Properties

Label 591.1.d.b.590.4
Level $591$
Weight $1$
Character 591.590
Self dual yes
Analytic conductor $0.295$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -591
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,1,Mod(590,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.590"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 591.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.294947422466\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.72100355223951.1

Embedding invariants

Embedding label 590.4
Root \(0.284630\) of defining polynomial
Character \(\chi\) \(=\) 591.590

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30972 q^{2} -1.00000 q^{3} +0.715370 q^{4} -0.830830 q^{5} -1.30972 q^{6} +1.68251 q^{7} -0.372786 q^{8} +1.00000 q^{9} -1.08816 q^{10} +1.91899 q^{11} -0.715370 q^{12} +2.20362 q^{14} +0.830830 q^{15} -1.20362 q^{16} +0.284630 q^{17} +1.30972 q^{18} -1.91899 q^{19} -0.594351 q^{20} -1.68251 q^{21} +2.51334 q^{22} +0.372786 q^{24} -0.309721 q^{25} -1.00000 q^{27} +1.20362 q^{28} +1.08816 q^{30} -1.20362 q^{32} -1.91899 q^{33} +0.372786 q^{34} -1.39788 q^{35} +0.715370 q^{36} -0.284630 q^{37} -2.51334 q^{38} +0.309721 q^{40} -2.20362 q^{42} -1.30972 q^{43} +1.37279 q^{44} -0.830830 q^{45} +1.20362 q^{48} +1.83083 q^{49} -0.405649 q^{50} -0.284630 q^{51} -1.30972 q^{54} -1.59435 q^{55} -0.627214 q^{56} +1.91899 q^{57} +0.594351 q^{60} +0.830830 q^{61} +1.68251 q^{63} -0.372786 q^{64} -2.51334 q^{66} +0.203616 q^{68} -1.83083 q^{70} -1.68251 q^{71} -0.372786 q^{72} -0.372786 q^{74} +0.309721 q^{75} -1.37279 q^{76} +3.22871 q^{77} +1.00000 q^{80} +1.00000 q^{81} -1.20362 q^{84} -0.236479 q^{85} -1.71537 q^{86} -0.715370 q^{88} +1.30972 q^{89} -1.08816 q^{90} +1.59435 q^{95} +1.20362 q^{96} -0.284630 q^{97} +2.39788 q^{98} +1.91899 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 5 q^{3} + 4 q^{4} + q^{5} - q^{6} - q^{7} + 2 q^{8} + 5 q^{9} - 2 q^{10} + q^{11} - 4 q^{12} + 2 q^{14} - q^{15} + 3 q^{16} + q^{17} + q^{18} - q^{19} + 3 q^{20} + q^{21} - 2 q^{22}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/591\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(395\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(3\) −1.00000 −1.00000
\(4\) 0.715370 0.715370
\(5\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(6\) −1.30972 −1.30972
\(7\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(8\) −0.372786 −0.372786
\(9\) 1.00000 1.00000
\(10\) −1.08816 −1.08816
\(11\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(12\) −0.715370 −0.715370
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 2.20362 2.20362
\(15\) 0.830830 0.830830
\(16\) −1.20362 −1.20362
\(17\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(18\) 1.30972 1.30972
\(19\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(20\) −0.594351 −0.594351
\(21\) −1.68251 −1.68251
\(22\) 2.51334 2.51334
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0.372786 0.372786
\(25\) −0.309721 −0.309721
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) 1.20362 1.20362
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 1.08816 1.08816
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.20362 −1.20362
\(33\) −1.91899 −1.91899
\(34\) 0.372786 0.372786
\(35\) −1.39788 −1.39788
\(36\) 0.715370 0.715370
\(37\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(38\) −2.51334 −2.51334
\(39\) 0 0
\(40\) 0.309721 0.309721
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −2.20362 −2.20362
\(43\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(44\) 1.37279 1.37279
\(45\) −0.830830 −0.830830
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 1.20362 1.20362
\(49\) 1.83083 1.83083
\(50\) −0.405649 −0.405649
\(51\) −0.284630 −0.284630
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −1.30972 −1.30972
\(55\) −1.59435 −1.59435
\(56\) −0.627214 −0.627214
\(57\) 1.91899 1.91899
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0.594351 0.594351
\(61\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(62\) 0 0
\(63\) 1.68251 1.68251
\(64\) −0.372786 −0.372786
\(65\) 0 0
\(66\) −2.51334 −2.51334
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0.203616 0.203616
\(69\) 0 0
\(70\) −1.83083 −1.83083
\(71\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(72\) −0.372786 −0.372786
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −0.372786 −0.372786
\(75\) 0.309721 0.309721
\(76\) −1.37279 −1.37279
\(77\) 3.22871 3.22871
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 1.00000 1.00000
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) −1.20362 −1.20362
\(85\) −0.236479 −0.236479
\(86\) −1.71537 −1.71537
\(87\) 0 0
\(88\) −0.715370 −0.715370
\(89\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(90\) −1.08816 −1.08816
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.59435 1.59435
\(96\) 1.20362 1.20362
\(97\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(98\) 2.39788 2.39788
\(99\) 1.91899 1.91899
\(100\) −0.221566 −0.221566
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −0.372786 −0.372786
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 1.39788 1.39788
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) −0.715370 −0.715370
\(109\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(110\) −2.08816 −2.08816
\(111\) 0.284630 0.284630
\(112\) −2.02509 −2.02509
\(113\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(114\) 2.51334 2.51334
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.478891 0.478891
\(120\) −0.309721 −0.309721
\(121\) 2.68251 2.68251
\(122\) 1.08816 1.08816
\(123\) 0 0
\(124\) 0 0
\(125\) 1.08816 1.08816
\(126\) 2.20362 2.20362
\(127\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(128\) 0.715370 0.715370
\(129\) 1.30972 1.30972
\(130\) 0 0
\(131\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(132\) −1.37279 −1.37279
\(133\) −3.22871 −3.22871
\(134\) 0 0
\(135\) 0.830830 0.830830
\(136\) −0.106106 −0.106106
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −1.00000 −1.00000
\(141\) 0 0
\(142\) −2.20362 −2.20362
\(143\) 0 0
\(144\) −1.20362 −1.20362
\(145\) 0 0
\(146\) 0 0
\(147\) −1.83083 −1.83083
\(148\) −0.203616 −0.203616
\(149\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(150\) 0.405649 0.405649
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0.715370 0.715370
\(153\) 0.284630 0.284630
\(154\) 4.22871 4.22871
\(155\) 0 0
\(156\) 0 0
\(157\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 1.00000
\(161\) 0 0
\(162\) 1.30972 1.30972
\(163\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(164\) 0 0
\(165\) 1.59435 1.59435
\(166\) 0 0
\(167\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(168\) 0.627214 0.627214
\(169\) 1.00000 1.00000
\(170\) −0.309721 −0.309721
\(171\) −1.91899 −1.91899
\(172\) −0.936936 −0.936936
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) −0.521109 −0.521109
\(176\) −2.30972 −2.30972
\(177\) 0 0
\(178\) 1.71537 1.71537
\(179\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(180\) −0.594351 −0.594351
\(181\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(182\) 0 0
\(183\) −0.830830 −0.830830
\(184\) 0 0
\(185\) 0.236479 0.236479
\(186\) 0 0
\(187\) 0.546200 0.546200
\(188\) 0 0
\(189\) −1.68251 −1.68251
\(190\) 2.08816 2.08816
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.372786 0.372786
\(193\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(194\) −0.372786 −0.372786
\(195\) 0 0
\(196\) 1.30972 1.30972
\(197\) −1.00000 −1.00000
\(198\) 2.51334 2.51334
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0.115460 0.115460
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.203616 −0.203616
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.68251 −3.68251
\(210\) 1.83083 1.83083
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 1.68251 1.68251
\(214\) 0 0
\(215\) 1.08816 1.08816
\(216\) 0.372786 0.372786
\(217\) 0 0
\(218\) −1.71537 −1.71537
\(219\) 0 0
\(220\) −1.14055 −1.14055
\(221\) 0 0
\(222\) 0.372786 0.372786
\(223\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(224\) −2.02509 −2.02509
\(225\) −0.309721 −0.309721
\(226\) −2.20362 −2.20362
\(227\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(228\) 1.37279 1.37279
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) −3.22871 −3.22871
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.627214 0.627214
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −1.00000 −1.00000
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 3.51334 3.51334
\(243\) −1.00000 −1.00000
\(244\) 0.594351 0.594351
\(245\) −1.52111 −1.52111
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 1.42518 1.42518
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 1.20362 1.20362
\(253\) 0 0
\(254\) −2.51334 −2.51334
\(255\) 0.236479 0.236479
\(256\) 1.30972 1.30972
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 1.71537 1.71537
\(259\) −0.478891 −0.478891
\(260\) 0 0
\(261\) 0 0
\(262\) −1.08816 −1.08816
\(263\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(264\) 0.715370 0.715370
\(265\) 0 0
\(266\) −4.22871 −4.22871
\(267\) −1.30972 −1.30972
\(268\) 0 0
\(269\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(270\) 1.08816 1.08816
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −0.342585 −0.342585
\(273\) 0 0
\(274\) 0 0
\(275\) −0.594351 −0.594351
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0.521109 0.521109
\(281\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) −1.20362 −1.20362
\(285\) −1.59435 −1.59435
\(286\) 0 0
\(287\) 0 0
\(288\) −1.20362 −1.20362
\(289\) −0.918986 −0.918986
\(290\) 0 0
\(291\) 0.284630 0.284630
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) −2.39788 −2.39788
\(295\) 0 0
\(296\) 0.106106 0.106106
\(297\) −1.91899 −1.91899
\(298\) 0.372786 0.372786
\(299\) 0 0
\(300\) 0.221566 0.221566
\(301\) −2.20362 −2.20362
\(302\) 0 0
\(303\) 0 0
\(304\) 2.30972 2.30972
\(305\) −0.690279 −0.690279
\(306\) 0.372786 0.372786
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 2.30972 2.30972
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(314\) 1.08816 1.08816
\(315\) −1.39788 −1.39788
\(316\) 0 0
\(317\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0.309721 0.309721
\(321\) 0 0
\(322\) 0 0
\(323\) −0.546200 −0.546200
\(324\) 0.715370 0.715370
\(325\) 0 0
\(326\) 1.08816 1.08816
\(327\) 1.30972 1.30972
\(328\) 0 0
\(329\) 0 0
\(330\) 2.08816 2.08816
\(331\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(332\) 0 0
\(333\) −0.284630 −0.284630
\(334\) −2.20362 −2.20362
\(335\) 0 0
\(336\) 2.02509 2.02509
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 1.30972 1.30972
\(339\) 1.68251 1.68251
\(340\) −0.169170 −0.169170
\(341\) 0 0
\(342\) −2.51334 −2.51334
\(343\) 1.39788 1.39788
\(344\) 0.488245 0.488245
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −0.682507 −0.682507
\(351\) 0 0
\(352\) −2.30972 −2.30972
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 1.39788 1.39788
\(356\) 0.936936 0.936936
\(357\) −0.478891 −0.478891
\(358\) 1.71537 1.71537
\(359\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(360\) 0.309721 0.309721
\(361\) 2.68251 2.68251
\(362\) 2.20362 2.20362
\(363\) −2.68251 −2.68251
\(364\) 0 0
\(365\) 0 0
\(366\) −1.08816 −1.08816
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.309721 0.309721
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0.715370 0.715370
\(375\) −1.08816 −1.08816
\(376\) 0 0
\(377\) 0 0
\(378\) −2.20362 −2.20362
\(379\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(380\) 1.14055 1.14055
\(381\) 1.91899 1.91899
\(382\) 0 0
\(383\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(384\) −0.715370 −0.715370
\(385\) −2.68251 −2.68251
\(386\) 1.08816 1.08816
\(387\) −1.30972 −1.30972
\(388\) −0.203616 −0.203616
\(389\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.682507 −0.682507
\(393\) 0.830830 0.830830
\(394\) −1.30972 −1.30972
\(395\) 0 0
\(396\) 1.37279 1.37279
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 3.22871 3.22871
\(400\) 0.372786 0.372786
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.830830 −0.830830
\(406\) 0 0
\(407\) −0.546200 −0.546200
\(408\) 0.106106 0.106106
\(409\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −4.82306 −4.82306
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 1.00000 1.00000
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.0881559 −0.0881559
\(426\) 2.20362 2.20362
\(427\) 1.39788 1.39788
\(428\) 0 0
\(429\) 0 0
\(430\) 1.42518 1.42518
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 1.20362 1.20362
\(433\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.936936 −0.936936
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0.594351 0.594351
\(441\) 1.83083 1.83083
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0.203616 0.203616
\(445\) −1.08816 −1.08816
\(446\) −1.71537 −1.71537
\(447\) −0.284630 −0.284630
\(448\) −0.627214 −0.627214
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −0.405649 −0.405649
\(451\) 0 0
\(452\) −1.20362 −1.20362
\(453\) 0 0
\(454\) 1.71537 1.71537
\(455\) 0 0
\(456\) −0.715370 −0.715370
\(457\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(458\) 0 0
\(459\) −0.284630 −0.284630
\(460\) 0 0
\(461\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(462\) −4.22871 −4.22871
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.830830 −0.830830
\(472\) 0 0
\(473\) −2.51334 −2.51334
\(474\) 0 0
\(475\) 0.594351 0.594351
\(476\) 0.342585 0.342585
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.91899 1.91899
\(485\) 0.236479 0.236479
\(486\) −1.30972 −1.30972
\(487\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(488\) −0.309721 −0.309721
\(489\) −0.830830 −0.830830
\(490\) −1.99223 −1.99223
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −1.59435 −1.59435
\(496\) 0 0
\(497\) −2.83083 −2.83083
\(498\) 0 0
\(499\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(500\) 0.778434 0.778434
\(501\) 1.68251 1.68251
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −0.627214 −0.627214
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −1.00000
\(508\) −1.37279 −1.37279
\(509\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(510\) 0.309721 0.309721
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 1.91899 1.91899
\(514\) 0 0
\(515\) 0 0
\(516\) 0.936936 0.936936
\(517\) 0 0
\(518\) −0.627214 −0.627214
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −0.594351 −0.594351
\(525\) 0.521109 0.521109
\(526\) 2.51334 2.51334
\(527\) 0 0
\(528\) 2.30972 2.30972
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −2.30972 −2.30972
\(533\) 0 0
\(534\) −1.71537 −1.71537
\(535\) 0 0
\(536\) 0 0
\(537\) −1.30972 −1.30972
\(538\) 0.372786 0.372786
\(539\) 3.51334 3.51334
\(540\) 0.594351 0.594351
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −1.68251 −1.68251
\(544\) −0.342585 −0.342585
\(545\) 1.08816 1.08816
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0.830830 0.830830
\(550\) −0.778434 −0.778434
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.236479 −0.236479
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 1.68251 1.68251
\(561\) −0.546200 −0.546200
\(562\) 2.51334 2.51334
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 1.39788 1.39788
\(566\) 0 0
\(567\) 1.68251 1.68251
\(568\) 0.627214 0.627214
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −2.08816 −2.08816
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.372786 −0.372786
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.20362 −1.20362
\(579\) −0.830830 −0.830830
\(580\) 0 0
\(581\) 0 0
\(582\) 0.372786 0.372786
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −1.30972 −1.30972
\(589\) 0 0
\(590\) 0 0
\(591\) 1.00000 1.00000
\(592\) 0.342585 0.342585
\(593\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(594\) −2.51334 −2.51334
\(595\) −0.397877 −0.397877
\(596\) 0.203616 0.203616
\(597\) 0 0
\(598\) 0 0
\(599\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(600\) −0.115460 −0.115460
\(601\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(602\) −2.88612 −2.88612
\(603\) 0 0
\(604\) 0 0
\(605\) −2.22871 −2.22871
\(606\) 0 0
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) 2.30972 2.30972
\(609\) 0 0
\(610\) −0.904073 −0.904073
\(611\) 0 0
\(612\) 0.203616 0.203616
\(613\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −1.20362 −1.20362
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.20362 2.20362
\(624\) 0 0
\(625\) −0.594351 −0.594351
\(626\) 2.20362 2.20362
\(627\) 3.68251 3.68251
\(628\) 0.594351 0.594351
\(629\) −0.0810141 −0.0810141
\(630\) −1.83083 −1.83083
\(631\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.372786 0.372786
\(635\) 1.59435 1.59435
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.68251 −1.68251
\(640\) −0.594351 −0.594351
\(641\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) −1.08816 −1.08816
\(646\) −0.715370 −0.715370
\(647\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(648\) −0.372786 −0.372786
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0.594351 0.594351
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 1.71537 1.71537
\(655\) 0.690279 0.690279
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(660\) 1.14055 1.14055
\(661\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(662\) 1.08816 1.08816
\(663\) 0 0
\(664\) 0 0
\(665\) 2.68251 2.68251
\(666\) −0.372786 −0.372786
\(667\) 0 0
\(668\) −1.20362 −1.20362
\(669\) 1.30972 1.30972
\(670\) 0 0
\(671\) 1.59435 1.59435
\(672\) 2.02509 2.02509
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0.309721 0.309721
\(676\) 0.715370 0.715370
\(677\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(678\) 2.20362 2.20362
\(679\) −0.478891 −0.478891
\(680\) 0.0881559 0.0881559
\(681\) −1.30972 −1.30972
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −1.37279 −1.37279
\(685\) 0 0
\(686\) 1.83083 1.83083
\(687\) 0 0
\(688\) 1.57640 1.57640
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) 3.22871 3.22871
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.372786 −0.372786
\(701\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(702\) 0 0
\(703\) 0.546200 0.546200
\(704\) −0.715370 −0.715370
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 1.83083 1.83083
\(711\) 0 0
\(712\) −0.488245 −0.488245
\(713\) 0 0
\(714\) −0.627214 −0.627214
\(715\) 0 0
\(716\) 0.936936 0.936936
\(717\) 0 0
\(718\) 0.372786 0.372786
\(719\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(720\) 1.00000 1.00000
\(721\) 0 0
\(722\) 3.51334 3.51334
\(723\) 0 0
\(724\) 1.20362 1.20362
\(725\) 0 0
\(726\) −3.51334 −3.51334
\(727\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.372786 −0.372786
\(732\) −0.594351 −0.594351
\(733\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(734\) 0 0
\(735\) 1.52111 1.52111
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(740\) 0.169170 0.169170
\(741\) 0 0
\(742\) 0 0
\(743\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(744\) 0 0
\(745\) −0.236479 −0.236479
\(746\) 0 0
\(747\) 0 0
\(748\) 0.390736 0.390736
\(749\) 0 0
\(750\) −1.42518 −1.42518
\(751\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −1.20362 −1.20362
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 2.20362 2.20362
\(759\) 0 0
\(760\) −0.594351 −0.594351
\(761\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(762\) 2.51334 2.51334
\(763\) −2.20362 −2.20362
\(764\) 0 0
\(765\) −0.236479 −0.236479
\(766\) 2.51334 2.51334
\(767\) 0 0
\(768\) −1.30972 −1.30972
\(769\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(770\) −3.51334 −3.51334
\(771\) 0 0
\(772\) 0.594351 0.594351
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −1.71537 −1.71537
\(775\) 0 0
\(776\) 0.106106 0.106106
\(777\) 0.478891 0.478891
\(778\) −2.61944 −2.61944
\(779\) 0 0
\(780\) 0 0
\(781\) −3.22871 −3.22871
\(782\) 0 0
\(783\) 0 0
\(784\) −2.20362 −2.20362
\(785\) −0.690279 −0.690279
\(786\) 1.08816 1.08816
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) −0.715370 −0.715370
\(789\) −1.91899 −1.91899
\(790\) 0 0
\(791\) −2.83083 −2.83083
\(792\) −0.715370 −0.715370
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 4.22871 4.22871
\(799\) 0 0
\(800\) 0.372786 0.372786
\(801\) 1.30972 1.30972
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.284630 −0.284630
\(808\) 0 0
\(809\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(810\) −1.08816 −1.08816
\(811\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −0.715370 −0.715370
\(815\) −0.690279 −0.690279
\(816\) 0.342585 0.342585
\(817\) 2.51334 2.51334
\(818\) −0.372786 −0.372786
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0.594351 0.594351
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.521109 0.521109
\(834\) 0 0
\(835\) 1.39788 1.39788
\(836\) −2.63436 −2.63436
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) −0.521109 −0.521109
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) −1.91899 −1.91899
\(844\) 0 0
\(845\) −0.830830 −0.830830
\(846\) 0 0
\(847\) 4.51334 4.51334
\(848\) 0 0
\(849\) 0 0
\(850\) −0.115460 −0.115460
\(851\) 0 0
\(852\) 1.20362 1.20362
\(853\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(854\) 1.83083 1.83083
\(855\) 1.59435 1.59435
\(856\) 0 0
\(857\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0.778434 0.778434
\(861\) 0 0
\(862\) 0 0
\(863\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(864\) 1.20362 1.20362
\(865\) 0 0
\(866\) −1.71537 −1.71537
\(867\) 0.918986 0.918986
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.488245 0.488245
\(873\) −0.284630 −0.284630
\(874\) 0 0
\(875\) 1.83083 1.83083
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 1.91899 1.91899
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 2.39788 2.39788
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(888\) −0.106106 −0.106106
\(889\) −3.22871 −3.22871
\(890\) −1.42518 −1.42518
\(891\) 1.91899 1.91899
\(892\) −0.936936 −0.936936
\(893\) 0 0
\(894\) −0.372786 −0.372786
\(895\) −1.08816 −1.08816
\(896\) 1.20362 1.20362
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.221566 −0.221566
\(901\) 0 0
\(902\) 0 0
\(903\) 2.20362 2.20362
\(904\) 0.627214 0.627214
\(905\) −1.39788 −1.39788
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0.936936 0.936936
\(909\) 0 0
\(910\) 0 0
\(911\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(912\) −2.30972 −2.30972
\(913\) 0 0
\(914\) −2.51334 −2.51334
\(915\) 0.690279 0.690279
\(916\) 0 0
\(917\) −1.39788 −1.39788
\(918\) −0.372786 −0.372786
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −2.20362 −2.20362
\(923\) 0 0
\(924\) −2.30972 −2.30972
\(925\) 0.0881559 0.0881559
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(930\) 0 0
\(931\) −3.51334 −3.51334
\(932\) 0 0
\(933\) 0 0
\(934\) −2.20362 −2.20362
\(935\) −0.453800 −0.453800
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) −1.68251 −1.68251
\(940\) 0 0
\(941\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(942\) −1.08816 −1.08816
\(943\) 0 0
\(944\) 0 0
\(945\) 1.39788 1.39788
\(946\) −3.29177 −3.29177
\(947\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.778434 0.778434
\(951\) −0.284630 −0.284630
\(952\) −0.178524 −0.178524
\(953\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.309721 −0.309721
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.690279 −0.690279
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1.00000 −1.00000
\(969\) 0.546200 0.546200
\(970\) 0.309721 0.309721
\(971\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(972\) −0.715370 −0.715370
\(973\) 0 0
\(974\) −2.51334 −2.51334
\(975\) 0 0
\(976\) −1.00000 −1.00000
\(977\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(978\) −1.08816 −1.08816
\(979\) 2.51334 2.51334
\(980\) −1.08816 −1.08816
\(981\) −1.30972 −1.30972
\(982\) 0 0
\(983\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(984\) 0 0
\(985\) 0.830830 0.830830
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −2.08816 −2.08816
\(991\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(992\) 0 0
\(993\) −0.830830 −0.830830
\(994\) −3.70760 −3.70760
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) −2.51334 −2.51334
\(999\) 0.284630 0.284630
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 591.1.d.b.590.4 yes 5
3.2 odd 2 591.1.d.a.590.2 5
197.196 even 2 591.1.d.a.590.2 5
591.590 odd 2 CM 591.1.d.b.590.4 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
591.1.d.a.590.2 5 3.2 odd 2
591.1.d.a.590.2 5 197.196 even 2
591.1.d.b.590.4 yes 5 1.1 even 1 trivial
591.1.d.b.590.4 yes 5 591.590 odd 2 CM