Properties

Label 591.1.d.b.590.5
Level $591$
Weight $1$
Character 591.590
Self dual yes
Analytic conductor $0.295$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -591
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,1,Mod(590,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.590"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 591.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.294947422466\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.72100355223951.1

Embedding invariants

Embedding label 590.5
Root \(-1.68251\) of defining polynomial
Character \(\chi\) \(=\) 591.590

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.91899 q^{2} -1.00000 q^{3} +2.68251 q^{4} +0.284630 q^{5} -1.91899 q^{6} -1.30972 q^{7} +3.22871 q^{8} +1.00000 q^{9} +0.546200 q^{10} -0.830830 q^{11} -2.68251 q^{12} -2.51334 q^{14} -0.284630 q^{15} +3.51334 q^{16} -1.68251 q^{17} +1.91899 q^{18} +0.830830 q^{19} +0.763521 q^{20} +1.30972 q^{21} -1.59435 q^{22} -3.22871 q^{24} -0.918986 q^{25} -1.00000 q^{27} -3.51334 q^{28} -0.546200 q^{30} +3.51334 q^{32} +0.830830 q^{33} -3.22871 q^{34} -0.372786 q^{35} +2.68251 q^{36} +1.68251 q^{37} +1.59435 q^{38} +0.918986 q^{40} +2.51334 q^{42} -1.91899 q^{43} -2.22871 q^{44} +0.284630 q^{45} -3.51334 q^{48} +0.715370 q^{49} -1.76352 q^{50} +1.68251 q^{51} -1.91899 q^{54} -0.236479 q^{55} -4.22871 q^{56} -0.830830 q^{57} -0.763521 q^{60} -0.284630 q^{61} -1.30972 q^{63} +3.22871 q^{64} +1.59435 q^{66} -4.51334 q^{68} -0.715370 q^{70} +1.30972 q^{71} +3.22871 q^{72} +3.22871 q^{74} +0.918986 q^{75} +2.22871 q^{76} +1.08816 q^{77} +1.00000 q^{80} +1.00000 q^{81} +3.51334 q^{84} -0.478891 q^{85} -3.68251 q^{86} -2.68251 q^{88} +1.91899 q^{89} +0.546200 q^{90} +0.236479 q^{95} -3.51334 q^{96} +1.68251 q^{97} +1.37279 q^{98} -0.830830 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 5 q^{3} + 4 q^{4} + q^{5} - q^{6} - q^{7} + 2 q^{8} + 5 q^{9} - 2 q^{10} + q^{11} - 4 q^{12} + 2 q^{14} - q^{15} + 3 q^{16} + q^{17} + q^{18} - q^{19} + 3 q^{20} + q^{21} - 2 q^{22}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/591\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(395\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(3\) −1.00000 −1.00000
\(4\) 2.68251 2.68251
\(5\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(6\) −1.91899 −1.91899
\(7\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(8\) 3.22871 3.22871
\(9\) 1.00000 1.00000
\(10\) 0.546200 0.546200
\(11\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(12\) −2.68251 −2.68251
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) −2.51334 −2.51334
\(15\) −0.284630 −0.284630
\(16\) 3.51334 3.51334
\(17\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(18\) 1.91899 1.91899
\(19\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(20\) 0.763521 0.763521
\(21\) 1.30972 1.30972
\(22\) −1.59435 −1.59435
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) −3.22871 −3.22871
\(25\) −0.918986 −0.918986
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) −3.51334 −3.51334
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −0.546200 −0.546200
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 3.51334 3.51334
\(33\) 0.830830 0.830830
\(34\) −3.22871 −3.22871
\(35\) −0.372786 −0.372786
\(36\) 2.68251 2.68251
\(37\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(38\) 1.59435 1.59435
\(39\) 0 0
\(40\) 0.918986 0.918986
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 2.51334 2.51334
\(43\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(44\) −2.22871 −2.22871
\(45\) 0.284630 0.284630
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −3.51334 −3.51334
\(49\) 0.715370 0.715370
\(50\) −1.76352 −1.76352
\(51\) 1.68251 1.68251
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −1.91899 −1.91899
\(55\) −0.236479 −0.236479
\(56\) −4.22871 −4.22871
\(57\) −0.830830 −0.830830
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) −0.763521 −0.763521
\(61\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(62\) 0 0
\(63\) −1.30972 −1.30972
\(64\) 3.22871 3.22871
\(65\) 0 0
\(66\) 1.59435 1.59435
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −4.51334 −4.51334
\(69\) 0 0
\(70\) −0.715370 −0.715370
\(71\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(72\) 3.22871 3.22871
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 3.22871 3.22871
\(75\) 0.918986 0.918986
\(76\) 2.22871 2.22871
\(77\) 1.08816 1.08816
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 1.00000 1.00000
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 3.51334 3.51334
\(85\) −0.478891 −0.478891
\(86\) −3.68251 −3.68251
\(87\) 0 0
\(88\) −2.68251 −2.68251
\(89\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(90\) 0.546200 0.546200
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.236479 0.236479
\(96\) −3.51334 −3.51334
\(97\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(98\) 1.37279 1.37279
\(99\) −0.830830 −0.830830
\(100\) −2.46519 −2.46519
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 3.22871 3.22871
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0.372786 0.372786
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −2.68251 −2.68251
\(109\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(110\) −0.453800 −0.453800
\(111\) −1.68251 −1.68251
\(112\) −4.60149 −4.60149
\(113\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(114\) −1.59435 −1.59435
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.20362 2.20362
\(120\) −0.918986 −0.918986
\(121\) −0.309721 −0.309721
\(122\) −0.546200 −0.546200
\(123\) 0 0
\(124\) 0 0
\(125\) −0.546200 −0.546200
\(126\) −2.51334 −2.51334
\(127\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(128\) 2.68251 2.68251
\(129\) 1.91899 1.91899
\(130\) 0 0
\(131\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(132\) 2.22871 2.22871
\(133\) −1.08816 −1.08816
\(134\) 0 0
\(135\) −0.284630 −0.284630
\(136\) −5.43232 −5.43232
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −1.00000 −1.00000
\(141\) 0 0
\(142\) 2.51334 2.51334
\(143\) 0 0
\(144\) 3.51334 3.51334
\(145\) 0 0
\(146\) 0 0
\(147\) −0.715370 −0.715370
\(148\) 4.51334 4.51334
\(149\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(150\) 1.76352 1.76352
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 2.68251 2.68251
\(153\) −1.68251 −1.68251
\(154\) 2.08816 2.08816
\(155\) 0 0
\(156\) 0 0
\(157\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 1.00000
\(161\) 0 0
\(162\) 1.91899 1.91899
\(163\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(164\) 0 0
\(165\) 0.236479 0.236479
\(166\) 0 0
\(167\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(168\) 4.22871 4.22871
\(169\) 1.00000 1.00000
\(170\) −0.918986 −0.918986
\(171\) 0.830830 0.830830
\(172\) −5.14769 −5.14769
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 1.20362 1.20362
\(176\) −2.91899 −2.91899
\(177\) 0 0
\(178\) 3.68251 3.68251
\(179\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(180\) 0.763521 0.763521
\(181\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(182\) 0 0
\(183\) 0.284630 0.284630
\(184\) 0 0
\(185\) 0.478891 0.478891
\(186\) 0 0
\(187\) 1.39788 1.39788
\(188\) 0 0
\(189\) 1.30972 1.30972
\(190\) 0.453800 0.453800
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) −3.22871 −3.22871
\(193\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(194\) 3.22871 3.22871
\(195\) 0 0
\(196\) 1.91899 1.91899
\(197\) −1.00000 −1.00000
\(198\) −1.59435 −1.59435
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −2.96714 −2.96714
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 4.51334 4.51334
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.690279 −0.690279
\(210\) 0.715370 0.715370
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) −1.30972 −1.30972
\(214\) 0 0
\(215\) −0.546200 −0.546200
\(216\) −3.22871 −3.22871
\(217\) 0 0
\(218\) −3.68251 −3.68251
\(219\) 0 0
\(220\) −0.634356 −0.634356
\(221\) 0 0
\(222\) −3.22871 −3.22871
\(223\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(224\) −4.60149 −4.60149
\(225\) −0.918986 −0.918986
\(226\) 2.51334 2.51334
\(227\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(228\) −2.22871 −2.22871
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) −1.08816 −1.08816
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 4.22871 4.22871
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −1.00000 −1.00000
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −0.594351 −0.594351
\(243\) −1.00000 −1.00000
\(244\) −0.763521 −0.763521
\(245\) 0.203616 0.203616
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −1.04815 −1.04815
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −3.51334 −3.51334
\(253\) 0 0
\(254\) 1.59435 1.59435
\(255\) 0.478891 0.478891
\(256\) 1.91899 1.91899
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 3.68251 3.68251
\(259\) −2.20362 −2.20362
\(260\) 0 0
\(261\) 0 0
\(262\) 0.546200 0.546200
\(263\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(264\) 2.68251 2.68251
\(265\) 0 0
\(266\) −2.08816 −2.08816
\(267\) −1.91899 −1.91899
\(268\) 0 0
\(269\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(270\) −0.546200 −0.546200
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −5.91121 −5.91121
\(273\) 0 0
\(274\) 0 0
\(275\) 0.763521 0.763521
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −1.20362 −1.20362
\(281\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 3.51334 3.51334
\(285\) −0.236479 −0.236479
\(286\) 0 0
\(287\) 0 0
\(288\) 3.51334 3.51334
\(289\) 1.83083 1.83083
\(290\) 0 0
\(291\) −1.68251 −1.68251
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −1.37279 −1.37279
\(295\) 0 0
\(296\) 5.43232 5.43232
\(297\) 0.830830 0.830830
\(298\) −3.22871 −3.22871
\(299\) 0 0
\(300\) 2.46519 2.46519
\(301\) 2.51334 2.51334
\(302\) 0 0
\(303\) 0 0
\(304\) 2.91899 2.91899
\(305\) −0.0810141 −0.0810141
\(306\) −3.22871 −3.22871
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 2.91899 2.91899
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(314\) −0.546200 −0.546200
\(315\) −0.372786 −0.372786
\(316\) 0 0
\(317\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.918986 0.918986
\(321\) 0 0
\(322\) 0 0
\(323\) −1.39788 −1.39788
\(324\) 2.68251 2.68251
\(325\) 0 0
\(326\) −0.546200 −0.546200
\(327\) 1.91899 1.91899
\(328\) 0 0
\(329\) 0 0
\(330\) 0.453800 0.453800
\(331\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(332\) 0 0
\(333\) 1.68251 1.68251
\(334\) 2.51334 2.51334
\(335\) 0 0
\(336\) 4.60149 4.60149
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 1.91899 1.91899
\(339\) −1.30972 −1.30972
\(340\) −1.28463 −1.28463
\(341\) 0 0
\(342\) 1.59435 1.59435
\(343\) 0.372786 0.372786
\(344\) −6.19584 −6.19584
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 2.30972 2.30972
\(351\) 0 0
\(352\) −2.91899 −2.91899
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0.372786 0.372786
\(356\) 5.14769 5.14769
\(357\) −2.20362 −2.20362
\(358\) 3.68251 3.68251
\(359\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(360\) 0.918986 0.918986
\(361\) −0.309721 −0.309721
\(362\) −2.51334 −2.51334
\(363\) 0.309721 0.309721
\(364\) 0 0
\(365\) 0 0
\(366\) 0.546200 0.546200
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.918986 0.918986
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 2.68251 2.68251
\(375\) 0.546200 0.546200
\(376\) 0 0
\(377\) 0 0
\(378\) 2.51334 2.51334
\(379\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(380\) 0.634356 0.634356
\(381\) −0.830830 −0.830830
\(382\) 0 0
\(383\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(384\) −2.68251 −2.68251
\(385\) 0.309721 0.309721
\(386\) −0.546200 −0.546200
\(387\) −1.91899 −1.91899
\(388\) 4.51334 4.51334
\(389\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 2.30972 2.30972
\(393\) −0.284630 −0.284630
\(394\) −1.91899 −1.91899
\(395\) 0 0
\(396\) −2.22871 −2.22871
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 1.08816 1.08816
\(400\) −3.22871 −3.22871
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0.284630 0.284630
\(406\) 0 0
\(407\) −1.39788 −1.39788
\(408\) 5.43232 5.43232
\(409\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −1.32463 −1.32463
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 1.00000 1.00000
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.54620 1.54620
\(426\) −2.51334 −2.51334
\(427\) 0.372786 0.372786
\(428\) 0 0
\(429\) 0 0
\(430\) −1.04815 −1.04815
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −3.51334 −3.51334
\(433\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.14769 −5.14769
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) −0.763521 −0.763521
\(441\) 0.715370 0.715370
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −4.51334 −4.51334
\(445\) 0.546200 0.546200
\(446\) −3.68251 −3.68251
\(447\) 1.68251 1.68251
\(448\) −4.22871 −4.22871
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −1.76352 −1.76352
\(451\) 0 0
\(452\) 3.51334 3.51334
\(453\) 0 0
\(454\) 3.68251 3.68251
\(455\) 0 0
\(456\) −2.68251 −2.68251
\(457\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(458\) 0 0
\(459\) 1.68251 1.68251
\(460\) 0 0
\(461\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(462\) −2.08816 −2.08816
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.284630 0.284630
\(472\) 0 0
\(473\) 1.59435 1.59435
\(474\) 0 0
\(475\) −0.763521 −0.763521
\(476\) 5.91121 5.91121
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −0.830830 −0.830830
\(485\) 0.478891 0.478891
\(486\) −1.91899 −1.91899
\(487\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(488\) −0.918986 −0.918986
\(489\) 0.284630 0.284630
\(490\) 0.390736 0.390736
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −0.236479 −0.236479
\(496\) 0 0
\(497\) −1.71537 −1.71537
\(498\) 0 0
\(499\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(500\) −1.46519 −1.46519
\(501\) −1.30972 −1.30972
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −4.22871 −4.22871
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −1.00000
\(508\) 2.22871 2.22871
\(509\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(510\) 0.918986 0.918986
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) −0.830830 −0.830830
\(514\) 0 0
\(515\) 0 0
\(516\) 5.14769 5.14769
\(517\) 0 0
\(518\) −4.22871 −4.22871
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0.763521 0.763521
\(525\) −1.20362 −1.20362
\(526\) −1.59435 −1.59435
\(527\) 0 0
\(528\) 2.91899 2.91899
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −2.91899 −2.91899
\(533\) 0 0
\(534\) −3.68251 −3.68251
\(535\) 0 0
\(536\) 0 0
\(537\) −1.91899 −1.91899
\(538\) −3.22871 −3.22871
\(539\) −0.594351 −0.594351
\(540\) −0.763521 −0.763521
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 1.30972 1.30972
\(544\) −5.91121 −5.91121
\(545\) −0.546200 −0.546200
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −0.284630 −0.284630
\(550\) 1.46519 1.46519
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.478891 −0.478891
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.30972 −1.30972
\(561\) −1.39788 −1.39788
\(562\) −1.59435 −1.59435
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0.372786 0.372786
\(566\) 0 0
\(567\) −1.30972 −1.30972
\(568\) 4.22871 4.22871
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −0.453800 −0.453800
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 3.22871 3.22871
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 3.51334 3.51334
\(579\) 0.284630 0.284630
\(580\) 0 0
\(581\) 0 0
\(582\) −3.22871 −3.22871
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.91899 −1.91899
\(589\) 0 0
\(590\) 0 0
\(591\) 1.00000 1.00000
\(592\) 5.91121 5.91121
\(593\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(594\) 1.59435 1.59435
\(595\) 0.627214 0.627214
\(596\) −4.51334 −4.51334
\(597\) 0 0
\(598\) 0 0
\(599\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(600\) 2.96714 2.96714
\(601\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(602\) 4.82306 4.82306
\(603\) 0 0
\(604\) 0 0
\(605\) −0.0881559 −0.0881559
\(606\) 0 0
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) 2.91899 2.91899
\(609\) 0 0
\(610\) −0.155465 −0.155465
\(611\) 0 0
\(612\) −4.51334 −4.51334
\(613\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 3.51334 3.51334
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2.51334 −2.51334
\(624\) 0 0
\(625\) 0.763521 0.763521
\(626\) −2.51334 −2.51334
\(627\) 0.690279 0.690279
\(628\) −0.763521 −0.763521
\(629\) −2.83083 −2.83083
\(630\) −0.715370 −0.715370
\(631\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −3.22871 −3.22871
\(635\) 0.236479 0.236479
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.30972 1.30972
\(640\) 0.763521 0.763521
\(641\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0.546200 0.546200
\(646\) −2.68251 −2.68251
\(647\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(648\) 3.22871 3.22871
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.763521 −0.763521
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 3.68251 3.68251
\(655\) 0.0810141 0.0810141
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(660\) 0.634356 0.634356
\(661\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(662\) −0.546200 −0.546200
\(663\) 0 0
\(664\) 0 0
\(665\) −0.309721 −0.309721
\(666\) 3.22871 3.22871
\(667\) 0 0
\(668\) 3.51334 3.51334
\(669\) 1.91899 1.91899
\(670\) 0 0
\(671\) 0.236479 0.236479
\(672\) 4.60149 4.60149
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0.918986 0.918986
\(676\) 2.68251 2.68251
\(677\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(678\) −2.51334 −2.51334
\(679\) −2.20362 −2.20362
\(680\) −1.54620 −1.54620
\(681\) −1.91899 −1.91899
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 2.22871 2.22871
\(685\) 0 0
\(686\) 0.715370 0.715370
\(687\) 0 0
\(688\) −6.74204 −6.74204
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 1.08816 1.08816
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 3.22871 3.22871
\(701\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(702\) 0 0
\(703\) 1.39788 1.39788
\(704\) −2.68251 −2.68251
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0.715370 0.715370
\(711\) 0 0
\(712\) 6.19584 6.19584
\(713\) 0 0
\(714\) −4.22871 −4.22871
\(715\) 0 0
\(716\) 5.14769 5.14769
\(717\) 0 0
\(718\) −3.22871 −3.22871
\(719\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(720\) 1.00000 1.00000
\(721\) 0 0
\(722\) −0.594351 −0.594351
\(723\) 0 0
\(724\) −3.51334 −3.51334
\(725\) 0 0
\(726\) 0.594351 0.594351
\(727\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 3.22871 3.22871
\(732\) 0.763521 0.763521
\(733\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(734\) 0 0
\(735\) −0.203616 −0.203616
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(740\) 1.28463 1.28463
\(741\) 0 0
\(742\) 0 0
\(743\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(744\) 0 0
\(745\) −0.478891 −0.478891
\(746\) 0 0
\(747\) 0 0
\(748\) 3.74982 3.74982
\(749\) 0 0
\(750\) 1.04815 1.04815
\(751\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 3.51334 3.51334
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −2.51334 −2.51334
\(759\) 0 0
\(760\) 0.763521 0.763521
\(761\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(762\) −1.59435 −1.59435
\(763\) 2.51334 2.51334
\(764\) 0 0
\(765\) −0.478891 −0.478891
\(766\) −1.59435 −1.59435
\(767\) 0 0
\(768\) −1.91899 −1.91899
\(769\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(770\) 0.594351 0.594351
\(771\) 0 0
\(772\) −0.763521 −0.763521
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −3.68251 −3.68251
\(775\) 0 0
\(776\) 5.43232 5.43232
\(777\) 2.20362 2.20362
\(778\) −3.83797 −3.83797
\(779\) 0 0
\(780\) 0 0
\(781\) −1.08816 −1.08816
\(782\) 0 0
\(783\) 0 0
\(784\) 2.51334 2.51334
\(785\) −0.0810141 −0.0810141
\(786\) −0.546200 −0.546200
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) −2.68251 −2.68251
\(789\) 0.830830 0.830830
\(790\) 0 0
\(791\) −1.71537 −1.71537
\(792\) −2.68251 −2.68251
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 2.08816 2.08816
\(799\) 0 0
\(800\) −3.22871 −3.22871
\(801\) 1.91899 1.91899
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.68251 1.68251
\(808\) 0 0
\(809\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(810\) 0.546200 0.546200
\(811\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −2.68251 −2.68251
\(815\) −0.0810141 −0.0810141
\(816\) 5.91121 5.91121
\(817\) −1.59435 −1.59435
\(818\) 3.22871 3.22871
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) −0.763521 −0.763521
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.20362 −1.20362
\(834\) 0 0
\(835\) 0.372786 0.372786
\(836\) −1.85168 −1.85168
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 1.20362 1.20362
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0.830830 0.830830
\(844\) 0 0
\(845\) 0.284630 0.284630
\(846\) 0 0
\(847\) 0.405649 0.405649
\(848\) 0 0
\(849\) 0 0
\(850\) 2.96714 2.96714
\(851\) 0 0
\(852\) −3.51334 −3.51334
\(853\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(854\) 0.715370 0.715370
\(855\) 0.236479 0.236479
\(856\) 0 0
\(857\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) −1.46519 −1.46519
\(861\) 0 0
\(862\) 0 0
\(863\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(864\) −3.51334 −3.51334
\(865\) 0 0
\(866\) −3.68251 −3.68251
\(867\) −1.83083 −1.83083
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −6.19584 −6.19584
\(873\) 1.68251 1.68251
\(874\) 0 0
\(875\) 0.715370 0.715370
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −0.830830 −0.830830
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.37279 1.37279
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(888\) −5.43232 −5.43232
\(889\) −1.08816 −1.08816
\(890\) 1.04815 1.04815
\(891\) −0.830830 −0.830830
\(892\) −5.14769 −5.14769
\(893\) 0 0
\(894\) 3.22871 3.22871
\(895\) 0.546200 0.546200
\(896\) −3.51334 −3.51334
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −2.46519 −2.46519
\(901\) 0 0
\(902\) 0 0
\(903\) −2.51334 −2.51334
\(904\) 4.22871 4.22871
\(905\) −0.372786 −0.372786
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 5.14769 5.14769
\(909\) 0 0
\(910\) 0 0
\(911\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(912\) −2.91899 −2.91899
\(913\) 0 0
\(914\) 1.59435 1.59435
\(915\) 0.0810141 0.0810141
\(916\) 0 0
\(917\) −0.372786 −0.372786
\(918\) 3.22871 3.22871
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 2.51334 2.51334
\(923\) 0 0
\(924\) −2.91899 −2.91899
\(925\) −1.54620 −1.54620
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(930\) 0 0
\(931\) 0.594351 0.594351
\(932\) 0 0
\(933\) 0 0
\(934\) 2.51334 2.51334
\(935\) 0.397877 0.397877
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 1.30972 1.30972
\(940\) 0 0
\(941\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(942\) 0.546200 0.546200
\(943\) 0 0
\(944\) 0 0
\(945\) 0.372786 0.372786
\(946\) 3.05954 3.05954
\(947\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −1.46519 −1.46519
\(951\) 1.68251 1.68251
\(952\) 7.11483 7.11483
\(953\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.918986 −0.918986
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.0810141 −0.0810141
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1.00000 −1.00000
\(969\) 1.39788 1.39788
\(970\) 0.918986 0.918986
\(971\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(972\) −2.68251 −2.68251
\(973\) 0 0
\(974\) 1.59435 1.59435
\(975\) 0 0
\(976\) −1.00000 −1.00000
\(977\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(978\) 0.546200 0.546200
\(979\) −1.59435 −1.59435
\(980\) 0.546200 0.546200
\(981\) −1.91899 −1.91899
\(982\) 0 0
\(983\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(984\) 0 0
\(985\) −0.284630 −0.284630
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.453800 −0.453800
\(991\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 0.284630 0.284630
\(994\) −3.29177 −3.29177
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 1.59435 1.59435
\(999\) −1.68251 −1.68251
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 591.1.d.b.590.5 yes 5
3.2 odd 2 591.1.d.a.590.1 5
197.196 even 2 591.1.d.a.590.1 5
591.590 odd 2 CM 591.1.d.b.590.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
591.1.d.a.590.1 5 3.2 odd 2
591.1.d.a.590.1 5 197.196 even 2
591.1.d.b.590.5 yes 5 1.1 even 1 trivial
591.1.d.b.590.5 yes 5 591.590 odd 2 CM