Properties

Label 592.2.be.d.399.1
Level $592$
Weight $2$
Character 592.399
Analytic conductor $4.727$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [592,2,Mod(319,592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("592.319"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(592, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.be (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 14x^{14} + 135x^{12} - 686x^{10} + 2521x^{8} - 4452x^{6} + 5592x^{4} - 2016x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 399.1
Root \(-2.22768 + 1.28615i\) of defining polynomial
Character \(\chi\) \(=\) 592.399
Dual form 592.2.be.d.319.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.28615 + 2.22768i) q^{3} +(-0.133975 - 0.500000i) q^{5} +(-0.256864 - 0.148300i) q^{7} +(-1.80837 - 3.13219i) q^{9} -4.15876 q^{11} +(-0.973243 - 3.63219i) q^{13} +(1.28615 + 0.344623i) q^{15} +(-3.07454 - 0.823821i) q^{17} +(-0.880988 + 0.236060i) q^{19} +(0.660731 - 0.381473i) q^{21} +(1.05009 + 1.05009i) q^{23} +(4.09808 - 2.36603i) q^{25} +1.58646 q^{27} +(-2.32382 - 2.32382i) q^{29} +(4.09452 - 4.09452i) q^{31} +(5.34880 - 9.26439i) q^{33} +(-0.0397369 + 0.148300i) q^{35} +(-4.04778 + 4.54042i) q^{37} +(9.34310 + 2.50348i) q^{39} +(-2.06087 - 1.18985i) q^{41} +(-5.44121 - 5.44121i) q^{43} +(-1.32382 + 1.32382i) q^{45} -5.23149i q^{47} +(-3.45601 - 5.98599i) q^{49} +(5.78953 - 5.78953i) q^{51} +(3.22396 + 5.58407i) q^{53} +(0.557168 + 2.07938i) q^{55} +(0.607218 - 2.26617i) q^{57} +(0.837547 - 3.12577i) q^{59} +(3.80659 - 1.01997i) q^{61} +1.07273i q^{63} +(-1.68571 + 0.973243i) q^{65} +(-0.0605407 + 0.104859i) q^{67} +(-3.68985 + 0.988691i) q^{69} +(-1.18587 - 0.684665i) q^{71} +3.46410i q^{73} +12.1723i q^{75} +(1.06823 + 0.616745i) q^{77} +(-10.4241 + 2.79313i) q^{79} +(3.38469 - 5.86246i) q^{81} +(-10.4366 + 6.02559i) q^{83} +1.64764i q^{85} +(8.16552 - 2.18794i) q^{87} +(-2.86010 + 10.6741i) q^{89} +(-0.288665 + 1.07731i) q^{91} +(3.85510 + 14.3874i) q^{93} +(0.236060 + 0.408868i) q^{95} +(9.25847 - 9.25847i) q^{97} +(7.52059 + 13.0260i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 16 q^{5} - 4 q^{9} - 4 q^{13} + 12 q^{17} + 36 q^{21} + 24 q^{25} - 12 q^{29} + 8 q^{33} + 8 q^{37} - 36 q^{41} + 4 q^{45} + 20 q^{49} + 4 q^{53} + 12 q^{57} - 28 q^{61} - 20 q^{69} + 32 q^{81} + 20 q^{89}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.28615 + 2.22768i −0.742560 + 1.28615i 0.208766 + 0.977966i \(0.433055\pi\)
−0.951326 + 0.308186i \(0.900278\pi\)
\(4\) 0 0
\(5\) −0.133975 0.500000i −0.0599153 0.223607i 0.929476 0.368883i \(-0.120260\pi\)
−0.989391 + 0.145276i \(0.953593\pi\)
\(6\) 0 0
\(7\) −0.256864 0.148300i −0.0970853 0.0560522i 0.450671 0.892690i \(-0.351185\pi\)
−0.547757 + 0.836638i \(0.684518\pi\)
\(8\) 0 0
\(9\) −1.80837 3.13219i −0.602791 1.04406i
\(10\) 0 0
\(11\) −4.15876 −1.25391 −0.626957 0.779054i \(-0.715700\pi\)
−0.626957 + 0.779054i \(0.715700\pi\)
\(12\) 0 0
\(13\) −0.973243 3.63219i −0.269929 1.00739i −0.959164 0.282851i \(-0.908720\pi\)
0.689235 0.724538i \(-0.257947\pi\)
\(14\) 0 0
\(15\) 1.28615 + 0.344623i 0.332083 + 0.0889814i
\(16\) 0 0
\(17\) −3.07454 0.823821i −0.745686 0.199806i −0.134082 0.990970i \(-0.542809\pi\)
−0.611604 + 0.791164i \(0.709475\pi\)
\(18\) 0 0
\(19\) −0.880988 + 0.236060i −0.202112 + 0.0541559i −0.358455 0.933547i \(-0.616696\pi\)
0.156342 + 0.987703i \(0.450030\pi\)
\(20\) 0 0
\(21\) 0.660731 0.381473i 0.144183 0.0832443i
\(22\) 0 0
\(23\) 1.05009 + 1.05009i 0.218959 + 0.218959i 0.808060 0.589101i \(-0.200518\pi\)
−0.589101 + 0.808060i \(0.700518\pi\)
\(24\) 0 0
\(25\) 4.09808 2.36603i 0.819615 0.473205i
\(26\) 0 0
\(27\) 1.58646 0.305314
\(28\) 0 0
\(29\) −2.32382 2.32382i −0.431523 0.431523i 0.457623 0.889146i \(-0.348701\pi\)
−0.889146 + 0.457623i \(0.848701\pi\)
\(30\) 0 0
\(31\) 4.09452 4.09452i 0.735397 0.735397i −0.236287 0.971683i \(-0.575930\pi\)
0.971683 + 0.236287i \(0.0759305\pi\)
\(32\) 0 0
\(33\) 5.34880 9.26439i 0.931106 1.61272i
\(34\) 0 0
\(35\) −0.0397369 + 0.148300i −0.00671677 + 0.0250673i
\(36\) 0 0
\(37\) −4.04778 + 4.54042i −0.665452 + 0.746441i
\(38\) 0 0
\(39\) 9.34310 + 2.50348i 1.49609 + 0.400877i
\(40\) 0 0
\(41\) −2.06087 1.18985i −0.321854 0.185823i 0.330364 0.943853i \(-0.392828\pi\)
−0.652219 + 0.758031i \(0.726162\pi\)
\(42\) 0 0
\(43\) −5.44121 5.44121i −0.829776 0.829776i 0.157709 0.987486i \(-0.449589\pi\)
−0.987486 + 0.157709i \(0.949589\pi\)
\(44\) 0 0
\(45\) −1.32382 + 1.32382i −0.197344 + 0.197344i
\(46\) 0 0
\(47\) 5.23149i 0.763091i −0.924350 0.381546i \(-0.875392\pi\)
0.924350 0.381546i \(-0.124608\pi\)
\(48\) 0 0
\(49\) −3.45601 5.98599i −0.493716 0.855142i
\(50\) 0 0
\(51\) 5.78953 5.78953i 0.810697 0.810697i
\(52\) 0 0
\(53\) 3.22396 + 5.58407i 0.442845 + 0.767031i 0.997899 0.0647836i \(-0.0206357\pi\)
−0.555054 + 0.831814i \(0.687302\pi\)
\(54\) 0 0
\(55\) 0.557168 + 2.07938i 0.0751285 + 0.280384i
\(56\) 0 0
\(57\) 0.607218 2.26617i 0.0804280 0.300161i
\(58\) 0 0
\(59\) 0.837547 3.12577i 0.109039 0.406940i −0.889733 0.456482i \(-0.849109\pi\)
0.998772 + 0.0495415i \(0.0157760\pi\)
\(60\) 0 0
\(61\) 3.80659 1.01997i 0.487384 0.130594i −0.00675473 0.999977i \(-0.502150\pi\)
0.494139 + 0.869383i \(0.335483\pi\)
\(62\) 0 0
\(63\) 1.07273i 0.135151i
\(64\) 0 0
\(65\) −1.68571 + 0.973243i −0.209086 + 0.120716i
\(66\) 0 0
\(67\) −0.0605407 + 0.104859i −0.00739622 + 0.0128106i −0.869700 0.493581i \(-0.835688\pi\)
0.862304 + 0.506392i \(0.169021\pi\)
\(68\) 0 0
\(69\) −3.68985 + 0.988691i −0.444205 + 0.119024i
\(70\) 0 0
\(71\) −1.18587 0.684665i −0.140737 0.0812548i 0.427978 0.903789i \(-0.359226\pi\)
−0.568715 + 0.822534i \(0.692559\pi\)
\(72\) 0 0
\(73\) 3.46410i 0.405442i 0.979236 + 0.202721i \(0.0649785\pi\)
−0.979236 + 0.202721i \(0.935021\pi\)
\(74\) 0 0
\(75\) 12.1723i 1.40553i
\(76\) 0 0
\(77\) 1.06823 + 0.616745i 0.121737 + 0.0702847i
\(78\) 0 0
\(79\) −10.4241 + 2.79313i −1.17280 + 0.314252i −0.792069 0.610432i \(-0.790996\pi\)
−0.380736 + 0.924684i \(0.624329\pi\)
\(80\) 0 0
\(81\) 3.38469 5.86246i 0.376077 0.651385i
\(82\) 0 0
\(83\) −10.4366 + 6.02559i −1.14557 + 0.661395i −0.947804 0.318854i \(-0.896702\pi\)
−0.197766 + 0.980249i \(0.563369\pi\)
\(84\) 0 0
\(85\) 1.64764i 0.178712i
\(86\) 0 0
\(87\) 8.16552 2.18794i 0.875435 0.234572i
\(88\) 0 0
\(89\) −2.86010 + 10.6741i −0.303171 + 1.13145i 0.631338 + 0.775508i \(0.282506\pi\)
−0.934509 + 0.355940i \(0.884161\pi\)
\(90\) 0 0
\(91\) −0.288665 + 1.07731i −0.0302603 + 0.112933i
\(92\) 0 0
\(93\) 3.85510 + 14.3874i 0.399756 + 1.49191i
\(94\) 0 0
\(95\) 0.236060 + 0.408868i 0.0242192 + 0.0419490i
\(96\) 0 0
\(97\) 9.25847 9.25847i 0.940055 0.940055i −0.0582474 0.998302i \(-0.518551\pi\)
0.998302 + 0.0582474i \(0.0185512\pi\)
\(98\) 0 0
\(99\) 7.52059 + 13.0260i 0.755847 + 1.30917i
\(100\) 0 0
\(101\) 15.6096i 1.55322i 0.629985 + 0.776608i \(0.283061\pi\)
−0.629985 + 0.776608i \(0.716939\pi\)
\(102\) 0 0
\(103\) −10.1932 + 10.1932i −1.00436 + 1.00436i −0.00437231 + 0.999990i \(0.501392\pi\)
−0.999990 + 0.00437231i \(0.998608\pi\)
\(104\) 0 0
\(105\) −0.279258 0.279258i −0.0272528 0.0272528i
\(106\) 0 0
\(107\) −15.5794 8.99478i −1.50612 0.869558i −0.999975 0.00710869i \(-0.997737\pi\)
−0.506144 0.862449i \(-0.668929\pi\)
\(108\) 0 0
\(109\) −2.86603 0.767949i −0.274515 0.0735562i 0.118935 0.992902i \(-0.462052\pi\)
−0.393450 + 0.919346i \(0.628719\pi\)
\(110\) 0 0
\(111\) −4.90855 14.8568i −0.465899 1.41015i
\(112\) 0 0
\(113\) −3.13850 + 11.7130i −0.295245 + 1.10187i 0.645777 + 0.763526i \(0.276533\pi\)
−0.941022 + 0.338344i \(0.890133\pi\)
\(114\) 0 0
\(115\) 0.384360 0.665732i 0.0358418 0.0620798i
\(116\) 0 0
\(117\) −9.61675 + 9.61675i −0.889068 + 0.889068i
\(118\) 0 0
\(119\) 0.667565 + 0.667565i 0.0611956 + 0.0611956i
\(120\) 0 0
\(121\) 6.29528 0.572298
\(122\) 0 0
\(123\) 5.30119 3.06065i 0.477992 0.275969i
\(124\) 0 0
\(125\) −3.56218 3.56218i −0.318611 0.318611i
\(126\) 0 0
\(127\) −12.2554 + 7.07569i −1.08750 + 0.627866i −0.932908 0.360114i \(-0.882738\pi\)
−0.154587 + 0.987979i \(0.549405\pi\)
\(128\) 0 0
\(129\) 19.1195 5.12305i 1.68338 0.451060i
\(130\) 0 0
\(131\) 9.49511 + 2.54421i 0.829591 + 0.222288i 0.648535 0.761184i \(-0.275382\pi\)
0.181056 + 0.983473i \(0.442048\pi\)
\(132\) 0 0
\(133\) 0.261302 + 0.0700155i 0.0226577 + 0.00607112i
\(134\) 0 0
\(135\) −0.212545 0.793228i −0.0182929 0.0682702i
\(136\) 0 0
\(137\) −13.3614 −1.14154 −0.570771 0.821109i \(-0.693356\pi\)
−0.570771 + 0.821109i \(0.693356\pi\)
\(138\) 0 0
\(139\) −3.40897 5.90451i −0.289145 0.500814i 0.684461 0.729050i \(-0.260038\pi\)
−0.973606 + 0.228235i \(0.926704\pi\)
\(140\) 0 0
\(141\) 11.6541 + 6.72849i 0.981451 + 0.566641i
\(142\) 0 0
\(143\) 4.04748 + 15.1054i 0.338468 + 1.26318i
\(144\) 0 0
\(145\) −0.850577 + 1.47324i −0.0706366 + 0.122346i
\(146\) 0 0
\(147\) 17.7798 1.46646
\(148\) 0 0
\(149\) −20.4832 −1.67805 −0.839023 0.544096i \(-0.816873\pi\)
−0.839023 + 0.544096i \(0.816873\pi\)
\(150\) 0 0
\(151\) 5.38067 9.31959i 0.437872 0.758417i −0.559653 0.828727i \(-0.689065\pi\)
0.997525 + 0.0703099i \(0.0223988\pi\)
\(152\) 0 0
\(153\) 2.97955 + 11.1198i 0.240882 + 0.898985i
\(154\) 0 0
\(155\) −2.59582 1.49870i −0.208501 0.120378i
\(156\) 0 0
\(157\) 7.84880 + 13.5945i 0.626402 + 1.08496i 0.988268 + 0.152730i \(0.0488065\pi\)
−0.361866 + 0.932230i \(0.617860\pi\)
\(158\) 0 0
\(159\) −16.5860 −1.31536
\(160\) 0 0
\(161\) −0.114001 0.425459i −0.00898458 0.0335309i
\(162\) 0 0
\(163\) 6.34300 + 1.69960i 0.496822 + 0.133123i 0.498525 0.866875i \(-0.333875\pi\)
−0.00170268 + 0.999999i \(0.500542\pi\)
\(164\) 0 0
\(165\) −5.34880 1.43321i −0.416403 0.111575i
\(166\) 0 0
\(167\) 11.9053 3.19001i 0.921259 0.246851i 0.233135 0.972444i \(-0.425101\pi\)
0.688123 + 0.725594i \(0.258435\pi\)
\(168\) 0 0
\(169\) −0.987296 + 0.570016i −0.0759458 + 0.0438473i
\(170\) 0 0
\(171\) 2.33254 + 2.33254i 0.178374 + 0.178374i
\(172\) 0 0
\(173\) 0.642639 0.371028i 0.0488589 0.0282087i −0.475372 0.879785i \(-0.657686\pi\)
0.524230 + 0.851576i \(0.324353\pi\)
\(174\) 0 0
\(175\) −1.40353 −0.106097
\(176\) 0 0
\(177\) 5.88600 + 5.88600i 0.442419 + 0.442419i
\(178\) 0 0
\(179\) 16.8448 16.8448i 1.25904 1.25904i 0.307483 0.951554i \(-0.400513\pi\)
0.951554 0.307483i \(-0.0994866\pi\)
\(180\) 0 0
\(181\) 4.98908 8.64134i 0.370835 0.642305i −0.618859 0.785502i \(-0.712405\pi\)
0.989694 + 0.143197i \(0.0457381\pi\)
\(182\) 0 0
\(183\) −2.62368 + 9.79171i −0.193948 + 0.723824i
\(184\) 0 0
\(185\) 2.81251 + 1.41559i 0.206780 + 0.104076i
\(186\) 0 0
\(187\) 12.7863 + 3.42607i 0.935025 + 0.250539i
\(188\) 0 0
\(189\) −0.407503 0.235272i −0.0296415 0.0171135i
\(190\) 0 0
\(191\) −14.7128 14.7128i −1.06458 1.06458i −0.997765 0.0668134i \(-0.978717\pi\)
−0.0668134 0.997765i \(-0.521283\pi\)
\(192\) 0 0
\(193\) 7.47290 7.47290i 0.537911 0.537911i −0.385004 0.922915i \(-0.625800\pi\)
0.922915 + 0.385004i \(0.125800\pi\)
\(194\) 0 0
\(195\) 5.00695i 0.358555i
\(196\) 0 0
\(197\) 2.30029 + 3.98421i 0.163889 + 0.283863i 0.936260 0.351308i \(-0.114263\pi\)
−0.772371 + 0.635171i \(0.780930\pi\)
\(198\) 0 0
\(199\) 14.1514 14.1514i 1.00316 1.00316i 0.00316927 0.999995i \(-0.498991\pi\)
0.999995 0.00316927i \(-0.00100881\pi\)
\(200\) 0 0
\(201\) −0.155729 0.269730i −0.0109843 0.0190253i
\(202\) 0 0
\(203\) 0.252282 + 0.941528i 0.0177067 + 0.0660823i
\(204\) 0 0
\(205\) −0.318818 + 1.18985i −0.0222672 + 0.0831025i
\(206\) 0 0
\(207\) 1.39013 5.18805i 0.0966209 0.360594i
\(208\) 0 0
\(209\) 3.66382 0.981717i 0.253431 0.0679068i
\(210\) 0 0
\(211\) 23.7513i 1.63511i −0.575851 0.817555i \(-0.695329\pi\)
0.575851 0.817555i \(-0.304671\pi\)
\(212\) 0 0
\(213\) 3.05043 1.76117i 0.209012 0.120673i
\(214\) 0 0
\(215\) −1.99162 + 3.44959i −0.135827 + 0.235260i
\(216\) 0 0
\(217\) −1.65895 + 0.444514i −0.112617 + 0.0301756i
\(218\) 0 0
\(219\) −7.71691 4.45536i −0.521460 0.301065i
\(220\) 0 0
\(221\) 11.9691i 0.805129i
\(222\) 0 0
\(223\) 14.7990i 0.991015i 0.868604 + 0.495508i \(0.165018\pi\)
−0.868604 + 0.495508i \(0.834982\pi\)
\(224\) 0 0
\(225\) −14.8217 8.55731i −0.988113 0.570487i
\(226\) 0 0
\(227\) 7.85181 2.10389i 0.521143 0.139640i 0.0113479 0.999936i \(-0.496388\pi\)
0.509795 + 0.860296i \(0.329721\pi\)
\(228\) 0 0
\(229\) 0.883255 1.52984i 0.0583671 0.101095i −0.835365 0.549695i \(-0.814744\pi\)
0.893733 + 0.448600i \(0.148077\pi\)
\(230\) 0 0
\(231\) −2.74782 + 1.58646i −0.180793 + 0.104381i
\(232\) 0 0
\(233\) 1.60386i 0.105072i −0.998619 0.0525362i \(-0.983270\pi\)
0.998619 0.0525362i \(-0.0167305\pi\)
\(234\) 0 0
\(235\) −2.61574 + 0.700887i −0.170632 + 0.0457208i
\(236\) 0 0
\(237\) 7.18479 26.8140i 0.466702 1.74176i
\(238\) 0 0
\(239\) −4.74131 + 17.6948i −0.306690 + 1.14458i 0.624791 + 0.780792i \(0.285184\pi\)
−0.931481 + 0.363791i \(0.881482\pi\)
\(240\) 0 0
\(241\) 0.0702654 + 0.262234i 0.00452619 + 0.0168920i 0.968152 0.250363i \(-0.0805500\pi\)
−0.963626 + 0.267255i \(0.913883\pi\)
\(242\) 0 0
\(243\) 11.0861 + 19.2018i 0.711177 + 1.23179i
\(244\) 0 0
\(245\) −2.52998 + 2.52998i −0.161634 + 0.161634i
\(246\) 0 0
\(247\) 1.71483 + 2.97017i 0.109112 + 0.188988i
\(248\) 0 0
\(249\) 30.9993i 1.96450i
\(250\) 0 0
\(251\) −7.36587 + 7.36587i −0.464930 + 0.464930i −0.900267 0.435338i \(-0.856629\pi\)
0.435338 + 0.900267i \(0.356629\pi\)
\(252\) 0 0
\(253\) −4.36708 4.36708i −0.274556 0.274556i
\(254\) 0 0
\(255\) −3.67042 2.11912i −0.229850 0.132704i
\(256\) 0 0
\(257\) −23.4198 6.27531i −1.46089 0.391443i −0.561090 0.827755i \(-0.689618\pi\)
−0.899796 + 0.436312i \(0.856284\pi\)
\(258\) 0 0
\(259\) 1.71307 0.565982i 0.106445 0.0351684i
\(260\) 0 0
\(261\) −3.07632 + 11.4810i −0.190420 + 0.710655i
\(262\) 0 0
\(263\) −8.44589 + 14.6287i −0.520796 + 0.902045i 0.478911 + 0.877863i \(0.341032\pi\)
−0.999708 + 0.0241822i \(0.992302\pi\)
\(264\) 0 0
\(265\) 2.36010 2.36010i 0.144980 0.144980i
\(266\) 0 0
\(267\) −20.0999 20.0999i −1.23009 1.23009i
\(268\) 0 0
\(269\) −2.50355 −0.152644 −0.0763220 0.997083i \(-0.524318\pi\)
−0.0763220 + 0.997083i \(0.524318\pi\)
\(270\) 0 0
\(271\) 22.5697 13.0306i 1.37101 0.791554i 0.379956 0.925005i \(-0.375939\pi\)
0.991055 + 0.133451i \(0.0426058\pi\)
\(272\) 0 0
\(273\) −2.02864 2.02864i −0.122779 0.122779i
\(274\) 0 0
\(275\) −17.0429 + 9.83973i −1.02773 + 0.593358i
\(276\) 0 0
\(277\) 17.6416 4.72705i 1.05998 0.284021i 0.313610 0.949552i \(-0.398462\pi\)
0.746370 + 0.665531i \(0.231795\pi\)
\(278\) 0 0
\(279\) −20.2292 5.42040i −1.21109 0.324511i
\(280\) 0 0
\(281\) −29.5227 7.91059i −1.76118 0.471906i −0.774224 0.632912i \(-0.781860\pi\)
−0.986954 + 0.161005i \(0.948526\pi\)
\(282\) 0 0
\(283\) 7.89701 + 29.4720i 0.469429 + 1.75193i 0.641773 + 0.766895i \(0.278199\pi\)
−0.172344 + 0.985037i \(0.555134\pi\)
\(284\) 0 0
\(285\) −1.21444 −0.0719370
\(286\) 0 0
\(287\) 0.352909 + 0.611256i 0.0208316 + 0.0360813i
\(288\) 0 0
\(289\) −5.94831 3.43426i −0.349901 0.202015i
\(290\) 0 0
\(291\) 8.71711 + 32.5327i 0.511006 + 1.90710i
\(292\) 0 0
\(293\) −2.12267 + 3.67657i −0.124007 + 0.214787i −0.921345 0.388747i \(-0.872908\pi\)
0.797337 + 0.603534i \(0.206241\pi\)
\(294\) 0 0
\(295\) −1.67509 −0.0975277
\(296\) 0 0
\(297\) −6.59769 −0.382837
\(298\) 0 0
\(299\) 2.79214 4.83613i 0.161474 0.279681i
\(300\) 0 0
\(301\) 0.590716 + 2.20458i 0.0340483 + 0.127070i
\(302\) 0 0
\(303\) −34.7732 20.0763i −1.99767 1.15336i
\(304\) 0 0
\(305\) −1.01997 1.76665i −0.0584035 0.101158i
\(306\) 0 0
\(307\) −34.4112 −1.96395 −0.981976 0.189008i \(-0.939473\pi\)
−0.981976 + 0.189008i \(0.939473\pi\)
\(308\) 0 0
\(309\) −9.59716 35.8171i −0.545963 2.03756i
\(310\) 0 0
\(311\) 23.9565 + 6.41912i 1.35845 + 0.363995i 0.863246 0.504783i \(-0.168428\pi\)
0.495201 + 0.868778i \(0.335094\pi\)
\(312\) 0 0
\(313\) 10.0995 + 2.70616i 0.570858 + 0.152961i 0.532690 0.846310i \(-0.321181\pi\)
0.0381681 + 0.999271i \(0.487848\pi\)
\(314\) 0 0
\(315\) 0.536364 0.143718i 0.0302207 0.00809762i
\(316\) 0 0
\(317\) 22.7109 13.1121i 1.27557 0.736451i 0.299539 0.954084i \(-0.403167\pi\)
0.976031 + 0.217633i \(0.0698337\pi\)
\(318\) 0 0
\(319\) 9.66421 + 9.66421i 0.541092 + 0.541092i
\(320\) 0 0
\(321\) 40.0750 23.1373i 2.23677 1.29140i
\(322\) 0 0
\(323\) 2.90310 0.161533
\(324\) 0 0
\(325\) −12.5823 12.5823i −0.697940 0.697940i
\(326\) 0 0
\(327\) 5.39689 5.39689i 0.298449 0.298449i
\(328\) 0 0
\(329\) −0.775831 + 1.34378i −0.0427730 + 0.0740850i
\(330\) 0 0
\(331\) 2.78485 10.3932i 0.153069 0.571262i −0.846194 0.532875i \(-0.821112\pi\)
0.999263 0.0383865i \(-0.0122218\pi\)
\(332\) 0 0
\(333\) 21.5414 + 4.46766i 1.18046 + 0.244826i
\(334\) 0 0
\(335\) 0.0605407 + 0.0162218i 0.00330769 + 0.000886293i
\(336\) 0 0
\(337\) 24.2316 + 13.9901i 1.31998 + 0.762091i 0.983725 0.179680i \(-0.0575062\pi\)
0.336255 + 0.941771i \(0.390840\pi\)
\(338\) 0 0
\(339\) −22.0563 22.0563i −1.19793 1.19793i
\(340\) 0 0
\(341\) −17.0281 + 17.0281i −0.922124 + 0.922124i
\(342\) 0 0
\(343\) 4.12632i 0.222800i
\(344\) 0 0
\(345\) 0.988691 + 1.71246i 0.0532293 + 0.0921959i
\(346\) 0 0
\(347\) −1.52962 + 1.52962i −0.0821143 + 0.0821143i −0.746971 0.664857i \(-0.768493\pi\)
0.664857 + 0.746971i \(0.268493\pi\)
\(348\) 0 0
\(349\) −15.9693 27.6597i −0.854819 1.48059i −0.876813 0.480832i \(-0.840335\pi\)
0.0219936 0.999758i \(-0.492999\pi\)
\(350\) 0 0
\(351\) −1.54401 5.76232i −0.0824130 0.307570i
\(352\) 0 0
\(353\) −3.41689 + 12.7520i −0.181863 + 0.678722i 0.813417 + 0.581680i \(0.197605\pi\)
−0.995280 + 0.0970413i \(0.969062\pi\)
\(354\) 0 0
\(355\) −0.183455 + 0.684665i −0.00973680 + 0.0363382i
\(356\) 0 0
\(357\) −2.34571 + 0.628531i −0.124148 + 0.0332654i
\(358\) 0 0
\(359\) 10.5767i 0.558214i −0.960260 0.279107i \(-0.909962\pi\)
0.960260 0.279107i \(-0.0900385\pi\)
\(360\) 0 0
\(361\) −15.7341 + 9.08407i −0.828109 + 0.478109i
\(362\) 0 0
\(363\) −8.09669 + 14.0239i −0.424966 + 0.736063i
\(364\) 0 0
\(365\) 1.73205 0.464102i 0.0906597 0.0242922i
\(366\) 0 0
\(367\) 24.3917 + 14.0825i 1.27324 + 0.735103i 0.975596 0.219575i \(-0.0704671\pi\)
0.297640 + 0.954678i \(0.403800\pi\)
\(368\) 0 0
\(369\) 8.60674i 0.448049i
\(370\) 0 0
\(371\) 1.91246i 0.0992899i
\(372\) 0 0
\(373\) 6.02617 + 3.47921i 0.312023 + 0.180147i 0.647831 0.761784i \(-0.275676\pi\)
−0.335808 + 0.941930i \(0.609009\pi\)
\(374\) 0 0
\(375\) 12.5169 3.35389i 0.646370 0.173194i
\(376\) 0 0
\(377\) −6.17892 + 10.7022i −0.318231 + 0.551192i
\(378\) 0 0
\(379\) 1.08743 0.627828i 0.0558575 0.0322494i −0.471811 0.881700i \(-0.656400\pi\)
0.527669 + 0.849450i \(0.323066\pi\)
\(380\) 0 0
\(381\) 36.4016i 1.86491i
\(382\) 0 0
\(383\) 29.3066 7.85269i 1.49750 0.401254i 0.585238 0.810862i \(-0.301001\pi\)
0.912262 + 0.409608i \(0.134334\pi\)
\(384\) 0 0
\(385\) 0.165256 0.616745i 0.00842225 0.0314323i
\(386\) 0 0
\(387\) −7.20318 + 26.8826i −0.366158 + 1.36652i
\(388\) 0 0
\(389\) −0.663952 2.47790i −0.0336637 0.125635i 0.947049 0.321089i \(-0.104049\pi\)
−0.980713 + 0.195454i \(0.937382\pi\)
\(390\) 0 0
\(391\) −2.36346 4.09364i −0.119525 0.207024i
\(392\) 0 0
\(393\) −17.8798 + 17.8798i −0.901918 + 0.901918i
\(394\) 0 0
\(395\) 2.79313 + 4.83785i 0.140538 + 0.243419i
\(396\) 0 0
\(397\) 27.6714i 1.38879i −0.719595 0.694394i \(-0.755672\pi\)
0.719595 0.694394i \(-0.244328\pi\)
\(398\) 0 0
\(399\) −0.492046 + 0.492046i −0.0246331 + 0.0246331i
\(400\) 0 0
\(401\) −1.74389 1.74389i −0.0870858 0.0870858i 0.662222 0.749308i \(-0.269614\pi\)
−0.749308 + 0.662222i \(0.769614\pi\)
\(402\) 0 0
\(403\) −18.8570 10.8871i −0.939336 0.542326i
\(404\) 0 0
\(405\) −3.38469 0.906926i −0.168187 0.0450655i
\(406\) 0 0
\(407\) 16.8338 18.8825i 0.834419 0.935972i
\(408\) 0 0
\(409\) 2.12805 7.94201i 0.105226 0.392707i −0.893145 0.449769i \(-0.851506\pi\)
0.998371 + 0.0570616i \(0.0181731\pi\)
\(410\) 0 0
\(411\) 17.1848 29.7649i 0.847664 1.46820i
\(412\) 0 0
\(413\) −0.678688 + 0.678688i −0.0333960 + 0.0333960i
\(414\) 0 0
\(415\) 4.41104 + 4.41104i 0.216530 + 0.216530i
\(416\) 0 0
\(417\) 17.5378 0.858831
\(418\) 0 0
\(419\) 19.8643 11.4686i 0.970433 0.560280i 0.0710645 0.997472i \(-0.477360\pi\)
0.899368 + 0.437192i \(0.144027\pi\)
\(420\) 0 0
\(421\) −4.36261 4.36261i −0.212621 0.212621i 0.592759 0.805380i \(-0.298039\pi\)
−0.805380 + 0.592759i \(0.798039\pi\)
\(422\) 0 0
\(423\) −16.3860 + 9.46048i −0.796716 + 0.459984i
\(424\) 0 0
\(425\) −14.5489 + 3.89836i −0.705724 + 0.189098i
\(426\) 0 0
\(427\) −1.12904 0.302525i −0.0546379 0.0146402i
\(428\) 0 0
\(429\) −38.8557 10.4114i −1.87597 0.502665i
\(430\) 0 0
\(431\) 2.77321 + 10.3498i 0.133581 + 0.498530i 1.00000 0.000787611i \(-0.000250705\pi\)
−0.866419 + 0.499318i \(0.833584\pi\)
\(432\) 0 0
\(433\) −6.55679 −0.315099 −0.157550 0.987511i \(-0.550359\pi\)
−0.157550 + 0.987511i \(0.550359\pi\)
\(434\) 0 0
\(435\) −2.18794 3.78963i −0.104904 0.181699i
\(436\) 0 0
\(437\) −1.17300 0.677233i −0.0561123 0.0323965i
\(438\) 0 0
\(439\) 5.37238 + 20.0500i 0.256410 + 0.956934i 0.967301 + 0.253632i \(0.0816252\pi\)
−0.710891 + 0.703302i \(0.751708\pi\)
\(440\) 0 0
\(441\) −12.4995 + 21.6498i −0.595215 + 1.03094i
\(442\) 0 0
\(443\) 8.86545 0.421210 0.210605 0.977571i \(-0.432457\pi\)
0.210605 + 0.977571i \(0.432457\pi\)
\(444\) 0 0
\(445\) 5.72021 0.271164
\(446\) 0 0
\(447\) 26.3444 45.6299i 1.24605 2.15822i
\(448\) 0 0
\(449\) 5.78614 + 21.5942i 0.273065 + 1.01909i 0.957127 + 0.289668i \(0.0935450\pi\)
−0.684062 + 0.729424i \(0.739788\pi\)
\(450\) 0 0
\(451\) 8.57068 + 4.94828i 0.403578 + 0.233006i
\(452\) 0 0
\(453\) 13.8407 + 23.9728i 0.650293 + 1.12634i
\(454\) 0 0
\(455\) 0.577329 0.0270656
\(456\) 0 0
\(457\) 3.18628 + 11.8914i 0.149048 + 0.556255i 0.999542 + 0.0302697i \(0.00963662\pi\)
−0.850494 + 0.525985i \(0.823697\pi\)
\(458\) 0 0
\(459\) −4.87762 1.30696i −0.227668 0.0610035i
\(460\) 0 0
\(461\) 41.1652 + 11.0302i 1.91725 + 0.513726i 0.990385 + 0.138336i \(0.0441753\pi\)
0.926867 + 0.375390i \(0.122491\pi\)
\(462\) 0 0
\(463\) 29.8430 7.99641i 1.38692 0.371625i 0.513292 0.858214i \(-0.328426\pi\)
0.873631 + 0.486589i \(0.161759\pi\)
\(464\) 0 0
\(465\) 6.67723 3.85510i 0.309649 0.178776i
\(466\) 0 0
\(467\) −11.3491 11.3491i −0.525174 0.525174i 0.393955 0.919130i \(-0.371106\pi\)
−0.919130 + 0.393955i \(0.871106\pi\)
\(468\) 0 0
\(469\) 0.0311014 0.0179564i 0.00143613 0.000829149i
\(470\) 0 0
\(471\) −40.3790 −1.86056
\(472\) 0 0
\(473\) 22.6287 + 22.6287i 1.04047 + 1.04047i
\(474\) 0 0
\(475\) −3.05183 + 3.05183i −0.140028 + 0.140028i
\(476\) 0 0
\(477\) 11.6603 20.1962i 0.533886 0.924718i
\(478\) 0 0
\(479\) −3.75547 + 14.0156i −0.171592 + 0.640389i 0.825515 + 0.564379i \(0.190885\pi\)
−0.997107 + 0.0760092i \(0.975782\pi\)
\(480\) 0 0
\(481\) 20.4312 + 10.2834i 0.931581 + 0.468883i
\(482\) 0 0
\(483\) 1.09441 + 0.293246i 0.0497974 + 0.0133432i
\(484\) 0 0
\(485\) −5.86963 3.38883i −0.266526 0.153879i
\(486\) 0 0
\(487\) −2.12282 2.12282i −0.0961942 0.0961942i 0.657372 0.753566i \(-0.271668\pi\)
−0.753566 + 0.657372i \(0.771668\pi\)
\(488\) 0 0
\(489\) −11.9442 + 11.9442i −0.540137 + 0.540137i
\(490\) 0 0
\(491\) 5.86263i 0.264577i −0.991211 0.132288i \(-0.957767\pi\)
0.991211 0.132288i \(-0.0422325\pi\)
\(492\) 0 0
\(493\) 5.23027 + 9.05909i 0.235559 + 0.408001i
\(494\) 0 0
\(495\) 5.50545 5.50545i 0.247452 0.247452i
\(496\) 0 0
\(497\) 0.203072 + 0.351731i 0.00910902 + 0.0157773i
\(498\) 0 0
\(499\) −6.82612 25.4754i −0.305579 1.14044i −0.932446 0.361310i \(-0.882330\pi\)
0.626867 0.779126i \(-0.284337\pi\)
\(500\) 0 0
\(501\) −8.20568 + 30.6240i −0.366603 + 1.36818i
\(502\) 0 0
\(503\) −1.01864 + 3.80162i −0.0454189 + 0.169506i −0.984910 0.173068i \(-0.944632\pi\)
0.939491 + 0.342574i \(0.111299\pi\)
\(504\) 0 0
\(505\) 7.80481 2.09129i 0.347309 0.0930613i
\(506\) 0 0
\(507\) 2.93251i 0.130237i
\(508\) 0 0
\(509\) 14.7791 8.53272i 0.655072 0.378206i −0.135324 0.990801i \(-0.543208\pi\)
0.790397 + 0.612595i \(0.209874\pi\)
\(510\) 0 0
\(511\) 0.513727 0.889802i 0.0227260 0.0393625i
\(512\) 0 0
\(513\) −1.39765 + 0.374499i −0.0617077 + 0.0165345i
\(514\) 0 0
\(515\) 6.46221 + 3.73096i 0.284759 + 0.164406i
\(516\) 0 0
\(517\) 21.7565i 0.956850i
\(518\) 0 0
\(519\) 1.90879i 0.0837867i
\(520\) 0 0
\(521\) −35.2639 20.3596i −1.54494 0.891971i −0.998516 0.0544629i \(-0.982655\pi\)
−0.546424 0.837509i \(-0.684011\pi\)
\(522\) 0 0
\(523\) 8.32393 2.23039i 0.363980 0.0975282i −0.0721936 0.997391i \(-0.523000\pi\)
0.436174 + 0.899862i \(0.356333\pi\)
\(524\) 0 0
\(525\) 1.80515 3.12661i 0.0787833 0.136457i
\(526\) 0 0
\(527\) −15.9619 + 9.21561i −0.695311 + 0.401438i
\(528\) 0 0
\(529\) 20.7946i 0.904114i
\(530\) 0 0
\(531\) −11.3051 + 3.02919i −0.490600 + 0.131456i
\(532\) 0 0
\(533\) −2.31602 + 8.64350i −0.100318 + 0.374392i
\(534\) 0 0
\(535\) −2.41014 + 8.99478i −0.104200 + 0.388878i
\(536\) 0 0
\(537\) 15.8598 + 59.1896i 0.684402 + 2.55422i
\(538\) 0 0
\(539\) 14.3727 + 24.8943i 0.619077 + 1.07227i
\(540\) 0 0
\(541\) −17.0279 + 17.0279i −0.732085 + 0.732085i −0.971032 0.238948i \(-0.923198\pi\)
0.238948 + 0.971032i \(0.423198\pi\)
\(542\) 0 0
\(543\) 12.8334 + 22.2281i 0.550735 + 0.953901i
\(544\) 0 0
\(545\) 1.53590i 0.0657907i
\(546\) 0 0
\(547\) −28.0196 + 28.0196i −1.19803 + 1.19803i −0.223277 + 0.974755i \(0.571676\pi\)
−0.974755 + 0.223277i \(0.928324\pi\)
\(548\) 0 0
\(549\) −10.0785 10.0785i −0.430139 0.430139i
\(550\) 0 0
\(551\) 2.59582 + 1.49870i 0.110586 + 0.0638466i
\(552\) 0 0
\(553\) 3.09180 + 0.828445i 0.131477 + 0.0352291i
\(554\) 0 0
\(555\) −6.77080 + 4.44471i −0.287404 + 0.188668i
\(556\) 0 0
\(557\) 0.681281 2.54258i 0.0288668 0.107732i −0.949989 0.312282i \(-0.898906\pi\)
0.978856 + 0.204550i \(0.0655731\pi\)
\(558\) 0 0
\(559\) −14.4679 + 25.0591i −0.611927 + 1.05989i
\(560\) 0 0
\(561\) −24.0773 + 24.0773i −1.01654 + 1.01654i
\(562\) 0 0
\(563\) −26.9635 26.9635i −1.13637 1.13637i −0.989095 0.147280i \(-0.952948\pi\)
−0.147280 0.989095i \(-0.547052\pi\)
\(564\) 0 0
\(565\) 6.27700 0.264075
\(566\) 0 0
\(567\) −1.73881 + 1.00390i −0.0730232 + 0.0421599i
\(568\) 0 0
\(569\) −13.5552 13.5552i −0.568264 0.568264i 0.363378 0.931642i \(-0.381623\pi\)
−0.931642 + 0.363378i \(0.881623\pi\)
\(570\) 0 0
\(571\) −12.0499 + 6.95700i −0.504272 + 0.291142i −0.730476 0.682938i \(-0.760702\pi\)
0.226204 + 0.974080i \(0.427368\pi\)
\(572\) 0 0
\(573\) 51.6982 13.8525i 2.15972 0.578696i
\(574\) 0 0
\(575\) 6.78790 + 1.81881i 0.283075 + 0.0758497i
\(576\) 0 0
\(577\) −27.3782 7.33596i −1.13977 0.305400i −0.360910 0.932601i \(-0.617534\pi\)
−0.778858 + 0.627201i \(0.784201\pi\)
\(578\) 0 0
\(579\) 7.03595 + 26.2585i 0.292404 + 1.09127i
\(580\) 0 0
\(581\) 3.57439 0.148291
\(582\) 0 0
\(583\) −13.4077 23.2228i −0.555290 0.961790i
\(584\) 0 0
\(585\) 6.09677 + 3.51997i 0.252071 + 0.145533i
\(586\) 0 0
\(587\) 6.20176 + 23.1453i 0.255974 + 0.955308i 0.967546 + 0.252695i \(0.0813168\pi\)
−0.711572 + 0.702613i \(0.752017\pi\)
\(588\) 0 0
\(589\) −2.64067 + 4.57377i −0.108807 + 0.188459i
\(590\) 0 0
\(591\) −11.8341 −0.486788
\(592\) 0 0
\(593\) −30.2397 −1.24179 −0.620897 0.783892i \(-0.713231\pi\)
−0.620897 + 0.783892i \(0.713231\pi\)
\(594\) 0 0
\(595\) 0.244346 0.423219i 0.0100172 0.0173503i
\(596\) 0 0
\(597\) 13.3239 + 49.7255i 0.545312 + 2.03513i
\(598\) 0 0
\(599\) −27.9974 16.1643i −1.14394 0.660456i −0.196540 0.980496i \(-0.562971\pi\)
−0.947404 + 0.320039i \(0.896304\pi\)
\(600\) 0 0
\(601\) 4.56535 + 7.90743i 0.186225 + 0.322551i 0.943989 0.329978i \(-0.107041\pi\)
−0.757764 + 0.652529i \(0.773708\pi\)
\(602\) 0 0
\(603\) 0.437920 0.0178335
\(604\) 0 0
\(605\) −0.843408 3.14764i −0.0342894 0.127970i
\(606\) 0 0
\(607\) 5.63295 + 1.50934i 0.228634 + 0.0612624i 0.371317 0.928506i \(-0.378906\pi\)
−0.142683 + 0.989768i \(0.545573\pi\)
\(608\) 0 0
\(609\) −2.42190 0.648945i −0.0981402 0.0262966i
\(610\) 0 0
\(611\) −19.0018 + 5.09151i −0.768730 + 0.205980i
\(612\) 0 0
\(613\) 13.7965 7.96541i 0.557235 0.321720i −0.194800 0.980843i \(-0.562406\pi\)
0.752035 + 0.659123i \(0.229072\pi\)
\(614\) 0 0
\(615\) −2.24055 2.24055i −0.0903476 0.0903476i
\(616\) 0 0
\(617\) −27.2288 + 15.7205i −1.09619 + 0.632885i −0.935217 0.354074i \(-0.884796\pi\)
−0.160972 + 0.986959i \(0.551463\pi\)
\(618\) 0 0
\(619\) 39.5031 1.58776 0.793881 0.608073i \(-0.208057\pi\)
0.793881 + 0.608073i \(0.208057\pi\)
\(620\) 0 0
\(621\) 1.66592 + 1.66592i 0.0668513 + 0.0668513i
\(622\) 0 0
\(623\) 2.31762 2.31762i 0.0928536 0.0928536i
\(624\) 0 0
\(625\) 10.5263 18.2321i 0.421051 0.729282i
\(626\) 0 0
\(627\) −2.52527 + 9.42445i −0.100850 + 0.376376i
\(628\) 0 0
\(629\) 16.1856 10.6251i 0.645361 0.423649i
\(630\) 0 0
\(631\) −10.5720 2.83276i −0.420864 0.112770i 0.0421703 0.999110i \(-0.486573\pi\)
−0.463035 + 0.886340i \(0.653239\pi\)
\(632\) 0 0
\(633\) 52.9104 + 30.5478i 2.10300 + 1.21417i
\(634\) 0 0
\(635\) 5.17976 + 5.17976i 0.205553 + 0.205553i
\(636\) 0 0
\(637\) −18.3787 + 18.3787i −0.728192 + 0.728192i
\(638\) 0 0
\(639\) 4.95252i 0.195919i
\(640\) 0 0
\(641\) 9.98316 + 17.2913i 0.394311 + 0.682967i 0.993013 0.118005i \(-0.0376500\pi\)
−0.598702 + 0.800972i \(0.704317\pi\)
\(642\) 0 0
\(643\) 7.33949 7.33949i 0.289441 0.289441i −0.547418 0.836859i \(-0.684389\pi\)
0.836859 + 0.547418i \(0.184389\pi\)
\(644\) 0 0
\(645\) −5.12305 8.87339i −0.201720 0.349389i
\(646\) 0 0
\(647\) 4.21236 + 15.7207i 0.165605 + 0.618046i 0.997962 + 0.0638065i \(0.0203240\pi\)
−0.832357 + 0.554239i \(0.813009\pi\)
\(648\) 0 0
\(649\) −3.48316 + 12.9993i −0.136726 + 0.510268i
\(650\) 0 0
\(651\) 1.14343 4.26732i 0.0448144 0.167250i
\(652\) 0 0
\(653\) 13.0872 3.50669i 0.512140 0.137227i 0.00651143 0.999979i \(-0.497927\pi\)
0.505628 + 0.862751i \(0.331261\pi\)
\(654\) 0 0
\(655\) 5.08841i 0.198821i
\(656\) 0 0
\(657\) 10.8502 6.26439i 0.423308 0.244397i
\(658\) 0 0
\(659\) 1.66039 2.87588i 0.0646797 0.112029i −0.831872 0.554967i \(-0.812731\pi\)
0.896552 + 0.442939i \(0.146064\pi\)
\(660\) 0 0
\(661\) 8.81827 2.36285i 0.342991 0.0919042i −0.0832116 0.996532i \(-0.526518\pi\)
0.426203 + 0.904628i \(0.359851\pi\)
\(662\) 0 0
\(663\) −26.6633 15.3941i −1.03552 0.597857i
\(664\) 0 0
\(665\) 0.140031i 0.00543017i
\(666\) 0 0
\(667\) 4.88045i 0.188972i
\(668\) 0 0
\(669\) −32.9675 19.0338i −1.27460 0.735888i
\(670\) 0 0
\(671\) −15.8307 + 4.24182i −0.611137 + 0.163754i
\(672\) 0 0
\(673\) −2.14668 + 3.71816i −0.0827484 + 0.143324i −0.904430 0.426623i \(-0.859703\pi\)
0.821681 + 0.569947i \(0.193036\pi\)
\(674\) 0 0
\(675\) 6.50142 3.75360i 0.250240 0.144476i
\(676\) 0 0
\(677\) 33.2544i 1.27807i −0.769178 0.639035i \(-0.779334\pi\)
0.769178 0.639035i \(-0.220666\pi\)
\(678\) 0 0
\(679\) −3.75120 + 1.00513i −0.143958 + 0.0385734i
\(680\) 0 0
\(681\) −5.41184 + 20.1973i −0.207382 + 0.773960i
\(682\) 0 0
\(683\) 12.4399 46.4263i 0.475999 1.77645i −0.141560 0.989930i \(-0.545212\pi\)
0.617559 0.786524i \(-0.288122\pi\)
\(684\) 0 0
\(685\) 1.79009 + 6.68070i 0.0683958 + 0.255257i
\(686\) 0 0
\(687\) 2.27200 + 3.93522i 0.0866822 + 0.150138i
\(688\) 0 0
\(689\) 17.1447 17.1447i 0.653162 0.653162i
\(690\) 0 0
\(691\) −0.893506 1.54760i −0.0339906 0.0588734i 0.848530 0.529148i \(-0.177488\pi\)
−0.882520 + 0.470274i \(0.844155\pi\)
\(692\) 0 0
\(693\) 4.46122i 0.169468i
\(694\) 0 0
\(695\) −2.49554 + 2.49554i −0.0946613 + 0.0946613i
\(696\) 0 0
\(697\) 5.35602 + 5.35602i 0.202874 + 0.202874i
\(698\) 0 0
\(699\) 3.57289 + 2.06281i 0.135139 + 0.0780226i
\(700\) 0 0
\(701\) 42.8692 + 11.4868i 1.61915 + 0.433849i 0.950751 0.309957i \(-0.100314\pi\)
0.668396 + 0.743806i \(0.266981\pi\)
\(702\) 0 0
\(703\) 2.49424 4.95558i 0.0940719 0.186903i
\(704\) 0 0
\(705\) 1.80289 6.72849i 0.0679009 0.253410i
\(706\) 0 0
\(707\) 2.31491 4.00954i 0.0870612 0.150794i
\(708\) 0 0
\(709\) −25.7523 + 25.7523i −0.967146 + 0.967146i −0.999477 0.0323308i \(-0.989707\pi\)
0.0323308 + 0.999477i \(0.489707\pi\)
\(710\) 0 0
\(711\) 27.5993 + 27.5993i 1.03506 + 1.03506i
\(712\) 0 0
\(713\) 8.59923 0.322044
\(714\) 0 0
\(715\) 7.01045 4.04748i 0.262176 0.151367i
\(716\) 0 0
\(717\) −33.3204 33.3204i −1.24437 1.24437i
\(718\) 0 0
\(719\) 17.8103 10.2828i 0.664213 0.383484i −0.129667 0.991558i \(-0.541391\pi\)
0.793880 + 0.608074i \(0.208058\pi\)
\(720\) 0 0
\(721\) 4.12990 1.10660i 0.153806 0.0412121i
\(722\) 0 0
\(723\) −0.674546 0.180744i −0.0250866 0.00672194i
\(724\) 0 0
\(725\) −15.0214 4.02498i −0.557881 0.149484i
\(726\) 0 0
\(727\) −10.5396 39.3344i −0.390893 1.45883i −0.828664 0.559746i \(-0.810899\pi\)
0.437771 0.899087i \(-0.355768\pi\)
\(728\) 0 0
\(729\) −36.7257 −1.36021
\(730\) 0 0
\(731\) 12.2466 + 21.2118i 0.452958 + 0.784547i
\(732\) 0 0
\(733\) −5.51097 3.18176i −0.203552 0.117521i 0.394759 0.918785i \(-0.370828\pi\)
−0.598311 + 0.801264i \(0.704161\pi\)
\(734\) 0 0
\(735\) −2.38205 8.88992i −0.0878631 0.327910i
\(736\) 0 0
\(737\) 0.251774 0.436085i 0.00927422 0.0160634i
\(738\) 0 0
\(739\) 23.0713 0.848690 0.424345 0.905501i \(-0.360504\pi\)
0.424345 + 0.905501i \(0.360504\pi\)
\(740\) 0 0
\(741\) −8.82213 −0.324089
\(742\) 0 0
\(743\) −14.2247 + 24.6380i −0.521855 + 0.903880i 0.477822 + 0.878457i \(0.341427\pi\)
−0.999677 + 0.0254229i \(0.991907\pi\)
\(744\) 0 0
\(745\) 2.74422 + 10.2416i 0.100541 + 0.375222i
\(746\) 0 0
\(747\) 37.7467 + 21.7930i 1.38108 + 0.797366i
\(748\) 0 0
\(749\) 2.66786 + 4.62086i 0.0974813 + 0.168843i
\(750\) 0 0
\(751\) −10.7992 −0.394068 −0.197034 0.980397i \(-0.563131\pi\)
−0.197034 + 0.980397i \(0.563131\pi\)
\(752\) 0 0
\(753\) −6.93518 25.8824i −0.252732 0.943208i
\(754\) 0 0
\(755\) −5.38067 1.44175i −0.195823 0.0524705i
\(756\) 0 0
\(757\) −41.0579 11.0014i −1.49228 0.399854i −0.581771 0.813353i \(-0.697640\pi\)
−0.910505 + 0.413498i \(0.864307\pi\)
\(758\) 0 0
\(759\) 15.3452 4.11173i 0.556995 0.149246i
\(760\) 0 0
\(761\) 9.19288 5.30751i 0.333242 0.192397i −0.324038 0.946044i \(-0.605041\pi\)
0.657279 + 0.753647i \(0.271707\pi\)
\(762\) 0 0
\(763\) 0.622291 + 0.622291i 0.0225284 + 0.0225284i
\(764\) 0 0
\(765\) 5.16073 2.97955i 0.186587 0.107726i
\(766\) 0 0
\(767\) −12.1685 −0.439380
\(768\) 0 0
\(769\) 10.2432 + 10.2432i 0.369380 + 0.369380i 0.867251 0.497871i \(-0.165885\pi\)
−0.497871 + 0.867251i \(0.665885\pi\)
\(770\) 0 0
\(771\) 44.1008 44.1008i 1.58825 1.58825i
\(772\) 0 0
\(773\) 13.6617 23.6627i 0.491377 0.851090i −0.508574 0.861018i \(-0.669827\pi\)
0.999951 + 0.00992855i \(0.00316041\pi\)
\(774\) 0 0
\(775\) 7.09191 26.4674i 0.254749 0.950736i
\(776\) 0 0
\(777\) −0.942447 + 4.54412i −0.0338101 + 0.163019i
\(778\) 0 0
\(779\) 2.09648 + 0.561750i 0.0751142 + 0.0201268i
\(780\) 0 0
\(781\) 4.93177 + 2.84736i 0.176472 + 0.101886i
\(782\) 0 0
\(783\) −3.68664 3.68664i −0.131750 0.131750i
\(784\) 0 0
\(785\) 5.74572 5.74572i 0.205073 0.205073i
\(786\) 0 0
\(787\) 2.90029i 0.103384i 0.998663 + 0.0516921i \(0.0164614\pi\)
−0.998663 + 0.0516921i \(0.983539\pi\)
\(788\) 0 0
\(789\) −21.7254 37.6295i −0.773445 1.33965i
\(790\) 0 0
\(791\) 2.54321 2.54321i 0.0904263 0.0904263i
\(792\) 0 0
\(793\) −7.40948 12.8336i −0.263118 0.455734i
\(794\) 0 0
\(795\) 2.22211 + 8.29301i 0.0788100 + 0.294123i
\(796\) 0 0
\(797\) 10.3694 38.6991i 0.367302 1.37079i −0.496970 0.867768i \(-0.665554\pi\)
0.864273 0.503024i \(-0.167779\pi\)
\(798\) 0 0
\(799\) −4.30981 + 16.0844i −0.152470 + 0.569026i
\(800\) 0 0
\(801\) 38.6053 10.3443i 1.36405 0.365497i
\(802\) 0 0
\(803\) 14.4064i 0.508390i
\(804\) 0 0
\(805\) −0.197456 + 0.114001i −0.00695942 + 0.00401802i
\(806\) 0 0
\(807\) 3.21994 5.57710i 0.113347 0.196323i
\(808\) 0 0
\(809\) −21.1055 + 5.65519i −0.742029 + 0.198826i −0.609980 0.792417i \(-0.708822\pi\)
−0.132049 + 0.991243i \(0.542156\pi\)
\(810\) 0 0
\(811\) −2.77274 1.60084i −0.0973642 0.0562133i 0.450527 0.892763i \(-0.351236\pi\)
−0.547892 + 0.836549i \(0.684569\pi\)
\(812\) 0 0
\(813\) 67.0374i 2.35111i
\(814\) 0 0
\(815\) 3.39920i 0.119069i
\(816\) 0 0
\(817\) 6.07809 + 3.50919i 0.212645 + 0.122771i
\(818\) 0 0
\(819\) 3.89636 1.04403i 0.136150 0.0364812i
\(820\) 0 0
\(821\) 10.5454 18.2652i 0.368038 0.637460i −0.621221 0.783636i \(-0.713363\pi\)
0.989259 + 0.146175i \(0.0466963\pi\)
\(822\) 0 0
\(823\) 13.8815 8.01450i 0.483880 0.279368i −0.238152 0.971228i \(-0.576542\pi\)
0.722032 + 0.691860i \(0.243208\pi\)
\(824\) 0 0
\(825\) 50.6216i 1.76242i
\(826\) 0 0
\(827\) −31.9156 + 8.55175i −1.10981 + 0.297373i −0.766754 0.641941i \(-0.778129\pi\)
−0.343058 + 0.939314i \(0.611463\pi\)
\(828\) 0 0
\(829\) 7.48085 27.9189i 0.259821 0.969664i −0.705524 0.708686i \(-0.749288\pi\)
0.965345 0.260978i \(-0.0840451\pi\)
\(830\) 0 0
\(831\) −12.1594 + 45.3795i −0.421805 + 1.57420i
\(832\) 0 0
\(833\) 5.69427 + 21.2513i 0.197295 + 0.736314i
\(834\) 0 0
\(835\) −3.19001 5.52526i −0.110395 0.191210i
\(836\) 0 0
\(837\) 6.49577 6.49577i 0.224527 0.224527i
\(838\) 0 0
\(839\) −14.2369 24.6591i −0.491514 0.851327i 0.508438 0.861098i \(-0.330223\pi\)
−0.999952 + 0.00977112i \(0.996890\pi\)
\(840\) 0 0
\(841\) 18.1997i 0.627576i
\(842\) 0 0
\(843\) 55.5930 55.5930i 1.91472 1.91472i
\(844\) 0 0
\(845\) 0.417280 + 0.417280i 0.0143549 + 0.0143549i
\(846\) 0 0
\(847\) −1.61703 0.933592i −0.0555618 0.0320786i
\(848\) 0 0
\(849\) −75.8111 20.3135i −2.60183 0.697158i
\(850\) 0 0
\(851\) −9.01841 + 0.517317i −0.309147 + 0.0177334i
\(852\) 0 0
\(853\) −4.99961 + 18.6588i −0.171184 + 0.638866i 0.825987 + 0.563690i \(0.190619\pi\)
−0.997170 + 0.0751761i \(0.976048\pi\)
\(854\) 0 0
\(855\) 0.853769 1.47877i 0.0291983 0.0505729i
\(856\) 0 0
\(857\) 9.55942 9.55942i 0.326544 0.326544i −0.524727 0.851271i \(-0.675833\pi\)
0.851271 + 0.524727i \(0.175833\pi\)
\(858\) 0 0
\(859\) 17.1237 + 17.1237i 0.584254 + 0.584254i 0.936069 0.351815i \(-0.114435\pi\)
−0.351815 + 0.936069i \(0.614435\pi\)
\(860\) 0 0
\(861\) −1.81558 −0.0618748
\(862\) 0 0
\(863\) −2.25254 + 1.30050i −0.0766773 + 0.0442696i −0.537848 0.843042i \(-0.680763\pi\)
0.461171 + 0.887311i \(0.347429\pi\)
\(864\) 0 0
\(865\) −0.271611 0.271611i −0.00923506 0.00923506i
\(866\) 0 0
\(867\) 15.3009 8.83396i 0.519645 0.300017i
\(868\) 0 0
\(869\) 43.3514 11.6160i 1.47060 0.394045i
\(870\) 0 0
\(871\) 0.439791 + 0.117842i 0.0149017 + 0.00399291i
\(872\) 0 0
\(873\) −45.7421 12.2565i −1.54813 0.414821i
\(874\) 0 0
\(875\) 0.386722 + 1.44327i 0.0130736 + 0.0487913i
\(876\) 0 0
\(877\) −26.8250 −0.905816 −0.452908 0.891557i \(-0.649613\pi\)
−0.452908 + 0.891557i \(0.649613\pi\)
\(878\) 0 0
\(879\) −5.46014 9.45724i −0.184166 0.318985i
\(880\) 0 0
\(881\) 8.84197 + 5.10491i 0.297894 + 0.171989i 0.641496 0.767126i \(-0.278314\pi\)
−0.343603 + 0.939115i \(0.611647\pi\)
\(882\) 0 0
\(883\) −8.91107 33.2566i −0.299881 1.11917i −0.937263 0.348624i \(-0.886649\pi\)
0.637381 0.770549i \(-0.280018\pi\)
\(884\) 0 0
\(885\) 2.15442 3.73157i 0.0724202 0.125435i
\(886\) 0 0
\(887\) −24.5451 −0.824144 −0.412072 0.911151i \(-0.635195\pi\)
−0.412072 + 0.911151i \(0.635195\pi\)
\(888\) 0 0
\(889\) 4.19731 0.140773
\(890\) 0 0
\(891\) −14.0761 + 24.3806i −0.471568 + 0.816780i
\(892\) 0 0
\(893\) 1.23495 + 4.60888i 0.0413259 + 0.154230i
\(894\) 0 0
\(895\) −10.6791 6.16561i −0.356965 0.206094i
\(896\) 0 0
\(897\) 7.18224 + 12.4400i 0.239808 + 0.415359i
\(898\) 0 0
\(899\) −19.0298 −0.634681
\(900\) 0 0
\(901\) −5.31194 19.8244i −0.176966 0.660447i
\(902\) 0 0
\(903\) −5.67085 1.51950i −0.188714 0.0505658i
\(904\) 0 0
\(905\) −4.98908 1.33682i −0.165843 0.0444374i
\(906\) 0 0
\(907\) −46.9660 + 12.5845i −1.55948 + 0.417861i −0.932499 0.361174i \(-0.882376\pi\)
−0.626981 + 0.779035i \(0.715710\pi\)
\(908\) 0 0
\(909\) 48.8923 28.2280i 1.62166 0.936264i
\(910\) 0 0
\(911\) 25.0804 + 25.0804i 0.830951 + 0.830951i 0.987647 0.156696i \(-0.0500843\pi\)
−0.156696 + 0.987647i \(0.550084\pi\)
\(912\) 0 0
\(913\) 43.4035 25.0590i 1.43644 0.829332i
\(914\) 0 0
\(915\) 5.24736 0.173472
\(916\) 0 0
\(917\) −2.06164 2.06164i −0.0680814 0.0680814i
\(918\) 0 0
\(919\) −40.2335 + 40.2335i −1.32718 + 1.32718i −0.419361 + 0.907820i \(0.637746\pi\)
−0.907820 + 0.419361i \(0.862254\pi\)
\(920\) 0 0
\(921\) 44.2580 76.6572i 1.45835 2.52594i
\(922\) 0 0
\(923\) −1.33269 + 4.97367i −0.0438661 + 0.163710i
\(924\) 0 0
\(925\) −5.84537 + 28.1842i −0.192195 + 0.926690i
\(926\) 0 0
\(927\) 50.3600 + 13.4939i 1.65404 + 0.443199i
\(928\) 0 0
\(929\) −4.20850 2.42978i −0.138076 0.0797185i 0.429370 0.903128i \(-0.358735\pi\)
−0.567447 + 0.823410i \(0.692069\pi\)
\(930\) 0 0
\(931\) 4.45776 + 4.45776i 0.146097 + 0.146097i
\(932\) 0 0
\(933\) −45.1114 + 45.1114i −1.47688 + 1.47688i
\(934\) 0 0
\(935\) 6.85214i 0.224089i
\(936\) 0 0
\(937\) −19.0638 33.0194i −0.622786 1.07870i −0.988965 0.148152i \(-0.952668\pi\)
0.366179 0.930544i \(-0.380666\pi\)
\(938\) 0 0
\(939\) −19.0180 + 19.0180i −0.620628 + 0.620628i
\(940\) 0 0
\(941\) 13.5124 + 23.4041i 0.440490 + 0.762952i 0.997726 0.0674027i \(-0.0214712\pi\)
−0.557235 + 0.830355i \(0.688138\pi\)
\(942\) 0 0
\(943\) −0.914659 3.41355i −0.0297854 0.111161i
\(944\) 0 0
\(945\) −0.0630409 + 0.235272i −0.00205072 + 0.00765340i
\(946\) 0 0
\(947\) 3.97061 14.8185i 0.129027 0.481537i −0.870924 0.491418i \(-0.836479\pi\)
0.999951 + 0.00988126i \(0.00314535\pi\)
\(948\) 0 0
\(949\) 12.5823 3.37141i 0.408438 0.109441i
\(950\) 0 0
\(951\) 67.4567i 2.18743i
\(952\) 0 0
\(953\) 6.95313 4.01439i 0.225234 0.130039i −0.383137 0.923691i \(-0.625156\pi\)
0.608371 + 0.793652i \(0.291823\pi\)
\(954\) 0 0
\(955\) −5.38525 + 9.32752i −0.174263 + 0.301832i
\(956\) 0 0
\(957\) −33.9584 + 9.09913i −1.09772 + 0.294133i
\(958\) 0 0
\(959\) 3.43206 + 1.98150i 0.110827 + 0.0639860i
\(960\) 0 0
\(961\) 2.53011i 0.0816165i
\(962\) 0 0
\(963\) 65.0636i 2.09665i
\(964\) 0 0
\(965\) −4.73763 2.73527i −0.152510 0.0880515i
\(966\) 0 0
\(967\) −53.7080 + 14.3910i −1.72713 + 0.462784i −0.979520 0.201349i \(-0.935467\pi\)
−0.747614 + 0.664133i \(0.768801\pi\)
\(968\) 0 0
\(969\) −3.73383 + 6.46719i −0.119948 + 0.207756i
\(970\) 0 0
\(971\) −6.25891 + 3.61358i −0.200858 + 0.115965i −0.597056 0.802200i \(-0.703663\pi\)
0.396198 + 0.918165i \(0.370329\pi\)
\(972\) 0 0
\(973\) 2.02221i 0.0648290i
\(974\) 0 0
\(975\) 44.2120 11.8466i 1.41592 0.379394i
\(976\) 0 0
\(977\) 1.91222 7.13651i 0.0611774 0.228317i −0.928567 0.371164i \(-0.878959\pi\)
0.989745 + 0.142846i \(0.0456255\pi\)
\(978\) 0 0
\(979\) 11.8945 44.3908i 0.380150 1.41874i
\(980\) 0 0
\(981\) 2.77748 + 10.3657i 0.0886780 + 0.330951i
\(982\) 0 0
\(983\) −16.5421 28.6517i −0.527610 0.913847i −0.999482 0.0321798i \(-0.989755\pi\)
0.471872 0.881667i \(-0.343578\pi\)
\(984\) 0 0
\(985\) 1.68393 1.68393i 0.0536543 0.0536543i
\(986\) 0 0
\(987\) −1.99567 3.45661i −0.0635230 0.110025i
\(988\) 0 0
\(989\) 11.4275i 0.363374i
\(990\) 0 0
\(991\) −19.2544 + 19.2544i −0.611635 + 0.611635i −0.943372 0.331737i \(-0.892365\pi\)
0.331737 + 0.943372i \(0.392365\pi\)
\(992\) 0 0
\(993\) 19.5710 + 19.5710i 0.621066 + 0.621066i
\(994\) 0 0
\(995\) −8.97161 5.17976i −0.284419 0.164209i
\(996\) 0 0
\(997\) −28.3214 7.58868i −0.896946 0.240336i −0.219242 0.975671i \(-0.570358\pi\)
−0.677704 + 0.735334i \(0.737025\pi\)
\(998\) 0 0
\(999\) −6.42163 + 7.20318i −0.203171 + 0.227899i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.be.d.399.1 yes 16
4.3 odd 2 inner 592.2.be.d.399.4 yes 16
37.23 odd 12 inner 592.2.be.d.319.4 yes 16
148.23 even 12 inner 592.2.be.d.319.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
592.2.be.d.319.1 16 148.23 even 12 inner
592.2.be.d.319.4 yes 16 37.23 odd 12 inner
592.2.be.d.399.1 yes 16 1.1 even 1 trivial
592.2.be.d.399.4 yes 16 4.3 odd 2 inner