Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [59,7,Mod(58,59)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(59, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 7, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("59.58");
S:= CuspForms(chi, 7);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 59 \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 59.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(13.5731909336\) |
Analytic rank: | \(0\) |
Dimension: | \(26\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
58.1 | − | 15.6634i | −23.5580 | −181.343 | −4.53524 | 368.999i | 95.4017 | 1837.99i | −174.022 | 71.0374i | |||||||||||||||||
58.2 | − | 14.7162i | 41.3628 | −152.567 | 214.730 | − | 608.704i | 125.837 | 1303.37i | 981.885 | − | 3160.01i | |||||||||||||||
58.3 | − | 13.0886i | 33.4993 | −107.312 | −173.560 | − | 438.461i | −128.659 | 566.899i | 393.206 | 2271.67i | ||||||||||||||||
58.4 | − | 12.6464i | 0.494651 | −95.9324 | 19.8525 | − | 6.25557i | −195.165 | 403.831i | −728.755 | − | 251.064i | |||||||||||||||
58.5 | − | 11.1082i | −46.4934 | −59.3927 | 157.957 | 516.459i | 407.985 | − | 51.1790i | 1432.64 | − | 1754.62i | |||||||||||||||
58.6 | − | 11.0322i | −38.3464 | −57.7084 | −194.793 | 423.043i | −255.913 | − | 69.4101i | 741.443 | 2148.98i | ||||||||||||||||
58.7 | − | 10.3981i | 12.0734 | −44.1211 | −27.1374 | − | 125.541i | 631.586 | − | 206.703i | −583.232 | 282.178i | |||||||||||||||
58.8 | − | 9.83054i | −11.7050 | −32.6396 | 162.986 | 115.067i | −407.577 | − | 308.290i | −591.992 | − | 1602.24i | |||||||||||||||
58.9 | − | 7.19418i | 44.5169 | 12.2438 | 52.8479 | − | 320.263i | −372.902 | − | 548.511i | 1252.76 | − | 380.197i | ||||||||||||||
58.10 | − | 4.84601i | 33.0733 | 40.5162 | 102.756 | − | 160.273i | 212.228 | − | 506.486i | 364.843 | − | 497.957i | ||||||||||||||
58.11 | − | 4.70683i | −15.6097 | 41.8457 | −148.856 | 73.4721i | 233.894 | − | 498.198i | −485.338 | 700.642i | ||||||||||||||||
58.12 | − | 4.66346i | −37.4041 | 42.2521 | 9.17391 | 174.432i | 221.670 | − | 495.503i | 670.066 | − | 42.7822i | |||||||||||||||
58.13 | − | 3.85246i | 13.0960 | 49.1585 | −100.422 | − | 50.4519i | −365.384 | − | 435.939i | −557.495 | 386.871i | |||||||||||||||
58.14 | 3.85246i | 13.0960 | 49.1585 | −100.422 | 50.4519i | −365.384 | 435.939i | −557.495 | − | 386.871i | |||||||||||||||||
58.15 | 4.66346i | −37.4041 | 42.2521 | 9.17391 | − | 174.432i | 221.670 | 495.503i | 670.066 | 42.7822i | |||||||||||||||||
58.16 | 4.70683i | −15.6097 | 41.8457 | −148.856 | − | 73.4721i | 233.894 | 498.198i | −485.338 | − | 700.642i | ||||||||||||||||
58.17 | 4.84601i | 33.0733 | 40.5162 | 102.756 | 160.273i | 212.228 | 506.486i | 364.843 | 497.957i | ||||||||||||||||||
58.18 | 7.19418i | 44.5169 | 12.2438 | 52.8479 | 320.263i | −372.902 | 548.511i | 1252.76 | 380.197i | ||||||||||||||||||
58.19 | 9.83054i | −11.7050 | −32.6396 | 162.986 | − | 115.067i | −407.577 | 308.290i | −591.992 | 1602.24i | |||||||||||||||||
58.20 | 10.3981i | 12.0734 | −44.1211 | −27.1374 | 125.541i | 631.586 | 206.703i | −583.232 | − | 282.178i | |||||||||||||||||
See all 26 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
59.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 59.7.b.c | ✓ | 26 |
59.b | odd | 2 | 1 | inner | 59.7.b.c | ✓ | 26 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
59.7.b.c | ✓ | 26 | 1.a | even | 1 | 1 | trivial |
59.7.b.c | ✓ | 26 | 59.b | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{7}^{\mathrm{new}}(59, [\chi])\):
\( T_{2}^{26} + 1377 T_{2}^{24} + 839313 T_{2}^{22} + 298766727 T_{2}^{20} + 69000111702 T_{2}^{18} + \cdots + 19\!\cdots\!00 \) |
\( T_{3}^{13} - 5 T_{3}^{12} - 6084 T_{3}^{11} + 27440 T_{3}^{10} + 13887738 T_{3}^{9} + \cdots - 45\!\cdots\!40 \) |