Properties

Label 591.1.d.b.590.3
Level $591$
Weight $1$
Character 591.590
Self dual yes
Analytic conductor $0.295$
Analytic rank $0$
Dimension $5$
Projective image $D_{11}$
CM discriminant -591
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [591,1,Mod(590,591)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("591.590"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(591, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 591 = 3 \cdot 197 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 591.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.294947422466\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\Q(\zeta_{22})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 4x^{3} + 3x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{11}\)
Projective field: Galois closure of 11.1.72100355223951.1

Embedding invariants

Embedding label 590.3
Root \(1.91899\) of defining polynomial
Character \(\chi\) \(=\) 591.590

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.284630 q^{2} -1.00000 q^{3} -0.918986 q^{4} +1.30972 q^{5} -0.284630 q^{6} +0.830830 q^{7} -0.546200 q^{8} +1.00000 q^{9} +0.372786 q^{10} -1.68251 q^{11} +0.918986 q^{12} +0.236479 q^{14} -1.30972 q^{15} +0.763521 q^{16} +1.91899 q^{17} +0.284630 q^{18} +1.68251 q^{19} -1.20362 q^{20} -0.830830 q^{21} -0.478891 q^{22} +0.546200 q^{24} +0.715370 q^{25} -1.00000 q^{27} -0.763521 q^{28} -0.372786 q^{30} +0.763521 q^{32} +1.68251 q^{33} +0.546200 q^{34} +1.08816 q^{35} -0.918986 q^{36} -1.91899 q^{37} +0.478891 q^{38} -0.715370 q^{40} -0.236479 q^{42} -0.284630 q^{43} +1.54620 q^{44} +1.30972 q^{45} -0.763521 q^{48} -0.309721 q^{49} +0.203616 q^{50} -1.91899 q^{51} -0.284630 q^{54} -2.20362 q^{55} -0.453800 q^{56} -1.68251 q^{57} +1.20362 q^{60} -1.30972 q^{61} +0.830830 q^{63} -0.546200 q^{64} +0.478891 q^{66} -1.76352 q^{68} +0.309721 q^{70} -0.830830 q^{71} -0.546200 q^{72} -0.546200 q^{74} -0.715370 q^{75} -1.54620 q^{76} -1.39788 q^{77} +1.00000 q^{80} +1.00000 q^{81} +0.763521 q^{84} +2.51334 q^{85} -0.0810141 q^{86} +0.918986 q^{88} +0.284630 q^{89} +0.372786 q^{90} +2.20362 q^{95} -0.763521 q^{96} -1.91899 q^{97} -0.0881559 q^{98} -1.68251 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - 5 q^{3} + 4 q^{4} + q^{5} - q^{6} - q^{7} + 2 q^{8} + 5 q^{9} - 2 q^{10} + q^{11} - 4 q^{12} + 2 q^{14} - q^{15} + 3 q^{16} + q^{17} + q^{18} - q^{19} + 3 q^{20} + q^{21} - 2 q^{22}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/591\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(395\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(3\) −1.00000 −1.00000
\(4\) −0.918986 −0.918986
\(5\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(6\) −0.284630 −0.284630
\(7\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(8\) −0.546200 −0.546200
\(9\) 1.00000 1.00000
\(10\) 0.372786 0.372786
\(11\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(12\) 0.918986 0.918986
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0.236479 0.236479
\(15\) −1.30972 −1.30972
\(16\) 0.763521 0.763521
\(17\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(18\) 0.284630 0.284630
\(19\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(20\) −1.20362 −1.20362
\(21\) −0.830830 −0.830830
\(22\) −0.478891 −0.478891
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0.546200 0.546200
\(25\) 0.715370 0.715370
\(26\) 0 0
\(27\) −1.00000 −1.00000
\(28\) −0.763521 −0.763521
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) −0.372786 −0.372786
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0.763521 0.763521
\(33\) 1.68251 1.68251
\(34\) 0.546200 0.546200
\(35\) 1.08816 1.08816
\(36\) −0.918986 −0.918986
\(37\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(38\) 0.478891 0.478891
\(39\) 0 0
\(40\) −0.715370 −0.715370
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) −0.236479 −0.236479
\(43\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(44\) 1.54620 1.54620
\(45\) 1.30972 1.30972
\(46\) 0 0
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) −0.763521 −0.763521
\(49\) −0.309721 −0.309721
\(50\) 0.203616 0.203616
\(51\) −1.91899 −1.91899
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.284630 −0.284630
\(55\) −2.20362 −2.20362
\(56\) −0.453800 −0.453800
\(57\) −1.68251 −1.68251
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 1.20362 1.20362
\(61\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(62\) 0 0
\(63\) 0.830830 0.830830
\(64\) −0.546200 −0.546200
\(65\) 0 0
\(66\) 0.478891 0.478891
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) −1.76352 −1.76352
\(69\) 0 0
\(70\) 0.309721 0.309721
\(71\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(72\) −0.546200 −0.546200
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) −0.546200 −0.546200
\(75\) −0.715370 −0.715370
\(76\) −1.54620 −1.54620
\(77\) −1.39788 −1.39788
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 1.00000 1.00000
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0.763521 0.763521
\(85\) 2.51334 2.51334
\(86\) −0.0810141 −0.0810141
\(87\) 0 0
\(88\) 0.918986 0.918986
\(89\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(90\) 0.372786 0.372786
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.20362 2.20362
\(96\) −0.763521 −0.763521
\(97\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(98\) −0.0881559 −0.0881559
\(99\) −1.68251 −1.68251
\(100\) −0.657415 −0.657415
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) −0.546200 −0.546200
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) −1.08816 −1.08816
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0.918986 0.918986
\(109\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(110\) −0.627214 −0.627214
\(111\) 1.91899 1.91899
\(112\) 0.634356 0.634356
\(113\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(114\) −0.478891 −0.478891
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.59435 1.59435
\(120\) 0.715370 0.715370
\(121\) 1.83083 1.83083
\(122\) −0.372786 −0.372786
\(123\) 0 0
\(124\) 0 0
\(125\) −0.372786 −0.372786
\(126\) 0.236479 0.236479
\(127\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(128\) −0.918986 −0.918986
\(129\) 0.284630 0.284630
\(130\) 0 0
\(131\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(132\) −1.54620 −1.54620
\(133\) 1.39788 1.39788
\(134\) 0 0
\(135\) −1.30972 −1.30972
\(136\) −1.04815 −1.04815
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) −1.00000 −1.00000
\(141\) 0 0
\(142\) −0.236479 −0.236479
\(143\) 0 0
\(144\) 0.763521 0.763521
\(145\) 0 0
\(146\) 0 0
\(147\) 0.309721 0.309721
\(148\) 1.76352 1.76352
\(149\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(150\) −0.203616 −0.203616
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) −0.918986 −0.918986
\(153\) 1.91899 1.91899
\(154\) −0.397877 −0.397877
\(155\) 0 0
\(156\) 0 0
\(157\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 1.00000 1.00000
\(161\) 0 0
\(162\) 0.284630 0.284630
\(163\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(164\) 0 0
\(165\) 2.20362 2.20362
\(166\) 0 0
\(167\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(168\) 0.453800 0.453800
\(169\) 1.00000 1.00000
\(170\) 0.715370 0.715370
\(171\) 1.68251 1.68251
\(172\) 0.261571 0.261571
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0.594351 0.594351
\(176\) −1.28463 −1.28463
\(177\) 0 0
\(178\) 0.0810141 0.0810141
\(179\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(180\) −1.20362 −1.20362
\(181\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(182\) 0 0
\(183\) 1.30972 1.30972
\(184\) 0 0
\(185\) −2.51334 −2.51334
\(186\) 0 0
\(187\) −3.22871 −3.22871
\(188\) 0 0
\(189\) −0.830830 −0.830830
\(190\) 0.627214 0.627214
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0.546200 0.546200
\(193\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(194\) −0.546200 −0.546200
\(195\) 0 0
\(196\) 0.284630 0.284630
\(197\) −1.00000 −1.00000
\(198\) −0.478891 −0.478891
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −0.390736 −0.390736
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 1.76352 1.76352
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2.83083 −2.83083
\(210\) −0.309721 −0.309721
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0.830830 0.830830
\(214\) 0 0
\(215\) −0.372786 −0.372786
\(216\) 0.546200 0.546200
\(217\) 0 0
\(218\) −0.0810141 −0.0810141
\(219\) 0 0
\(220\) 2.02509 2.02509
\(221\) 0 0
\(222\) 0.546200 0.546200
\(223\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(224\) 0.634356 0.634356
\(225\) 0.715370 0.715370
\(226\) −0.236479 −0.236479
\(227\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(228\) 1.54620 1.54620
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 1.39788 1.39788
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0.453800 0.453800
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) −1.00000 −1.00000
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0.521109 0.521109
\(243\) −1.00000 −1.00000
\(244\) 1.20362 1.20362
\(245\) −0.405649 −0.405649
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −0.106106 −0.106106
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) −0.763521 −0.763521
\(253\) 0 0
\(254\) 0.478891 0.478891
\(255\) −2.51334 −2.51334
\(256\) 0.284630 0.284630
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0.0810141 0.0810141
\(259\) −1.59435 −1.59435
\(260\) 0 0
\(261\) 0 0
\(262\) 0.372786 0.372786
\(263\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(264\) −0.918986 −0.918986
\(265\) 0 0
\(266\) 0.397877 0.397877
\(267\) −0.284630 −0.284630
\(268\) 0 0
\(269\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(270\) −0.372786 −0.372786
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 1.46519 1.46519
\(273\) 0 0
\(274\) 0 0
\(275\) −1.20362 −1.20362
\(276\) 0 0
\(277\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) −0.594351 −0.594351
\(281\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0.763521 0.763521
\(285\) −2.20362 −2.20362
\(286\) 0 0
\(287\) 0 0
\(288\) 0.763521 0.763521
\(289\) 2.68251 2.68251
\(290\) 0 0
\(291\) 1.91899 1.91899
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0.0881559 0.0881559
\(295\) 0 0
\(296\) 1.04815 1.04815
\(297\) 1.68251 1.68251
\(298\) 0.546200 0.546200
\(299\) 0 0
\(300\) 0.657415 0.657415
\(301\) −0.236479 −0.236479
\(302\) 0 0
\(303\) 0 0
\(304\) 1.28463 1.28463
\(305\) −1.71537 −1.71537
\(306\) 0.546200 0.546200
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 1.28463 1.28463
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(314\) −0.372786 −0.372786
\(315\) 1.08816 1.08816
\(316\) 0 0
\(317\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.715370 −0.715370
\(321\) 0 0
\(322\) 0 0
\(323\) 3.22871 3.22871
\(324\) −0.918986 −0.918986
\(325\) 0 0
\(326\) −0.372786 −0.372786
\(327\) 0.284630 0.284630
\(328\) 0 0
\(329\) 0 0
\(330\) 0.627214 0.627214
\(331\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(332\) 0 0
\(333\) −1.91899 −1.91899
\(334\) −0.236479 −0.236479
\(335\) 0 0
\(336\) −0.634356 −0.634356
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0.284630 0.284630
\(339\) 0.830830 0.830830
\(340\) −2.30972 −2.30972
\(341\) 0 0
\(342\) 0.478891 0.478891
\(343\) −1.08816 −1.08816
\(344\) 0.155465 0.155465
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0.169170 0.169170
\(351\) 0 0
\(352\) −1.28463 −1.28463
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) −1.08816 −1.08816
\(356\) −0.261571 −0.261571
\(357\) −1.59435 −1.59435
\(358\) 0.0810141 0.0810141
\(359\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(360\) −0.715370 −0.715370
\(361\) 1.83083 1.83083
\(362\) 0.236479 0.236479
\(363\) −1.83083 −1.83083
\(364\) 0 0
\(365\) 0 0
\(366\) 0.372786 0.372786
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.715370 −0.715370
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) −0.918986 −0.918986
\(375\) 0.372786 0.372786
\(376\) 0 0
\(377\) 0 0
\(378\) −0.236479 −0.236479
\(379\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(380\) −2.02509 −2.02509
\(381\) −1.68251 −1.68251
\(382\) 0 0
\(383\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(384\) 0.918986 0.918986
\(385\) −1.83083 −1.83083
\(386\) −0.372786 −0.372786
\(387\) −0.284630 −0.284630
\(388\) 1.76352 1.76352
\(389\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.169170 0.169170
\(393\) −1.30972 −1.30972
\(394\) −0.284630 −0.284630
\(395\) 0 0
\(396\) 1.54620 1.54620
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) −1.39788 −1.39788
\(400\) 0.546200 0.546200
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.30972 1.30972
\(406\) 0 0
\(407\) 3.22871 3.22871
\(408\) 1.04815 1.04815
\(409\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) −0.805738 −0.805738
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 1.00000 1.00000
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.37279 1.37279
\(426\) 0.236479 0.236479
\(427\) −1.08816 −1.08816
\(428\) 0 0
\(429\) 0 0
\(430\) −0.106106 −0.106106
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.763521 −0.763521
\(433\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.261571 0.261571
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 1.20362 1.20362
\(441\) −0.309721 −0.309721
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) −1.76352 −1.76352
\(445\) 0.372786 0.372786
\(446\) −0.0810141 −0.0810141
\(447\) −1.91899 −1.91899
\(448\) −0.453800 −0.453800
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0.203616 0.203616
\(451\) 0 0
\(452\) 0.763521 0.763521
\(453\) 0 0
\(454\) 0.0810141 0.0810141
\(455\) 0 0
\(456\) 0.918986 0.918986
\(457\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(458\) 0 0
\(459\) −1.91899 −1.91899
\(460\) 0 0
\(461\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(462\) 0.397877 0.397877
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.30972 1.30972
\(472\) 0 0
\(473\) 0.478891 0.478891
\(474\) 0 0
\(475\) 1.20362 1.20362
\(476\) −1.46519 −1.46519
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −1.68251 −1.68251
\(485\) −2.51334 −2.51334
\(486\) −0.284630 −0.284630
\(487\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(488\) 0.715370 0.715370
\(489\) 1.30972 1.30972
\(490\) −0.115460 −0.115460
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −2.20362 −2.20362
\(496\) 0 0
\(497\) −0.690279 −0.690279
\(498\) 0 0
\(499\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(500\) 0.342585 0.342585
\(501\) 0.830830 0.830830
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −0.453800 −0.453800
\(505\) 0 0
\(506\) 0 0
\(507\) −1.00000 −1.00000
\(508\) −1.54620 −1.54620
\(509\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(510\) −0.715370 −0.715370
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) −1.68251 −1.68251
\(514\) 0 0
\(515\) 0 0
\(516\) −0.261571 −0.261571
\(517\) 0 0
\(518\) −0.453800 −0.453800
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) −1.20362 −1.20362
\(525\) −0.594351 −0.594351
\(526\) −0.478891 −0.478891
\(527\) 0 0
\(528\) 1.28463 1.28463
\(529\) 1.00000 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) −1.28463 −1.28463
\(533\) 0 0
\(534\) −0.0810141 −0.0810141
\(535\) 0 0
\(536\) 0 0
\(537\) −0.284630 −0.284630
\(538\) 0.546200 0.546200
\(539\) 0.521109 0.521109
\(540\) 1.20362 1.20362
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −0.830830 −0.830830
\(544\) 1.46519 1.46519
\(545\) −0.372786 −0.372786
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −1.30972 −1.30972
\(550\) −0.342585 −0.342585
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.51334 2.51334
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.830830 0.830830
\(561\) 3.22871 3.22871
\(562\) −0.478891 −0.478891
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) −1.08816 −1.08816
\(566\) 0 0
\(567\) 0.830830 0.830830
\(568\) 0.453800 0.453800
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) −0.627214 −0.627214
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.546200 −0.546200
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0.763521 0.763521
\(579\) 1.30972 1.30972
\(580\) 0 0
\(581\) 0 0
\(582\) 0.546200 0.546200
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) −0.284630 −0.284630
\(589\) 0 0
\(590\) 0 0
\(591\) 1.00000 1.00000
\(592\) −1.46519 −1.46519
\(593\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(594\) 0.478891 0.478891
\(595\) 2.08816 2.08816
\(596\) −1.76352 −1.76352
\(597\) 0 0
\(598\) 0 0
\(599\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(600\) 0.390736 0.390736
\(601\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(602\) −0.0673089 −0.0673089
\(603\) 0 0
\(604\) 0 0
\(605\) 2.39788 2.39788
\(606\) 0 0
\(607\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(608\) 1.28463 1.28463
\(609\) 0 0
\(610\) −0.488245 −0.488245
\(611\) 0 0
\(612\) −1.76352 −1.76352
\(613\) −1.91899 −1.91899 −0.959493 0.281733i \(-0.909091\pi\)
−0.959493 + 0.281733i \(0.909091\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0.763521 0.763521
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.236479 0.236479
\(624\) 0 0
\(625\) −1.20362 −1.20362
\(626\) 0.236479 0.236479
\(627\) 2.83083 2.83083
\(628\) 1.20362 1.20362
\(629\) −3.68251 −3.68251
\(630\) 0.309721 0.309721
\(631\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.546200 0.546200
\(635\) 2.20362 2.20362
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.830830 −0.830830
\(640\) −1.20362 −1.20362
\(641\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0.372786 0.372786
\(646\) 0.918986 0.918986
\(647\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(648\) −0.546200 −0.546200
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 1.20362 1.20362
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0.0810141 0.0810141
\(655\) 1.71537 1.71537
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(660\) −2.02509 −2.02509
\(661\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(662\) −0.372786 −0.372786
\(663\) 0 0
\(664\) 0 0
\(665\) 1.83083 1.83083
\(666\) −0.546200 −0.546200
\(667\) 0 0
\(668\) 0.763521 0.763521
\(669\) 0.284630 0.284630
\(670\) 0 0
\(671\) 2.20362 2.20362
\(672\) −0.634356 −0.634356
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) −0.715370 −0.715370
\(676\) −0.918986 −0.918986
\(677\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(678\) 0.236479 0.236479
\(679\) −1.59435 −1.59435
\(680\) −1.37279 −1.37279
\(681\) −0.284630 −0.284630
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) −1.54620 −1.54620
\(685\) 0 0
\(686\) −0.309721 −0.309721
\(687\) 0 0
\(688\) −0.217321 −0.217321
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(692\) 0 0
\(693\) −1.39788 −1.39788
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −0.546200 −0.546200
\(701\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(702\) 0 0
\(703\) −3.22871 −3.22871
\(704\) 0.918986 0.918986
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) −0.309721 −0.309721
\(711\) 0 0
\(712\) −0.155465 −0.155465
\(713\) 0 0
\(714\) −0.453800 −0.453800
\(715\) 0 0
\(716\) −0.261571 −0.261571
\(717\) 0 0
\(718\) 0.546200 0.546200
\(719\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(720\) 1.00000 1.00000
\(721\) 0 0
\(722\) 0.521109 0.521109
\(723\) 0 0
\(724\) −0.763521 −0.763521
\(725\) 0 0
\(726\) −0.521109 −0.521109
\(727\) 1.68251 1.68251 0.841254 0.540641i \(-0.181818\pi\)
0.841254 + 0.540641i \(0.181818\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) −0.546200 −0.546200
\(732\) −1.20362 −1.20362
\(733\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(734\) 0 0
\(735\) 0.405649 0.405649
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(740\) 2.30972 2.30972
\(741\) 0 0
\(742\) 0 0
\(743\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(744\) 0 0
\(745\) 2.51334 2.51334
\(746\) 0 0
\(747\) 0 0
\(748\) 2.96714 2.96714
\(749\) 0 0
\(750\) 0.106106 0.106106
\(751\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0.763521 0.763521
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0.236479 0.236479
\(759\) 0 0
\(760\) −1.20362 −1.20362
\(761\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(762\) −0.478891 −0.478891
\(763\) −0.236479 −0.236479
\(764\) 0 0
\(765\) 2.51334 2.51334
\(766\) −0.478891 −0.478891
\(767\) 0 0
\(768\) −0.284630 −0.284630
\(769\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(770\) −0.521109 −0.521109
\(771\) 0 0
\(772\) 1.20362 1.20362
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −0.0810141 −0.0810141
\(775\) 0 0
\(776\) 1.04815 1.04815
\(777\) 1.59435 1.59435
\(778\) −0.569259 −0.569259
\(779\) 0 0
\(780\) 0 0
\(781\) 1.39788 1.39788
\(782\) 0 0
\(783\) 0 0
\(784\) −0.236479 −0.236479
\(785\) −1.71537 −1.71537
\(786\) −0.372786 −0.372786
\(787\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(788\) 0.918986 0.918986
\(789\) 1.68251 1.68251
\(790\) 0 0
\(791\) −0.690279 −0.690279
\(792\) 0.918986 0.918986
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) −0.397877 −0.397877
\(799\) 0 0
\(800\) 0.546200 0.546200
\(801\) 0.284630 0.284630
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.91899 −1.91899
\(808\) 0 0
\(809\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(810\) 0.372786 0.372786
\(811\) −1.30972 −1.30972 −0.654861 0.755750i \(-0.727273\pi\)
−0.654861 + 0.755750i \(0.727273\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0.918986 0.918986
\(815\) −1.71537 −1.71537
\(816\) −1.46519 −1.46519
\(817\) −0.478891 −0.478891
\(818\) −0.546200 −0.546200
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 1.20362 1.20362
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 0.830830 0.830830 0.415415 0.909632i \(-0.363636\pi\)
0.415415 + 0.909632i \(0.363636\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.594351 −0.594351
\(834\) 0 0
\(835\) −1.08816 −1.08816
\(836\) 2.60149 2.60149
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0.594351 0.594351
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 1.68251 1.68251
\(844\) 0 0
\(845\) 1.30972 1.30972
\(846\) 0 0
\(847\) 1.52111 1.52111
\(848\) 0 0
\(849\) 0 0
\(850\) 0.390736 0.390736
\(851\) 0 0
\(852\) −0.763521 −0.763521
\(853\) −0.284630 −0.284630 −0.142315 0.989821i \(-0.545455\pi\)
−0.142315 + 0.989821i \(0.545455\pi\)
\(854\) −0.309721 −0.309721
\(855\) 2.20362 2.20362
\(856\) 0 0
\(857\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0.342585 0.342585
\(861\) 0 0
\(862\) 0 0
\(863\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(864\) −0.763521 −0.763521
\(865\) 0 0
\(866\) −0.0810141 −0.0810141
\(867\) −2.68251 −2.68251
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.155465 0.155465
\(873\) −1.91899 −1.91899
\(874\) 0 0
\(875\) −0.309721 −0.309721
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) −1.68251 −1.68251
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −0.0881559 −0.0881559
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(888\) −1.04815 −1.04815
\(889\) 1.39788 1.39788
\(890\) 0.106106 0.106106
\(891\) −1.68251 −1.68251
\(892\) 0.261571 0.261571
\(893\) 0 0
\(894\) −0.546200 −0.546200
\(895\) 0.372786 0.372786
\(896\) −0.763521 −0.763521
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.657415 −0.657415
\(901\) 0 0
\(902\) 0 0
\(903\) 0.236479 0.236479
\(904\) 0.453800 0.453800
\(905\) 1.08816 1.08816
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) −0.261571 −0.261571
\(909\) 0 0
\(910\) 0 0
\(911\) −0.830830 −0.830830 −0.415415 0.909632i \(-0.636364\pi\)
−0.415415 + 0.909632i \(0.636364\pi\)
\(912\) −1.28463 −1.28463
\(913\) 0 0
\(914\) 0.478891 0.478891
\(915\) 1.71537 1.71537
\(916\) 0 0
\(917\) 1.08816 1.08816
\(918\) −0.546200 −0.546200
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.236479 −0.236479
\(923\) 0 0
\(924\) −1.28463 −1.28463
\(925\) −1.37279 −1.37279
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(930\) 0 0
\(931\) −0.521109 −0.521109
\(932\) 0 0
\(933\) 0 0
\(934\) −0.236479 −0.236479
\(935\) −4.22871 −4.22871
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) −0.830830 −0.830830
\(940\) 0 0
\(941\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(942\) 0.372786 0.372786
\(943\) 0 0
\(944\) 0 0
\(945\) −1.08816 −1.08816
\(946\) 0.136307 0.136307
\(947\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0.342585 0.342585
\(951\) −1.91899 −1.91899
\(952\) −0.870835 −0.870835
\(953\) 1.30972 1.30972 0.654861 0.755750i \(-0.272727\pi\)
0.654861 + 0.755750i \(0.272727\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0.715370 0.715370
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.71537 −1.71537
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) −1.00000 −1.00000
\(969\) −3.22871 −3.22871
\(970\) −0.715370 −0.715370
\(971\) −1.68251 −1.68251 −0.841254 0.540641i \(-0.818182\pi\)
−0.841254 + 0.540641i \(0.818182\pi\)
\(972\) 0.918986 0.918986
\(973\) 0 0
\(974\) 0.478891 0.478891
\(975\) 0 0
\(976\) −1.00000 −1.00000
\(977\) 0.284630 0.284630 0.142315 0.989821i \(-0.454545\pi\)
0.142315 + 0.989821i \(0.454545\pi\)
\(978\) 0.372786 0.372786
\(979\) −0.478891 −0.478891
\(980\) 0.372786 0.372786
\(981\) −0.284630 −0.284630
\(982\) 0 0
\(983\) 1.91899 1.91899 0.959493 0.281733i \(-0.0909091\pi\)
0.959493 + 0.281733i \(0.0909091\pi\)
\(984\) 0 0
\(985\) −1.30972 −1.30972
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.627214 −0.627214
\(991\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(992\) 0 0
\(993\) 1.30972 1.30972
\(994\) −0.196474 −0.196474
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 0.478891 0.478891
\(999\) 1.91899 1.91899
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 591.1.d.b.590.3 yes 5
3.2 odd 2 591.1.d.a.590.3 5
197.196 even 2 591.1.d.a.590.3 5
591.590 odd 2 CM 591.1.d.b.590.3 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
591.1.d.a.590.3 5 3.2 odd 2
591.1.d.a.590.3 5 197.196 even 2
591.1.d.b.590.3 yes 5 1.1 even 1 trivial
591.1.d.b.590.3 yes 5 591.590 odd 2 CM