) −0.786388 + 0.454021i −0.0286196 + 0.0165235i
\(756\) 0 0
\(757\) 15.8422 9.14648i 0.575793 0.332434i −0.183667 0.982989i \(-0.558797\pi\)
0.759460 + 0.650554i \(0.225463\pi\)
\(758\) 0 0
\(759\) −10.3458 5.97313i −0.375527 0.216811i
\(760\) 0 0
\(761\) −7.66771 13.2809i −0.277954 0.481431i 0.692922 0.721013i \(-0.256323\pi\)
−0.970876 + 0.239582i \(0.922990\pi\)
\(762\) 0 0
\(763\) 6.48719i 0.234852i
\(764\) 0 0
\(765\) 14.9991 + 25.9792i 0.542293 + 0.939279i
\(766\) 0 0
\(767\) 0.100736 0.00363735
\(768\) 0 0
\(769\) 33.2742i 1.19990i −0.800038 0.599950i \(-0.795187\pi\)
0.800038 0.599950i \(-0.204813\pi\)
\(770\) 0 0
\(771\) 1.10639i 0.0398457i
\(772\) 0 0
\(773\) −6.75699 + 11.7034i −0.243032 + 0.420944i −0.961576 0.274537i \(-0.911475\pi\)
0.718545 + 0.695481i \(0.244809\pi\)
\(774\) 0 0
\(775\) −37.3218 + 21.5478i −1.34064 + 0.774018i
\(776\) 0 0
\(777\) −6.92349 + 8.46556i −0.248379 + 0.303700i
\(778\) 0 0
\(779\) −2.08534 + 1.20397i −0.0747152 + 0.0431368i
\(780\) 0 0
\(781\) 26.0388 45.1005i 0.931742 1.61382i
\(782\) 0 0
\(783\) 14.2344i 0.508695i
\(784\) 0 0
\(785\) 8.48101i 0.302700i
\(786\) 0 0
\(787\) 23.4178 0.834754 0.417377 0.908733i \(-0.362949\pi\)
0.417377 + 0.908733i \(0.362949\pi\)
\(788\) 0 0
\(789\) −21.9079 37.9456i −0.779943 1.35090i
\(790\) 0 0
\(791\) 0.297869i 0.0105910i
\(792\) 0 0
\(793\) −1.71782 2.97534i −0.0610014 0.105658i
\(794\) 0 0
\(795\) −20.2257 11.6773i −0.717330 0.414151i
\(796\) 0 0
\(797\) −32.4334 + 18.7254i −1.14885 + 0.663288i −0.948606 0.316459i \(-0.897506\pi\)
−0.200242 + 0.979746i \(0.564173\pi\)
\(798\) 0 0
\(799\) 64.8417 37.4364i 2.29394 1.32440i
\(800\) 0 0
\(801\) −47.0899 27.1874i −1.66384 0.960619i
\(802\) 0 0
\(803\) 41.9588 1.48069
\(804\) 0 0
\(805\) −0.145711 0.252378i −0.00513562 0.00889516i
\(806\) 0 0
\(807\) 12.9289 22.3935i 0.455118 0.788287i
\(808\) 0 0
\(809\) 34.5682 + 19.9580i 1.21535 + 0.701685i 0.963921 0.266190i \(-0.0857649\pi\)
0.251433 + 0.967875i \(0.419098\pi\)
\(810\) 0 0
\(811\) −19.5104 + 33.7930i −0.685104 + 1.18663i 0.288301 + 0.957540i \(0.406910\pi\)
−0.973404 + 0.229094i \(0.926424\pi\)
\(812\) 0 0
\(813\) −38.4007 −1.34677
\(814\) 0 0
\(815\) 3.38399 0.118536
\(816\) 0 0
\(817\) 0.317963 0.550728i 0.0111241 0.0192675i
\(818\) 0 0
\(819\) −0.872668 0.503835i −0.0304935 0.0176054i
\(820\) 0 0
\(821\) 18.8031 32.5679i 0.656233 1.13663i −0.325350 0.945594i \(-0.605482\pi\)
0.981583 0.191035i \(-0.0611845\pi\)
\(822\) 0 0
\(823\) −12.1504 21.0451i −0.423537 0.733588i 0.572746 0.819733i \(-0.305878\pi\)
−0.996283 + 0.0861456i \(0.972545\pi\)
\(824\) 0 0
\(825\) −65.5660 −2.28272
\(826\) 0 0
\(827\) −19.4912 11.2533i −0.677776 0.391314i 0.121240 0.992623i \(-0.461313\pi\)
−0.799017 + 0.601309i \(0.794646\pi\)
\(828\) 0 0
\(829\) −27.7690 + 16.0324i −0.964457 + 0.556830i −0.897542 0.440929i \(-0.854649\pi\)
−0.0669154 + 0.997759i \(0.521316\pi\)
\(830\) 0 0
\(831\) −27.2417 + 15.7280i −0.945002 + 0.545597i
\(832\) 0 0
\(833\) −37.5962 21.7062i −1.30263 0.752074i
\(834\) 0 0
\(835\) 5.78067 + 10.0124i 0.200048 + 0.346494i
\(836\) 0 0
\(837\) 133.439i 4.61233i
\(838\) 0 0
\(839\) −17.5787 30.4472i −0.606884 1.05115i −0.991751 0.128182i \(-0.959086\pi\)
0.384866 0.922972i \(-0.374248\pi\)
\(840\) 0 0
\(841\) 28.0065 0.965742
\(842\) 0 0
\(843\) 45.9794i 1.58362i
\(844\) 0 0
\(845\) 8.05845i 0.277219i
\(846\) 0 0
\(847\) 2.33551 4.04523i 0.0802492 0.138996i
\(848\) 0 0
\(849\) 19.4519 11.2305i 0.667587 0.385431i
\(850\) 0 0
\(851\) 4.78098 1.80871i 0.163890 0.0620016i
\(852\) 0 0
\(853\) −26.1260 + 15.0839i −0.894538 + 0.516462i −0.875424 0.483355i \(-0.839418\pi\)
−0.0191142 + 0.999817i \(0.506085\pi\)
\(854\) 0 0
\(855\) −0.826483 + 1.43151i −0.0282651 + 0.0489566i
\(856\) 0 0
\(857\) 41.5860i 1.42055i 0.703923 + 0.710276i \(0.251430\pi\)
−0.703923 + 0.710276i \(0.748570\pi\)
\(858\) 0 0
\(859\) 6.18916i 0.211171i −0.994410 0.105586i \(-0.966328\pi\)
0.994410 0.105586i \(-0.0336717\pi\)
\(860\) 0 0
\(861\) 12.1074 0.412617
\(862\) 0 0
\(863\) 4.42067 + 7.65683i 0.150481 + 0.260641i 0.931405 0.363986i \(-0.118584\pi\)
−0.780923 + 0.624627i \(0.785251\pi\)
\(864\) 0 0
\(865\) 12.9710i 0.441027i
\(866\) 0 0
\(867\) 40.5347 + 70.2081i 1.37663 + 2.38439i
\(868\) 0 0
\(869\) −29.4040 16.9764i −0.997461 0.575885i
\(870\) 0 0
\(871\) 0.0178510 0.0103063i 0.000604858 0.000349215i
\(872\) 0 0
\(873\) 69.5597 40.1603i 2.35424 1.35922i
\(874\) 0 0
\(875\) −2.88677 1.66668i −0.0975907 0.0563440i
\(876\) 0 0
\(877\) −20.6596 −0.697626 −0.348813 0.937192i \(-0.613415\pi\)
−0.348813 + 0.937192i \(0.613415\pi\)
\(878\) 0 0
\(879\) 12.2236 + 21.1720i 0.412293 + 0.714112i
\(880\) 0 0
\(881\) 22.3841 38.7703i 0.754138 1.30621i −0.191663 0.981461i \(-0.561388\pi\)
0.945802 0.324745i \(-0.105279\pi\)
\(882\) 0 0
\(883\) −22.8082 13.1683i −0.767556 0.443149i 0.0644458 0.997921i \(-0.479472\pi\)
−0.832002 + 0.554772i \(0.812805\pi\)
\(884\) 0 0
\(885\) −0.415433 + 0.719551i −0.0139646 + 0.0241874i
\(886\) 0 0
\(887\) −24.8590 −0.834683 −0.417341 0.908750i \(-0.637038\pi\)
−0.417341 + 0.908750i \(0.637038\pi\)
\(888\) 0 0
\(889\) 1.42553 0.0478106
\(890\) 0 0
\(891\) 52.4783 90.8951i 1.75809 3.04510i
\(892\) 0 0
\(893\) 3.57292 + 2.06283i 0.119563 + 0.0690299i
\(894\) 0 0
\(895\) −5.61896 + 9.73233i −0.187821 + 0.325316i
\(896\) 0 0
\(897\) 0.330668 + 0.572733i 0.0110407 + 0.0191230i
\(898\) 0 0
\(899\) −9.31323 −0.310614
\(900\) 0 0
\(901\) −65.2821 37.6906i −2.17486 1.25566i
\(902\) 0 0
\(903\) −2.76911 + 1.59874i −0.0921501 + 0.0532029i
\(904\) 0 0
\(905\) 3.34762 1.93275i 0.111279 0.0642467i
\(906\) 0 0
\(907\) 22.0998 + 12.7593i 0.733810 + 0.423666i 0.819815 0.572629i \(-0.194076\pi\)
−0.0860041 + 0.996295i \(0.527410\pi\)
\(908\) 0 0
\(909\) 50.9203 + 88.1966i 1.68892 + 2.92530i
\(910\) 0 0
\(911\) 31.0298i 1.02806i 0.857771 + 0.514032i \(0.171849\pi\)
−0.857771 + 0.514032i \(0.828151\pi\)
\(912\) 0 0
\(913\) 16.9327 + 29.3282i 0.560390 + 0.970623i
\(914\) 0 0
\(915\) 28.3370 0.936793
\(916\) 0 0
\(917\) 9.82908i 0.324585i
\(918\) 0 0
\(919\) 4.80421i 0.158476i −0.996856 0.0792381i \(-0.974751\pi\)
0.996856 0.0792381i \(-0.0252487\pi\)
\(920\) 0 0
\(921\) −18.8835 + 32.7072i −0.622233 + 1.07774i
\(922\) 0 0
\(923\) −2.49673 + 1.44149i −0.0821808 + 0.0474471i
\(924\) 0 0
\(925\) 17.7611 21.7170i 0.583980 0.714050i
\(926\) 0 0
\(927\) −52.6364 + 30.3897i −1.72881 + 0.998128i
\(928\) 0 0
\(929\) −6.80623 + 11.7887i −0.223305 + 0.386776i −0.955810 0.293986i \(-0.905018\pi\)
0.732505 + 0.680762i \(0.238351\pi\)
\(930\) 0 0
\(931\) 2.39211i 0.0783984i
\(932\) 0 0
\(933\) 66.5178i 2.17769i
\(934\) 0 0
\(935\) 17.7933 0.581904
\(936\) 0 0
\(937\) 15.8190 + 27.3993i 0.516783 + 0.895095i 0.999810 + 0.0194895i \(0.00620411\pi\)
−0.483027 + 0.875606i \(0.660463\pi\)
\(938\) 0 0
\(939\) 49.0970i 1.60222i
\(940\) 0 0
\(941\) −19.3567 33.5269i −0.631012 1.09294i −0.987345 0.158586i \(-0.949307\pi\)
0.356333 0.934359i \(-0.384027\pi\)
\(942\) 0 0
\(943\) −4.90091 2.82954i −0.159596 0.0921425i
\(944\) 0 0
\(945\) 4.28894 2.47622i 0.139519 0.0805514i
\(946\) 0 0
\(947\) −4.07971 + 2.35542i −0.132573 + 0.0765409i −0.564820 0.825214i \(-0.691054\pi\)
0.432247 + 0.901755i \(0.357721\pi\)
\(948\) 0 0
\(949\) −2.01161 1.16140i −0.0652995 0.0377007i
\(950\) 0 0
\(951\) −30.8265 −0.999618
\(952\) 0 0
\(953\) −29.4117 50.9426i −0.952739 1.65019i −0.739460 0.673200i \(-0.764919\pi\)
−0.213278 0.976992i \(-0.568414\pi\)
\(954\) 0 0
\(955\) −5.94665 + 10.2999i −0.192429 + 0.333297i
\(956\) 0 0
\(957\) −12.2709 7.08463i −0.396663 0.229014i
\(958\) 0 0
\(959\) −1.63444 + 2.83094i −0.0527790 + 0.0914158i
\(960\) 0 0
\(961\) −56.3063 −1.81633
\(962\) 0 0
\(963\) −4.25259 −0.137038
\(964\) 0 0
\(965\) 4.13833 7.16779i 0.133218 0.230739i
\(966\) 0 0
\(967\) −0.198986 0.114885i −0.00639897 0.00369445i 0.496797 0.867867i \(-0.334509\pi\)
−0.503196 + 0.864172i \(0.667843\pi\)
\(968\) 0 0
\(969\) −3.74569 + 6.48773i −0.120329 + 0.208416i
\(970\) 0 0
\(971\) −5.07700 8.79362i −0.162929 0.282201i 0.772989 0.634419i \(-0.218761\pi\)
−0.935918 + 0.352219i \(0.885427\pi\)
\(972\) 0 0
\(973\) 5.17134 0.165785
\(974\) 0 0
\(975\) 3.14340 + 1.81484i 0.100669 + 0.0581214i
\(976\) 0 0
\(977\) −7.19534 + 4.15423i −0.230199 + 0.132906i −0.610664 0.791890i \(-0.709097\pi\)
0.380465 + 0.924795i \(0.375764\pi\)
\(978\) 0 0
\(979\) −27.9313 + 16.1261i −0.892687 + 0.515393i
\(980\) 0 0
\(981\) 74.8909 + 43.2383i 2.39108 + 1.38049i
\(982\) 0 0
\(983\) 9.17432 + 15.8904i 0.292615 + 0.506824i 0.974427 0.224703i \(-0.0721412\pi\)
−0.681812 + 0.731527i \(0.738808\pi\)
\(984\) 0 0
\(985\) 4.12937i 0.131573i
\(986\) 0 0
\(987\) −10.3721 17.9649i −0.330146 0.571830i
\(988\) 0 0
\(989\) 1.49453 0.0475234
\(990\) 0 0
\(991\) 17.3646i 0.551604i −0.961214 0.275802i \(-0.911057\pi\)
0.961214 0.275802i \(-0.0889435\pi\)
\(992\) 0 0
\(993\) 100.659i 3.19432i
\(994\) 0 0
\(995\) 4.37298 7.57422i 0.138633 0.240119i
\(996\) 0 0
\(997\) −19.8363 + 11.4525i −0.628223 + 0.362705i −0.780064 0.625700i \(-0.784813\pi\)
0.151840 + 0.988405i \(0.451480\pi\)
\(998\) 0 0
\(999\) 30.7373 + 81.2485i 0.972486 + 2.57059i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.w.f.529.1 20
4.3 odd 2 296.2.o.a.233.10 20
12.11 even 2 2664.2.cq.c.2305.5 20
37.27 even 6 inner 592.2.w.f.545.1 20
148.27 odd 6 296.2.o.a.249.10 yes 20
444.323 even 6 2664.2.cq.c.1729.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.o.a.233.10 20 4.3 odd 2
296.2.o.a.249.10 yes 20 148.27 odd 6
592.2.w.f.529.1 20 1.1 even 1 trivial
592.2.w.f.545.1 20 37.27 even 6 inner
2664.2.cq.c.1729.5 20 444.323 even 6
2664.2.cq.c.2305.5 20 12.11 even 2