Properties

Label 59.19.b
Level 5959
Weight 1919
Character orbit 59.b
Rep. character χ59(58,)\chi_{59}(58,\cdot)
Character field Q\Q
Dimension 8989
Newform subspaces 33
Sturm bound 9595
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 59 59
Weight: k k == 19 19
Character orbit: [χ][\chi] == 59.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 59 59
Character field: Q\Q
Newform subspaces: 3 3
Sturm bound: 9595
Trace bound: 11
Distinguishing TpT_p: 22, 33

Dimensions

The following table gives the dimensions of various subspaces of M19(59,[χ])M_{19}(59, [\chi]).

Total New Old
Modular forms 91 91 0
Cusp forms 89 89 0
Eisenstein series 2 2 0

Trace form

89q47870q311534338q41461458q5+42126406q7+10679224559q9+13944005596q12+195444804060q15+1494700729406q16320505008518q1720505417086q19921869660176q20++15 ⁣ ⁣92q95+O(q100) 89 q - 47870 q^{3} - 11534338 q^{4} - 1461458 q^{5} + 42126406 q^{7} + 10679224559 q^{9} + 13944005596 q^{12} + 195444804060 q^{15} + 1494700729406 q^{16} - 320505008518 q^{17} - 20505417086 q^{19} - 921869660176 q^{20}+ \cdots + 15\!\cdots\!92 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S19new(59,[χ])S_{19}^{\mathrm{new}}(59, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
59.19.b.a 59.b 59.b 11 121.178121.178 Q\Q Q(59)\Q(\sqrt{-59}) 59.19.b.a 00 1081010810 1985254-1985254 50982910-50982910 U(1)[D2]\mathrm{U}(1)[D_{2}] q+10810q3+218q41985254q5+q+10810q^{3}+2^{18}q^{4}-1985254q^{5}+\cdots
59.19.b.b 59.b 59.b 22 121.178121.178 Q(177)\Q(\sqrt{177}) Q(59)\Q(\sqrt{-59}) 59.19.b.b 00 10810-10810 19852541985254 5098291050982910 U(1)[D2]\mathrm{U}(1)[D_{2}] q+(5405616β)q3+218q4+(992627+)q5+q+(-5405-616\beta )q^{3}+2^{18}q^{4}+(992627+\cdots)q^{5}+\cdots
59.19.b.c 59.b 59.b 8686 121.178121.178 None 59.19.b.c 00 47870-47870 1461458-1461458 4212640642126406 SU(2)[C2]\mathrm{SU}(2)[C_{2}]