Properties

Label 588.3.p.i.557.5
Level $588$
Weight $3$
Character 588.557
Analytic conductor $16.022$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(557,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.557"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 18x^{14} + 201x^{12} - 1606x^{10} + 9216x^{8} - 21516x^{6} + 38173x^{4} - 134064x^{2} + 194481 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 557.5
Root \(1.56556 + 0.0873809i\) of defining polynomial
Character \(\chi\) \(=\) 588.557
Dual form 588.3.p.i.569.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.178660 + 2.99468i) q^{3} +(-5.28547 + 3.05157i) q^{5} +(-8.93616 + 1.07006i) q^{9} +(14.9496 + 8.63114i) q^{11} -19.2674 q^{13} +(-10.0828 - 15.2831i) q^{15} +(-17.8430 - 10.3017i) q^{17} +(6.09819 + 10.5624i) q^{19} +(16.8055 - 9.70264i) q^{23} +(6.12414 - 10.6073i) q^{25} +(-4.80102 - 26.5697i) q^{27} +3.24407i q^{29} +(-4.24264 + 7.34847i) q^{31} +(-23.1766 + 46.3112i) q^{33} +(-33.8724 - 58.6688i) q^{37} +(-3.44233 - 57.6998i) q^{39} -55.6650i q^{41} -49.7449 q^{43} +(43.9665 - 32.9251i) q^{45} +(39.6591 - 22.8972i) q^{47} +(27.6623 - 55.2745i) q^{51} +(28.9456 + 16.7117i) q^{53} -105.354 q^{55} +(-30.5414 + 20.1492i) q^{57} +(58.8145 + 33.9565i) q^{59} +(9.10218 + 15.7654i) q^{61} +(101.838 - 58.7959i) q^{65} +(-33.0000 + 57.1577i) q^{67} +(32.0587 + 48.5934i) q^{69} -93.8415i q^{71} +(3.88667 - 6.73190i) q^{73} +(32.8596 + 16.4447i) q^{75} +(-52.4966 - 90.9267i) q^{79} +(78.7099 - 19.1245i) q^{81} +51.1190i q^{83} +125.745 q^{85} +(-9.71493 + 0.579587i) q^{87} +(-130.150 + 75.1423i) q^{89} +(-22.7643 - 11.3925i) q^{93} +(-64.4636 - 37.2181i) q^{95} -188.793 q^{97} +(-142.828 - 61.1323i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{9} - 64 q^{15} - 48 q^{25} - 104 q^{37} + 240 q^{39} + 80 q^{43} + 44 q^{51} - 440 q^{57} - 528 q^{67} - 256 q^{79} + 496 q^{81} + 1136 q^{85} - 24 q^{93} - 1312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.178660 + 2.99468i 0.0595535 + 0.998225i
\(4\) 0 0
\(5\) −5.28547 + 3.05157i −1.05709 + 0.610314i −0.924627 0.380874i \(-0.875623\pi\)
−0.132467 + 0.991187i \(0.542290\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −8.93616 + 1.07006i −0.992907 + 0.118896i
\(10\) 0 0
\(11\) 14.9496 + 8.63114i 1.35905 + 0.784649i 0.989496 0.144559i \(-0.0461765\pi\)
0.369556 + 0.929208i \(0.379510\pi\)
\(12\) 0 0
\(13\) −19.2674 −1.48211 −0.741056 0.671444i \(-0.765675\pi\)
−0.741056 + 0.671444i \(0.765675\pi\)
\(14\) 0 0
\(15\) −10.0828 15.2831i −0.672184 1.01887i
\(16\) 0 0
\(17\) −17.8430 10.3017i −1.04959 0.605980i −0.127054 0.991896i \(-0.540552\pi\)
−0.922534 + 0.385916i \(0.873885\pi\)
\(18\) 0 0
\(19\) 6.09819 + 10.5624i 0.320957 + 0.555915i 0.980686 0.195590i \(-0.0626620\pi\)
−0.659728 + 0.751504i \(0.729329\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 16.8055 9.70264i 0.730673 0.421854i −0.0879956 0.996121i \(-0.528046\pi\)
0.818668 + 0.574267i \(0.194713\pi\)
\(24\) 0 0
\(25\) 6.12414 10.6073i 0.244966 0.424293i
\(26\) 0 0
\(27\) −4.80102 26.5697i −0.177816 0.984064i
\(28\) 0 0
\(29\) 3.24407i 0.111864i 0.998435 + 0.0559322i \(0.0178131\pi\)
−0.998435 + 0.0559322i \(0.982187\pi\)
\(30\) 0 0
\(31\) −4.24264 + 7.34847i −0.136859 + 0.237047i −0.926306 0.376772i \(-0.877034\pi\)
0.789447 + 0.613819i \(0.210368\pi\)
\(32\) 0 0
\(33\) −23.1766 + 46.3112i −0.702320 + 1.40337i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −33.8724 58.6688i −0.915471 1.58564i −0.806210 0.591629i \(-0.798485\pi\)
−0.109261 0.994013i \(-0.534848\pi\)
\(38\) 0 0
\(39\) −3.44233 57.6998i −0.0882649 1.47948i
\(40\) 0 0
\(41\) 55.6650i 1.35768i −0.734285 0.678841i \(-0.762482\pi\)
0.734285 0.678841i \(-0.237518\pi\)
\(42\) 0 0
\(43\) −49.7449 −1.15686 −0.578429 0.815733i \(-0.696334\pi\)
−0.578429 + 0.815733i \(0.696334\pi\)
\(44\) 0 0
\(45\) 43.9665 32.9251i 0.977033 0.731668i
\(46\) 0 0
\(47\) 39.6591 22.8972i 0.843812 0.487175i −0.0147465 0.999891i \(-0.504694\pi\)
0.858558 + 0.512716i \(0.171361\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 27.6623 55.2745i 0.542398 1.08381i
\(52\) 0 0
\(53\) 28.9456 + 16.7117i 0.546143 + 0.315316i 0.747565 0.664189i \(-0.231223\pi\)
−0.201422 + 0.979505i \(0.564556\pi\)
\(54\) 0 0
\(55\) −105.354 −1.91553
\(56\) 0 0
\(57\) −30.5414 + 20.1492i −0.535814 + 0.353494i
\(58\) 0 0
\(59\) 58.8145 + 33.9565i 0.996855 + 0.575535i 0.907316 0.420449i \(-0.138127\pi\)
0.0895389 + 0.995983i \(0.471461\pi\)
\(60\) 0 0
\(61\) 9.10218 + 15.7654i 0.149216 + 0.258450i 0.930938 0.365177i \(-0.118992\pi\)
−0.781722 + 0.623627i \(0.785658\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 101.838 58.7959i 1.56673 0.904553i
\(66\) 0 0
\(67\) −33.0000 + 57.1577i −0.492537 + 0.853100i −0.999963 0.00859584i \(-0.997264\pi\)
0.507426 + 0.861695i \(0.330597\pi\)
\(68\) 0 0
\(69\) 32.0587 + 48.5934i 0.464619 + 0.704253i
\(70\) 0 0
\(71\) 93.8415i 1.32171i −0.750513 0.660855i \(-0.770194\pi\)
0.750513 0.660855i \(-0.229806\pi\)
\(72\) 0 0
\(73\) 3.88667 6.73190i 0.0532420 0.0922178i −0.838176 0.545400i \(-0.816378\pi\)
0.891418 + 0.453182i \(0.149711\pi\)
\(74\) 0 0
\(75\) 32.8596 + 16.4447i 0.438129 + 0.219263i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −52.4966 90.9267i −0.664514 1.15097i −0.979417 0.201848i \(-0.935305\pi\)
0.314903 0.949124i \(-0.398028\pi\)
\(80\) 0 0
\(81\) 78.7099 19.1245i 0.971728 0.236104i
\(82\) 0 0
\(83\) 51.1190i 0.615892i 0.951404 + 0.307946i \(0.0996415\pi\)
−0.951404 + 0.307946i \(0.900358\pi\)
\(84\) 0 0
\(85\) 125.745 1.47935
\(86\) 0 0
\(87\) −9.71493 + 0.579587i −0.111666 + 0.00666191i
\(88\) 0 0
\(89\) −130.150 + 75.1423i −1.46236 + 0.844295i −0.999120 0.0419368i \(-0.986647\pi\)
−0.463242 + 0.886232i \(0.653314\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −22.7643 11.3925i −0.244777 0.122499i
\(94\) 0 0
\(95\) −64.4636 37.2181i −0.678565 0.391769i
\(96\) 0 0
\(97\) −188.793 −1.94632 −0.973158 0.230138i \(-0.926082\pi\)
−0.973158 + 0.230138i \(0.926082\pi\)
\(98\) 0 0
\(99\) −142.828 61.1323i −1.44270 0.617498i
\(100\) 0 0
\(101\) 35.6498 + 20.5824i 0.352968 + 0.203786i 0.665992 0.745959i \(-0.268009\pi\)
−0.313024 + 0.949745i \(0.601342\pi\)
\(102\) 0 0
\(103\) −43.3091 75.0135i −0.420476 0.728287i 0.575510 0.817795i \(-0.304804\pi\)
−0.995986 + 0.0895084i \(0.971470\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −128.025 + 73.9152i −1.19649 + 0.690796i −0.959772 0.280781i \(-0.909407\pi\)
−0.236723 + 0.971577i \(0.576073\pi\)
\(108\) 0 0
\(109\) −12.1276 + 21.0056i −0.111262 + 0.192712i −0.916279 0.400540i \(-0.868823\pi\)
0.805017 + 0.593251i \(0.202156\pi\)
\(110\) 0 0
\(111\) 169.642 111.919i 1.52831 1.00828i
\(112\) 0 0
\(113\) 133.753i 1.18366i 0.806064 + 0.591828i \(0.201593\pi\)
−0.806064 + 0.591828i \(0.798407\pi\)
\(114\) 0 0
\(115\) −59.2166 + 102.566i −0.514927 + 0.891879i
\(116\) 0 0
\(117\) 172.177 20.6173i 1.47160 0.176216i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 88.4932 + 153.275i 0.731348 + 1.26673i
\(122\) 0 0
\(123\) 166.699 9.94513i 1.35527 0.0808547i
\(124\) 0 0
\(125\) 77.8255i 0.622604i
\(126\) 0 0
\(127\) −2.99315 −0.0235681 −0.0117841 0.999931i \(-0.503751\pi\)
−0.0117841 + 0.999931i \(0.503751\pi\)
\(128\) 0 0
\(129\) −8.88744 148.970i −0.0688949 1.15480i
\(130\) 0 0
\(131\) −35.0479 + 20.2349i −0.267541 + 0.154465i −0.627770 0.778399i \(-0.716032\pi\)
0.360228 + 0.932864i \(0.382699\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 106.455 + 125.783i 0.788556 + 0.931725i
\(136\) 0 0
\(137\) −58.8447 33.9740i −0.429524 0.247986i 0.269620 0.962967i \(-0.413102\pi\)
−0.699144 + 0.714981i \(0.746435\pi\)
\(138\) 0 0
\(139\) 134.862 0.970233 0.485117 0.874449i \(-0.338777\pi\)
0.485117 + 0.874449i \(0.338777\pi\)
\(140\) 0 0
\(141\) 75.6553 + 114.675i 0.536562 + 0.813301i
\(142\) 0 0
\(143\) −288.040 166.300i −2.01427 1.16294i
\(144\) 0 0
\(145\) −9.89949 17.1464i −0.0682724 0.118251i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −167.204 + 96.5350i −1.12217 + 0.647886i −0.941954 0.335741i \(-0.891013\pi\)
−0.180217 + 0.983627i \(0.557680\pi\)
\(150\) 0 0
\(151\) −136.745 + 236.849i −0.905595 + 1.56854i −0.0854787 + 0.996340i \(0.527242\pi\)
−0.820116 + 0.572197i \(0.806091\pi\)
\(152\) 0 0
\(153\) 170.471 + 72.9642i 1.11419 + 0.476890i
\(154\) 0 0
\(155\) 51.7868i 0.334109i
\(156\) 0 0
\(157\) −72.3907 + 125.384i −0.461087 + 0.798626i −0.999015 0.0443644i \(-0.985874\pi\)
0.537928 + 0.842991i \(0.319207\pi\)
\(158\) 0 0
\(159\) −44.8748 + 89.6684i −0.282232 + 0.563952i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.120719 + 0.209091i 0.000740607 + 0.00128277i 0.866395 0.499358i \(-0.166431\pi\)
−0.865655 + 0.500641i \(0.833098\pi\)
\(164\) 0 0
\(165\) −18.8226 315.501i −0.114076 1.91213i
\(166\) 0 0
\(167\) 76.1847i 0.456196i 0.973638 + 0.228098i \(0.0732506\pi\)
−0.973638 + 0.228098i \(0.926749\pi\)
\(168\) 0 0
\(169\) 202.235 1.19665
\(170\) 0 0
\(171\) −65.7968 87.8617i −0.384777 0.513811i
\(172\) 0 0
\(173\) 147.957 85.4230i 0.855243 0.493775i −0.00717350 0.999974i \(-0.502283\pi\)
0.862416 + 0.506200i \(0.168950\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −91.1810 + 182.197i −0.515147 + 1.02936i
\(178\) 0 0
\(179\) −64.4124 37.1885i −0.359846 0.207757i 0.309167 0.951008i \(-0.399950\pi\)
−0.669013 + 0.743251i \(0.733283\pi\)
\(180\) 0 0
\(181\) −98.8242 −0.545990 −0.272995 0.962015i \(-0.588014\pi\)
−0.272995 + 0.962015i \(0.588014\pi\)
\(182\) 0 0
\(183\) −45.5862 + 30.0747i −0.249105 + 0.164343i
\(184\) 0 0
\(185\) 358.064 + 206.728i 1.93548 + 1.11745i
\(186\) 0 0
\(187\) −177.830 308.011i −0.950963 1.64712i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.9543 9.21123i 0.0835305 0.0482263i −0.457653 0.889131i \(-0.651310\pi\)
0.541183 + 0.840905i \(0.317976\pi\)
\(192\) 0 0
\(193\) −105.121 + 182.074i −0.544667 + 0.943391i 0.453961 + 0.891022i \(0.350011\pi\)
−0.998628 + 0.0523692i \(0.983323\pi\)
\(194\) 0 0
\(195\) 194.269 + 294.466i 0.996252 + 1.51008i
\(196\) 0 0
\(197\) 109.079i 0.553700i −0.960913 0.276850i \(-0.910709\pi\)
0.960913 0.276850i \(-0.0892906\pi\)
\(198\) 0 0
\(199\) −90.1488 + 156.142i −0.453009 + 0.784635i −0.998571 0.0534353i \(-0.982983\pi\)
0.545562 + 0.838070i \(0.316316\pi\)
\(200\) 0 0
\(201\) −177.064 88.6125i −0.880918 0.440858i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 169.866 + 294.216i 0.828613 + 1.43520i
\(206\) 0 0
\(207\) −139.794 + 104.687i −0.675333 + 0.505735i
\(208\) 0 0
\(209\) 210.537i 1.00736i
\(210\) 0 0
\(211\) 216.497 1.02605 0.513025 0.858374i \(-0.328525\pi\)
0.513025 + 0.858374i \(0.328525\pi\)
\(212\) 0 0
\(213\) 281.025 16.7658i 1.31937 0.0787125i
\(214\) 0 0
\(215\) 262.925 151.800i 1.22291 0.706046i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 20.8543 + 10.4366i 0.0952249 + 0.0476556i
\(220\) 0 0
\(221\) 343.789 + 198.487i 1.55561 + 0.898130i
\(222\) 0 0
\(223\) 57.6123 0.258351 0.129175 0.991622i \(-0.458767\pi\)
0.129175 + 0.991622i \(0.458767\pi\)
\(224\) 0 0
\(225\) −43.3759 + 101.342i −0.192782 + 0.450409i
\(226\) 0 0
\(227\) −38.8763 22.4452i −0.171261 0.0988776i 0.411919 0.911220i \(-0.364859\pi\)
−0.583180 + 0.812343i \(0.698192\pi\)
\(228\) 0 0
\(229\) −38.0887 65.9716i −0.166326 0.288086i 0.770799 0.637078i \(-0.219857\pi\)
−0.937125 + 0.348993i \(0.886524\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 64.5660 37.2772i 0.277107 0.159988i −0.355006 0.934864i \(-0.615521\pi\)
0.632113 + 0.774876i \(0.282188\pi\)
\(234\) 0 0
\(235\) −139.745 + 242.045i −0.594659 + 1.02998i
\(236\) 0 0
\(237\) 262.917 173.455i 1.10935 0.731879i
\(238\) 0 0
\(239\) 451.081i 1.88737i 0.330851 + 0.943683i \(0.392664\pi\)
−0.330851 + 0.943683i \(0.607336\pi\)
\(240\) 0 0
\(241\) 131.507 227.777i 0.545674 0.945134i −0.452891 0.891566i \(-0.649607\pi\)
0.998564 0.0535683i \(-0.0170595\pi\)
\(242\) 0 0
\(243\) 71.3339 + 232.294i 0.293555 + 0.955942i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −117.497 203.510i −0.475695 0.823927i
\(248\) 0 0
\(249\) −153.085 + 9.13294i −0.614798 + 0.0366785i
\(250\) 0 0
\(251\) 360.864i 1.43770i 0.695163 + 0.718852i \(0.255332\pi\)
−0.695163 + 0.718852i \(0.744668\pi\)
\(252\) 0 0
\(253\) 334.979 1.32403
\(254\) 0 0
\(255\) 22.4656 + 376.565i 0.0881005 + 1.47673i
\(256\) 0 0
\(257\) 138.169 79.7719i 0.537622 0.310396i −0.206492 0.978448i \(-0.566205\pi\)
0.744115 + 0.668052i \(0.232872\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.47135 28.9895i −0.0133002 0.111071i
\(262\) 0 0
\(263\) −301.801 174.245i −1.14753 0.662528i −0.199247 0.979949i \(-0.563850\pi\)
−0.948285 + 0.317421i \(0.897183\pi\)
\(264\) 0 0
\(265\) −203.988 −0.769767
\(266\) 0 0
\(267\) −248.279 376.333i −0.929885 1.40949i
\(268\) 0 0
\(269\) −258.988 149.527i −0.962781 0.555862i −0.0657533 0.997836i \(-0.520945\pi\)
−0.897028 + 0.441974i \(0.854278\pi\)
\(270\) 0 0
\(271\) 7.42220 + 12.8556i 0.0273882 + 0.0474377i 0.879395 0.476094i \(-0.157948\pi\)
−0.852006 + 0.523531i \(0.824614\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 183.107 105.717i 0.665842 0.384424i
\(276\) 0 0
\(277\) 176.490 305.689i 0.637147 1.10357i −0.348909 0.937157i \(-0.613448\pi\)
0.986056 0.166414i \(-0.0532189\pi\)
\(278\) 0 0
\(279\) 30.0496 70.2070i 0.107705 0.251638i
\(280\) 0 0
\(281\) 59.2578i 0.210882i 0.994426 + 0.105441i \(0.0336254\pi\)
−0.994426 + 0.105441i \(0.966375\pi\)
\(282\) 0 0
\(283\) −23.7710 + 41.1726i −0.0839965 + 0.145486i −0.904963 0.425490i \(-0.860102\pi\)
0.820967 + 0.570976i \(0.193435\pi\)
\(284\) 0 0
\(285\) 99.9390 199.697i 0.350663 0.700691i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 67.7483 + 117.343i 0.234423 + 0.406033i
\(290\) 0 0
\(291\) −33.7298 565.373i −0.115910 1.94286i
\(292\) 0 0
\(293\) 385.971i 1.31731i −0.752446 0.658654i \(-0.771126\pi\)
0.752446 0.658654i \(-0.228874\pi\)
\(294\) 0 0
\(295\) −414.483 −1.40503
\(296\) 0 0
\(297\) 157.554 438.644i 0.530484 1.47692i
\(298\) 0 0
\(299\) −323.799 + 186.945i −1.08294 + 0.625235i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −55.2684 + 110.437i −0.182404 + 0.364478i
\(304\) 0 0
\(305\) −96.2187 55.5519i −0.315471 0.182137i
\(306\) 0 0
\(307\) 267.457 0.871196 0.435598 0.900141i \(-0.356537\pi\)
0.435598 + 0.900141i \(0.356537\pi\)
\(308\) 0 0
\(309\) 216.904 143.099i 0.701953 0.463102i
\(310\) 0 0
\(311\) −59.5249 34.3667i −0.191398 0.110504i 0.401239 0.915974i \(-0.368580\pi\)
−0.592637 + 0.805470i \(0.701913\pi\)
\(312\) 0 0
\(313\) 50.1949 + 86.9401i 0.160367 + 0.277764i 0.935000 0.354647i \(-0.115399\pi\)
−0.774633 + 0.632411i \(0.782066\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −161.789 + 93.4092i −0.510377 + 0.294666i −0.732989 0.680241i \(-0.761875\pi\)
0.222612 + 0.974907i \(0.428542\pi\)
\(318\) 0 0
\(319\) −28.0000 + 48.4974i −0.0877743 + 0.152030i
\(320\) 0 0
\(321\) −244.225 370.187i −0.760826 1.15323i
\(322\) 0 0
\(323\) 251.286i 0.777975i
\(324\) 0 0
\(325\) −117.997 + 204.376i −0.363067 + 0.628850i
\(326\) 0 0
\(327\) −65.0716 32.5653i −0.198996 0.0995880i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −73.3690 127.079i −0.221659 0.383924i 0.733653 0.679524i \(-0.237814\pi\)
−0.955312 + 0.295600i \(0.904480\pi\)
\(332\) 0 0
\(333\) 365.469 + 488.028i 1.09750 + 1.46555i
\(334\) 0 0
\(335\) 402.807i 1.20241i
\(336\) 0 0
\(337\) −365.717 −1.08522 −0.542608 0.839986i \(-0.682563\pi\)
−0.542608 + 0.839986i \(0.682563\pi\)
\(338\) 0 0
\(339\) −400.547 + 23.8964i −1.18155 + 0.0704908i
\(340\) 0 0
\(341\) −126.851 + 73.2377i −0.371998 + 0.214773i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −317.732 159.010i −0.920962 0.460898i
\(346\) 0 0
\(347\) 506.481 + 292.417i 1.45960 + 0.842700i 0.998991 0.0449042i \(-0.0142983\pi\)
0.460607 + 0.887604i \(0.347632\pi\)
\(348\) 0 0
\(349\) −353.002 −1.01147 −0.505734 0.862689i \(-0.668778\pi\)
−0.505734 + 0.862689i \(0.668778\pi\)
\(350\) 0 0
\(351\) 92.5034 + 511.931i 0.263543 + 1.45849i
\(352\) 0 0
\(353\) −143.491 82.8443i −0.406489 0.234687i 0.282791 0.959182i \(-0.408740\pi\)
−0.689280 + 0.724495i \(0.742073\pi\)
\(354\) 0 0
\(355\) 286.364 + 495.997i 0.806658 + 1.39717i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 364.255 210.303i 1.01464 0.585802i 0.102092 0.994775i \(-0.467446\pi\)
0.912546 + 0.408973i \(0.134113\pi\)
\(360\) 0 0
\(361\) 106.124 183.812i 0.293973 0.509176i
\(362\) 0 0
\(363\) −443.198 + 292.392i −1.22093 + 0.805489i
\(364\) 0 0
\(365\) 47.4417i 0.129977i
\(366\) 0 0
\(367\) 65.5951 113.614i 0.178733 0.309575i −0.762714 0.646736i \(-0.776133\pi\)
0.941447 + 0.337161i \(0.109467\pi\)
\(368\) 0 0
\(369\) 59.5649 + 497.431i 0.161422 + 1.34805i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −296.476 513.512i −0.794842 1.37671i −0.922940 0.384945i \(-0.874220\pi\)
0.128098 0.991762i \(-0.459113\pi\)
\(374\) 0 0
\(375\) 233.062 13.9043i 0.621499 0.0370782i
\(376\) 0 0
\(377\) 62.5049i 0.165796i
\(378\) 0 0
\(379\) −170.228 −0.449150 −0.224575 0.974457i \(-0.572099\pi\)
−0.224575 + 0.974457i \(0.572099\pi\)
\(380\) 0 0
\(381\) −0.534758 8.96351i −0.00140356 0.0235263i
\(382\) 0 0
\(383\) −350.117 + 202.140i −0.914144 + 0.527781i −0.881762 0.471694i \(-0.843643\pi\)
−0.0323821 + 0.999476i \(0.510309\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 444.528 53.2300i 1.14865 0.137545i
\(388\) 0 0
\(389\) 81.1667 + 46.8616i 0.208655 + 0.120467i 0.600686 0.799485i \(-0.294894\pi\)
−0.392031 + 0.919952i \(0.628228\pi\)
\(390\) 0 0
\(391\) −399.813 −1.02254
\(392\) 0 0
\(393\) −66.8587 101.342i −0.170124 0.257868i
\(394\) 0 0
\(395\) 554.938 + 320.394i 1.40491 + 0.811124i
\(396\) 0 0
\(397\) 21.4887 + 37.2195i 0.0541276 + 0.0937518i 0.891820 0.452391i \(-0.149429\pi\)
−0.837692 + 0.546143i \(0.816096\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −542.901 + 313.444i −1.35387 + 0.781656i −0.988789 0.149320i \(-0.952291\pi\)
−0.365079 + 0.930976i \(0.618958\pi\)
\(402\) 0 0
\(403\) 81.7449 141.586i 0.202841 0.351331i
\(404\) 0 0
\(405\) −357.660 + 341.271i −0.883110 + 0.842643i
\(406\) 0 0
\(407\) 1169.43i 2.87329i
\(408\) 0 0
\(409\) −58.8703 + 101.966i −0.143937 + 0.249306i −0.928976 0.370140i \(-0.879310\pi\)
0.785039 + 0.619447i \(0.212643\pi\)
\(410\) 0 0
\(411\) 91.2280 182.291i 0.221966 0.443530i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −155.993 270.188i −0.375887 0.651056i
\(416\) 0 0
\(417\) 24.0946 + 403.869i 0.0577808 + 0.968511i
\(418\) 0 0
\(419\) 314.902i 0.751556i −0.926710 0.375778i \(-0.877375\pi\)
0.926710 0.375778i \(-0.122625\pi\)
\(420\) 0 0
\(421\) −200.524 −0.476304 −0.238152 0.971228i \(-0.576542\pi\)
−0.238152 + 0.971228i \(0.576542\pi\)
\(422\) 0 0
\(423\) −329.899 + 247.051i −0.779903 + 0.584045i
\(424\) 0 0
\(425\) −218.546 + 126.178i −0.514226 + 0.296889i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 446.553 892.298i 1.04092 2.07995i
\(430\) 0 0
\(431\) −269.246 155.449i −0.624700 0.360671i 0.153996 0.988071i \(-0.450786\pi\)
−0.778697 + 0.627400i \(0.784119\pi\)
\(432\) 0 0
\(433\) 100.068 0.231103 0.115552 0.993301i \(-0.463136\pi\)
0.115552 + 0.993301i \(0.463136\pi\)
\(434\) 0 0
\(435\) 49.5793 32.7092i 0.113975 0.0751935i
\(436\) 0 0
\(437\) 204.966 + 118.337i 0.469030 + 0.270794i
\(438\) 0 0
\(439\) −207.187 358.859i −0.471952 0.817446i 0.527533 0.849535i \(-0.323117\pi\)
−0.999485 + 0.0320892i \(0.989784\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −34.6157 + 19.9854i −0.0781392 + 0.0451137i −0.538561 0.842587i \(-0.681032\pi\)
0.460421 + 0.887701i \(0.347698\pi\)
\(444\) 0 0
\(445\) 458.604 794.325i 1.03057 1.78500i
\(446\) 0 0
\(447\) −318.964 483.473i −0.713565 1.08160i
\(448\) 0 0
\(449\) 38.5741i 0.0859111i −0.999077 0.0429556i \(-0.986323\pi\)
0.999077 0.0429556i \(-0.0136774\pi\)
\(450\) 0 0
\(451\) 480.452 832.168i 1.06530 1.84516i
\(452\) 0 0
\(453\) −733.717 367.191i −1.61968 0.810576i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 213.631 + 370.020i 0.467464 + 0.809671i 0.999309 0.0371705i \(-0.0118345\pi\)
−0.531845 + 0.846842i \(0.678501\pi\)
\(458\) 0 0
\(459\) −188.048 + 523.542i −0.409690 + 1.14061i
\(460\) 0 0
\(461\) 224.426i 0.486825i 0.969923 + 0.243412i \(0.0782668\pi\)
−0.969923 + 0.243412i \(0.921733\pi\)
\(462\) 0 0
\(463\) 94.4966 0.204096 0.102048 0.994779i \(-0.467460\pi\)
0.102048 + 0.994779i \(0.467460\pi\)
\(464\) 0 0
\(465\) 155.085 9.25226i 0.333516 0.0198973i
\(466\) 0 0
\(467\) 344.375 198.825i 0.737419 0.425749i −0.0837110 0.996490i \(-0.526677\pi\)
0.821130 + 0.570741i \(0.193344\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −388.419 194.385i −0.824668 0.412708i
\(472\) 0 0
\(473\) −743.664 429.355i −1.57223 0.907727i
\(474\) 0 0
\(475\) 149.385 0.314494
\(476\) 0 0
\(477\) −276.545 118.365i −0.579759 0.248145i
\(478\) 0 0
\(479\) −191.553 110.593i −0.399902 0.230884i 0.286540 0.958068i \(-0.407495\pi\)
−0.686442 + 0.727185i \(0.740828\pi\)
\(480\) 0 0
\(481\) 652.635 + 1130.40i 1.35683 + 2.35010i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 997.858 576.114i 2.05744 1.18786i
\(486\) 0 0
\(487\) 83.7517 145.062i 0.171975 0.297869i −0.767135 0.641485i \(-0.778319\pi\)
0.939110 + 0.343616i \(0.111652\pi\)
\(488\) 0 0
\(489\) −0.604593 + 0.398871i −0.00123639 + 0.000815686i
\(490\) 0 0
\(491\) 641.712i 1.30695i 0.756949 + 0.653474i \(0.226689\pi\)
−0.756949 + 0.653474i \(0.773311\pi\)
\(492\) 0 0
\(493\) 33.4193 57.8839i 0.0677876 0.117412i
\(494\) 0 0
\(495\) 941.461 112.735i 1.90194 0.227748i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −353.241 611.832i −0.707899 1.22612i −0.965635 0.259901i \(-0.916310\pi\)
0.257737 0.966215i \(-0.417023\pi\)
\(500\) 0 0
\(501\) −228.148 + 13.6112i −0.455386 + 0.0271681i
\(502\) 0 0
\(503\) 77.8255i 0.154723i 0.997003 + 0.0773613i \(0.0246495\pi\)
−0.997003 + 0.0773613i \(0.975351\pi\)
\(504\) 0 0
\(505\) −251.235 −0.497494
\(506\) 0 0
\(507\) 36.1313 + 605.627i 0.0712649 + 1.19453i
\(508\) 0 0
\(509\) 85.6626 49.4574i 0.168296 0.0971657i −0.413486 0.910510i \(-0.635689\pi\)
0.581782 + 0.813345i \(0.302356\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 251.362 212.737i 0.489984 0.414693i
\(514\) 0 0
\(515\) 457.818 + 264.321i 0.888967 + 0.513245i
\(516\) 0 0
\(517\) 790.516 1.52905
\(518\) 0 0
\(519\) 282.248 + 427.822i 0.543831 + 0.824319i
\(520\) 0 0
\(521\) 416.842 + 240.664i 0.800080 + 0.461927i 0.843499 0.537130i \(-0.180492\pi\)
−0.0434189 + 0.999057i \(0.513825\pi\)
\(522\) 0 0
\(523\) 65.8560 + 114.066i 0.125920 + 0.218099i 0.922092 0.386971i \(-0.126479\pi\)
−0.796172 + 0.605070i \(0.793145\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 151.403 87.4125i 0.287292 0.165868i
\(528\) 0 0
\(529\) −76.2175 + 132.013i −0.144078 + 0.249551i
\(530\) 0 0
\(531\) −561.911 240.506i −1.05821 0.452931i
\(532\) 0 0
\(533\) 1072.52i 2.01224i
\(534\) 0 0
\(535\) 451.115 781.354i 0.843205 1.46047i
\(536\) 0 0
\(537\) 99.8596 199.538i 0.185958 0.371580i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 178.248 + 308.735i 0.329479 + 0.570675i 0.982409 0.186744i \(-0.0597935\pi\)
−0.652929 + 0.757419i \(0.726460\pi\)
\(542\) 0 0
\(543\) −17.6560 295.946i −0.0325156 0.545021i
\(544\) 0 0
\(545\) 148.032i 0.271619i
\(546\) 0 0
\(547\) −799.731 −1.46203 −0.731016 0.682361i \(-0.760953\pi\)
−0.731016 + 0.682361i \(0.760953\pi\)
\(548\) 0 0
\(549\) −98.2085 131.143i −0.178886 0.238876i
\(550\) 0 0
\(551\) −34.2651 + 19.7829i −0.0621870 + 0.0359037i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −555.112 + 1109.22i −1.00020 + 1.99859i
\(556\) 0 0
\(557\) −234.528 135.405i −0.421055 0.243096i 0.274473 0.961595i \(-0.411496\pi\)
−0.695529 + 0.718498i \(0.744830\pi\)
\(558\) 0 0
\(559\) 958.457 1.71459
\(560\) 0 0
\(561\) 890.621 587.573i 1.58756 1.04737i
\(562\) 0 0
\(563\) −114.294 65.9876i −0.203009 0.117207i 0.395049 0.918660i \(-0.370727\pi\)
−0.598058 + 0.801453i \(0.704061\pi\)
\(564\) 0 0
\(565\) −408.157 706.948i −0.722401 1.25124i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 77.7621 44.8960i 0.136665 0.0789033i −0.430109 0.902777i \(-0.641525\pi\)
0.566773 + 0.823874i \(0.308192\pi\)
\(570\) 0 0
\(571\) 190.362 329.717i 0.333384 0.577438i −0.649789 0.760114i \(-0.725143\pi\)
0.983173 + 0.182677i \(0.0584762\pi\)
\(572\) 0 0
\(573\) 30.4351 + 46.1323i 0.0531153 + 0.0805102i
\(574\) 0 0
\(575\) 237.682i 0.413359i
\(576\) 0 0
\(577\) −483.105 + 836.763i −0.837271 + 1.45020i 0.0548972 + 0.998492i \(0.482517\pi\)
−0.892168 + 0.451704i \(0.850816\pi\)
\(578\) 0 0
\(579\) −564.035 282.273i −0.974153 0.487518i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 288.483 + 499.667i 0.494825 + 0.857062i
\(584\) 0 0
\(585\) −847.122 + 634.382i −1.44807 + 1.08441i
\(586\) 0 0
\(587\) 235.937i 0.401938i −0.979598 0.200969i \(-0.935591\pi\)
0.979598 0.200969i \(-0.0644090\pi\)
\(588\) 0 0
\(589\) −103.490 −0.175704
\(590\) 0 0
\(591\) 326.656 19.4881i 0.552718 0.0329748i
\(592\) 0 0
\(593\) −82.6896 + 47.7409i −0.139443 + 0.0805073i −0.568098 0.822961i \(-0.692321\pi\)
0.428656 + 0.903468i \(0.358987\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −483.702 242.070i −0.810221 0.405478i
\(598\) 0 0
\(599\) 331.700 + 191.507i 0.553756 + 0.319711i 0.750636 0.660716i \(-0.229747\pi\)
−0.196879 + 0.980428i \(0.563081\pi\)
\(600\) 0 0
\(601\) 131.142 0.218206 0.109103 0.994030i \(-0.465202\pi\)
0.109103 + 0.994030i \(0.465202\pi\)
\(602\) 0 0
\(603\) 233.731 546.082i 0.387614 0.905609i
\(604\) 0 0
\(605\) −935.456 540.086i −1.54621 0.892704i
\(606\) 0 0
\(607\) −269.554 466.882i −0.444076 0.769162i 0.553911 0.832576i \(-0.313135\pi\)
−0.997987 + 0.0634134i \(0.979801\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −764.131 + 441.171i −1.25062 + 0.722047i
\(612\) 0 0
\(613\) 112.624 195.071i 0.183726 0.318223i −0.759420 0.650600i \(-0.774517\pi\)
0.943147 + 0.332377i \(0.107851\pi\)
\(614\) 0 0
\(615\) −850.733 + 561.257i −1.38331 + 0.912613i
\(616\) 0 0
\(617\) 1021.48i 1.65556i −0.561051 0.827781i \(-0.689603\pi\)
0.561051 0.827781i \(-0.310397\pi\)
\(618\) 0 0
\(619\) 105.464 182.668i 0.170377 0.295102i −0.768174 0.640241i \(-0.778835\pi\)
0.938552 + 0.345138i \(0.112168\pi\)
\(620\) 0 0
\(621\) −338.480 399.934i −0.545056 0.644016i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 390.593 + 676.527i 0.624949 + 1.08244i
\(626\) 0 0
\(627\) −630.491 + 37.6147i −1.00557 + 0.0599915i
\(628\) 0 0
\(629\) 1395.77i 2.21903i
\(630\) 0 0
\(631\) 1084.40 1.71854 0.859272 0.511520i \(-0.170917\pi\)
0.859272 + 0.511520i \(0.170917\pi\)
\(632\) 0 0
\(633\) 38.6794 + 648.337i 0.0611049 + 1.02423i
\(634\) 0 0
\(635\) 15.8202 9.13380i 0.0249137 0.0143839i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 100.416 + 838.583i 0.157146 + 1.31234i
\(640\) 0 0
\(641\) 804.775 + 464.637i 1.25550 + 0.724863i 0.972196 0.234168i \(-0.0752366\pi\)
0.283303 + 0.959031i \(0.408570\pi\)
\(642\) 0 0
\(643\) 887.946 1.38094 0.690471 0.723360i \(-0.257403\pi\)
0.690471 + 0.723360i \(0.257403\pi\)
\(644\) 0 0
\(645\) 501.566 + 760.255i 0.777621 + 1.17869i
\(646\) 0 0
\(647\) −170.484 98.4288i −0.263499 0.152131i 0.362431 0.932011i \(-0.381947\pi\)
−0.625929 + 0.779880i \(0.715280\pi\)
\(648\) 0 0
\(649\) 586.167 + 1015.27i 0.903185 + 1.56436i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −376.651 + 217.460i −0.576801 + 0.333016i −0.759861 0.650085i \(-0.774733\pi\)
0.183060 + 0.983102i \(0.441400\pi\)
\(654\) 0 0
\(655\) 123.497 213.902i 0.188544 0.326568i
\(656\) 0 0
\(657\) −27.5283 + 64.3163i −0.0419000 + 0.0978940i
\(658\) 0 0
\(659\) 662.337i 1.00506i 0.864559 + 0.502532i \(0.167598\pi\)
−0.864559 + 0.502532i \(0.832402\pi\)
\(660\) 0 0
\(661\) −519.614 + 899.998i −0.786103 + 1.36157i 0.142235 + 0.989833i \(0.454571\pi\)
−0.928338 + 0.371737i \(0.878762\pi\)
\(662\) 0 0
\(663\) −532.982 + 1065.00i −0.803894 + 1.60633i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 31.4760 + 54.5181i 0.0471904 + 0.0817362i
\(668\) 0 0
\(669\) 10.2930 + 172.530i 0.0153857 + 0.257892i
\(670\) 0 0
\(671\) 314.249i 0.468329i
\(672\) 0 0
\(673\) −1210.47 −1.79862 −0.899308 0.437315i \(-0.855930\pi\)
−0.899308 + 0.437315i \(0.855930\pi\)
\(674\) 0 0
\(675\) −311.236 111.791i −0.461090 0.165616i
\(676\) 0 0
\(677\) 1081.96 624.668i 1.59816 0.922700i 0.606321 0.795220i \(-0.292645\pi\)
0.991841 0.127480i \(-0.0406888\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 60.2705 120.432i 0.0885030 0.176846i
\(682\) 0 0
\(683\) 339.226 + 195.852i 0.496671 + 0.286753i 0.727338 0.686280i \(-0.240757\pi\)
−0.230667 + 0.973033i \(0.574091\pi\)
\(684\) 0 0
\(685\) 414.696 0.605396
\(686\) 0 0
\(687\) 190.759 125.850i 0.277669 0.183188i
\(688\) 0 0
\(689\) −557.708 321.993i −0.809445 0.467333i
\(690\) 0 0
\(691\) −336.844 583.430i −0.487473 0.844328i 0.512423 0.858733i \(-0.328748\pi\)
−0.999896 + 0.0144052i \(0.995415\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −712.812 + 411.542i −1.02563 + 0.592147i
\(696\) 0 0
\(697\) −573.442 + 993.230i −0.822729 + 1.42501i
\(698\) 0 0
\(699\) 123.169 + 186.694i 0.176207 + 0.267088i
\(700\) 0 0
\(701\) 499.209i 0.712139i 0.934459 + 0.356070i \(0.115883\pi\)
−0.934459 + 0.356070i \(0.884117\pi\)
\(702\) 0 0
\(703\) 413.121 715.547i 0.587654 1.01785i
\(704\) 0 0
\(705\) −749.814 375.247i −1.06357 0.532265i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 394.879 + 683.951i 0.556952 + 0.964670i 0.997749 + 0.0670628i \(0.0213628\pi\)
−0.440796 + 0.897607i \(0.645304\pi\)
\(710\) 0 0
\(711\) 566.415 + 756.361i 0.796645 + 1.06380i
\(712\) 0 0
\(713\) 164.659i 0.230939i
\(714\) 0 0
\(715\) 2029.90 2.83903
\(716\) 0 0
\(717\) −1350.84 + 80.5902i −1.88402 + 0.112399i
\(718\) 0 0
\(719\) 503.215 290.531i 0.699882 0.404077i −0.107422 0.994214i \(-0.534259\pi\)
0.807303 + 0.590137i \(0.200926\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 705.614 + 353.127i 0.975954 + 0.488419i
\(724\) 0 0
\(725\) 34.4109 + 19.8671i 0.0474633 + 0.0274029i
\(726\) 0 0
\(727\) 21.5256 0.0296088 0.0148044 0.999890i \(-0.495287\pi\)
0.0148044 + 0.999890i \(0.495287\pi\)
\(728\) 0 0
\(729\) −682.900 + 255.124i −0.936763 + 0.349964i
\(730\) 0 0
\(731\) 887.597 + 512.455i 1.21422 + 0.701032i
\(732\) 0 0
\(733\) −99.4024 172.170i −0.135610 0.234884i 0.790220 0.612823i \(-0.209966\pi\)
−0.925830 + 0.377939i \(0.876633\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −986.672 + 569.655i −1.33877 + 0.772938i
\(738\) 0 0
\(739\) 195.114 337.947i 0.264024 0.457303i −0.703283 0.710910i \(-0.748283\pi\)
0.967308 + 0.253606i \(0.0816168\pi\)
\(740\) 0 0
\(741\) 588.455 388.223i 0.794136 0.523918i
\(742\) 0 0
\(743\) 228.637i 0.307721i 0.988093 + 0.153860i \(0.0491706\pi\)
−0.988093 + 0.153860i \(0.950829\pi\)
\(744\) 0 0
\(745\) 589.166 1020.47i 0.790827 1.36975i
\(746\) 0 0
\(747\) −54.7004 456.808i −0.0732268 0.611523i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 670.193 + 1160.81i 0.892401 + 1.54568i 0.836988 + 0.547221i \(0.184314\pi\)
0.0554134 + 0.998463i \(0.482352\pi\)
\(752\) 0 0
\(753\) −1080.67 + 64.4721i −1.43515 + 0.0856203i
\(754\) 0 0
\(755\) 1669.15i 2.21079i
\(756\) 0 0
\(757\) −550.187 −0.726799 −0.363399 0.931633i \(-0.618384\pi\)
−0.363399 + 0.931633i \(0.618384\pi\)
\(758\) 0 0
\(759\) 59.8476 + 1003.15i 0.0788506 + 1.32168i
\(760\) 0 0
\(761\) −227.696 + 131.460i −0.299206 + 0.172747i −0.642086 0.766632i \(-0.721931\pi\)
0.342880 + 0.939379i \(0.388598\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1123.68 + 134.555i −1.46886 + 0.175888i
\(766\) 0 0
\(767\) −1133.20 654.256i −1.47745 0.853006i
\(768\) 0 0
\(769\) 1415.55 1.84077 0.920384 0.391016i \(-0.127876\pi\)
0.920384 + 0.391016i \(0.127876\pi\)
\(770\) 0 0
\(771\) 263.576 + 399.519i 0.341863 + 0.518183i
\(772\) 0 0
\(773\) −31.3146 18.0795i −0.0405105 0.0233887i 0.479608 0.877483i \(-0.340779\pi\)
−0.520118 + 0.854094i \(0.674112\pi\)
\(774\) 0 0
\(775\) 51.9651 + 90.0062i 0.0670517 + 0.116137i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 587.955 339.456i 0.754756 0.435758i
\(780\) 0 0
\(781\) 809.959 1402.89i 1.03708 1.79627i
\(782\) 0 0
\(783\) 86.1940 15.5748i 0.110082 0.0198912i
\(784\) 0 0
\(785\) 883.620i 1.12563i
\(786\) 0 0
\(787\) −70.9813 + 122.943i −0.0901922 + 0.156218i −0.907592 0.419853i \(-0.862081\pi\)
0.817400 + 0.576071i \(0.195415\pi\)
\(788\) 0 0
\(789\) 467.887 934.926i 0.593012 1.18495i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −175.376 303.760i −0.221155 0.383052i
\(794\) 0 0
\(795\) −36.4446 610.878i −0.0458423 0.768401i
\(796\) 0 0
\(797\) 811.299i 1.01794i 0.860784 + 0.508971i \(0.169974\pi\)
−0.860784 + 0.508971i \(0.830026\pi\)
\(798\) 0 0
\(799\) −943.517 −1.18087
\(800\) 0 0
\(801\) 1082.64 810.752i 1.35161 1.01217i
\(802\) 0 0
\(803\) 116.208 67.0927i 0.144717 0.0835526i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 401.513 802.300i 0.497538 0.994176i
\(808\) 0 0
\(809\) −823.775 475.607i −1.01826 0.587895i −0.104663 0.994508i \(-0.533376\pi\)
−0.913600 + 0.406613i \(0.866710\pi\)
\(810\) 0 0
\(811\) −518.407 −0.639220 −0.319610 0.947549i \(-0.603552\pi\)
−0.319610 + 0.947549i \(0.603552\pi\)
\(812\) 0 0
\(813\) −37.1724 + 24.5239i −0.0457225 + 0.0301647i
\(814\) 0 0
\(815\) −1.27611 0.736765i −0.00156578 0.000904006i
\(816\) 0 0
\(817\) −303.354 525.424i −0.371302 0.643114i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1116.66 644.701i 1.36012 0.785263i 0.370477 0.928842i \(-0.379194\pi\)
0.989639 + 0.143579i \(0.0458610\pi\)
\(822\) 0 0
\(823\) −251.248 + 435.175i −0.305283 + 0.528766i −0.977324 0.211748i \(-0.932085\pi\)
0.672041 + 0.740514i \(0.265418\pi\)
\(824\) 0 0
\(825\) 349.301 + 529.458i 0.423395 + 0.641767i
\(826\) 0 0
\(827\) 1533.34i 1.85409i 0.374946 + 0.927047i \(0.377661\pi\)
−0.374946 + 0.927047i \(0.622339\pi\)
\(828\) 0 0
\(829\) −559.031 + 968.271i −0.674344 + 1.16800i 0.302316 + 0.953208i \(0.402240\pi\)
−0.976660 + 0.214791i \(0.931093\pi\)
\(830\) 0 0
\(831\) 946.972 + 473.915i 1.13956 + 0.570295i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −232.483 402.672i −0.278423 0.482242i
\(836\) 0 0
\(837\) 215.616 + 77.4456i 0.257605 + 0.0925276i
\(838\) 0 0
\(839\) 1008.87i 1.20246i 0.799074 + 0.601232i \(0.205323\pi\)
−0.799074 + 0.601232i \(0.794677\pi\)
\(840\) 0 0
\(841\) 830.476 0.987486
\(842\) 0 0
\(843\) −177.458 + 10.5870i −0.210508 + 0.0125587i
\(844\) 0 0
\(845\) −1068.91 + 617.133i −1.26498 + 0.730335i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −127.546 63.8306i −0.150230 0.0751832i
\(850\) 0 0
\(851\) −1138.48 657.304i −1.33782 0.772390i
\(852\) 0 0
\(853\) −389.811 −0.456988 −0.228494 0.973545i \(-0.573380\pi\)
−0.228494 + 0.973545i \(0.573380\pi\)
\(854\) 0 0
\(855\) 615.883 + 263.607i 0.720331 + 0.308312i
\(856\) 0 0
\(857\) 379.038 + 218.838i 0.442285 + 0.255353i 0.704566 0.709638i \(-0.251142\pi\)
−0.262282 + 0.964991i \(0.584475\pi\)
\(858\) 0 0
\(859\) 581.142 + 1006.57i 0.676533 + 1.17179i 0.976018 + 0.217689i \(0.0698517\pi\)
−0.299485 + 0.954101i \(0.596815\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 156.222 90.1947i 0.181022 0.104513i −0.406751 0.913539i \(-0.633338\pi\)
0.587773 + 0.809026i \(0.300005\pi\)
\(864\) 0 0
\(865\) −521.348 + 903.002i −0.602715 + 1.04393i
\(866\) 0 0
\(867\) −339.302 + 223.849i −0.391351 + 0.258188i
\(868\) 0 0
\(869\) 1812.42i 2.08564i
\(870\) 0 0
\(871\) 635.826 1101.28i 0.729995 1.26439i
\(872\) 0 0
\(873\) 1687.08 202.019i 1.93251 0.231408i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −555.080 961.426i −0.632930 1.09627i −0.986950 0.161029i \(-0.948519\pi\)
0.354020 0.935238i \(-0.384815\pi\)
\(878\) 0 0
\(879\) 1155.86 68.9578i 1.31497 0.0784503i
\(880\) 0 0
\(881\) 1491.08i 1.69249i −0.532794 0.846245i \(-0.678858\pi\)
0.532794 0.846245i \(-0.321142\pi\)
\(882\) 0 0
\(883\) 334.027 0.378287 0.189143 0.981949i \(-0.439429\pi\)
0.189143 + 0.981949i \(0.439429\pi\)
\(884\) 0 0
\(885\) −74.0517 1241.24i −0.0836742 1.40253i
\(886\) 0 0
\(887\) −198.223 + 114.444i −0.223476 + 0.129024i −0.607559 0.794275i \(-0.707851\pi\)
0.384083 + 0.923299i \(0.374518\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1341.75 + 393.454i 1.50589 + 0.441587i
\(892\) 0 0
\(893\) 483.698 + 279.263i 0.541655 + 0.312725i
\(894\) 0 0
\(895\) 453.933 0.507188
\(896\) 0 0
\(897\) −617.690 936.272i −0.688618 1.04378i
\(898\) 0 0
\(899\) −23.8389 13.7634i −0.0265172 0.0153097i
\(900\) 0 0
\(901\) −344.317 596.375i −0.382150 0.661904i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 522.333 301.569i 0.577163 0.333225i
\(906\) 0 0
\(907\) −461.228 + 798.870i −0.508520 + 0.880783i 0.491431 + 0.870916i \(0.336474\pi\)
−0.999951 + 0.00986628i \(0.996859\pi\)
\(908\) 0 0
\(909\) −340.597 145.780i −0.374694 0.160374i
\(910\) 0 0
\(911\) 1277.11i 1.40188i 0.713220 + 0.700940i \(0.247236\pi\)
−0.713220 + 0.700940i \(0.752764\pi\)
\(912\) 0 0
\(913\) −441.215 + 764.207i −0.483259 + 0.837029i
\(914\) 0 0
\(915\) 149.169 298.069i 0.163027 0.325758i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −647.704 1121.86i −0.704792 1.22074i −0.966767 0.255661i \(-0.917707\pi\)
0.261975 0.965075i \(-0.415626\pi\)
\(920\) 0 0
\(921\) 47.7840 + 800.947i 0.0518827 + 0.869649i
\(922\) 0 0
\(923\) 1808.09i 1.95892i
\(924\) 0 0
\(925\) −829.759 −0.897036
\(926\) 0 0
\(927\) 467.286 + 623.990i 0.504084 + 0.673128i
\(928\) 0 0
\(929\) −795.758 + 459.431i −0.856574 + 0.494543i −0.862864 0.505437i \(-0.831331\pi\)
0.00628921 + 0.999980i \(0.497998\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 92.2824 184.398i 0.0989094 0.197640i
\(934\) 0 0
\(935\) 1879.83 + 1085.32i 2.01052 + 1.16077i
\(936\) 0 0
\(937\) −1066.99 −1.13873 −0.569365 0.822085i \(-0.692811\pi\)
−0.569365 + 0.822085i \(0.692811\pi\)
\(938\) 0 0
\(939\) −251.390 + 165.850i −0.267721 + 0.176624i
\(940\) 0 0
\(941\) 751.632 + 433.955i 0.798759 + 0.461164i 0.843037 0.537856i \(-0.180765\pi\)
−0.0442781 + 0.999019i \(0.514099\pi\)
\(942\) 0 0
\(943\) −540.098 935.476i −0.572744 0.992022i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.3087 + 17.4988i −0.0320050 + 0.0184781i −0.515917 0.856638i \(-0.672549\pi\)
0.483912 + 0.875117i \(0.339215\pi\)
\(948\) 0 0
\(949\) −74.8861 + 129.707i −0.0789106 + 0.136677i
\(950\) 0 0
\(951\) −308.636 467.818i −0.324538 0.491923i
\(952\) 0 0
\(953\) 482.989i 0.506809i −0.967360 0.253405i \(-0.918450\pi\)
0.967360 0.253405i \(-0.0815504\pi\)
\(954\) 0 0
\(955\) −56.2174 + 97.3714i −0.0588664 + 0.101960i
\(956\) 0 0
\(957\) −150.237 75.1863i −0.156987 0.0785646i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 444.500 + 769.897i 0.462539 + 0.801141i
\(962\) 0 0
\(963\) 1064.96 797.513i 1.10587 0.828154i
\(964\) 0 0
\(965\) 1283.13i 1.32967i
\(966\) 0 0
\(967\) −567.394 −0.586757 −0.293378 0.955996i \(-0.594780\pi\)
−0.293378 + 0.955996i \(0.594780\pi\)
\(968\) 0 0
\(969\) 752.520 44.8948i 0.776594 0.0463311i
\(970\) 0 0
\(971\) −774.869 + 447.371i −0.798012 + 0.460732i −0.842775 0.538265i \(-0.819080\pi\)
0.0447638 + 0.998998i \(0.485746\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −633.122 316.848i −0.649355 0.324972i
\(976\) 0 0
\(977\) −811.533 468.539i −0.830637 0.479569i 0.0234335 0.999725i \(-0.492540\pi\)
−0.854071 + 0.520157i \(0.825874\pi\)
\(978\) 0 0
\(979\) −2594.25 −2.64990
\(980\) 0 0
\(981\) 85.8967 200.686i 0.0875603 0.204573i
\(982\) 0 0
\(983\) 1569.53 + 906.170i 1.59668 + 0.921841i 0.992122 + 0.125276i \(0.0399817\pi\)
0.604553 + 0.796565i \(0.293352\pi\)
\(984\) 0 0
\(985\) 332.862 + 576.534i 0.337931 + 0.585314i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −835.986 + 482.657i −0.845284 + 0.488025i
\(990\) 0 0
\(991\) 494.455 856.422i 0.498946 0.864200i −0.501053 0.865416i \(-0.667054\pi\)
0.999999 + 0.00121664i \(0.000387268\pi\)
\(992\) 0 0
\(993\) 367.452 242.420i 0.370042 0.244129i
\(994\) 0 0
\(995\) 1100.38i 1.10591i
\(996\) 0 0
\(997\) −692.821 + 1200.00i −0.694906 + 1.20361i 0.275307 + 0.961356i \(0.411221\pi\)
−0.970212 + 0.242256i \(0.922113\pi\)
\(998\) 0 0
\(999\) −1396.19 + 1181.65i −1.39759 + 1.18283i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.p.i.557.5 16
3.2 odd 2 inner 588.3.p.i.557.2 16
7.2 even 3 inner 588.3.p.i.569.2 16
7.3 odd 6 588.3.c.j.197.2 yes 8
7.4 even 3 588.3.c.j.197.7 yes 8
7.5 odd 6 inner 588.3.p.i.569.7 16
7.6 odd 2 inner 588.3.p.i.557.4 16
21.2 odd 6 inner 588.3.p.i.569.5 16
21.5 even 6 inner 588.3.p.i.569.4 16
21.11 odd 6 588.3.c.j.197.8 yes 8
21.17 even 6 588.3.c.j.197.1 8
21.20 even 2 inner 588.3.p.i.557.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.3.c.j.197.1 8 21.17 even 6
588.3.c.j.197.2 yes 8 7.3 odd 6
588.3.c.j.197.7 yes 8 7.4 even 3
588.3.c.j.197.8 yes 8 21.11 odd 6
588.3.p.i.557.2 16 3.2 odd 2 inner
588.3.p.i.557.4 16 7.6 odd 2 inner
588.3.p.i.557.5 16 1.1 even 1 trivial
588.3.p.i.557.7 16 21.20 even 2 inner
588.3.p.i.569.2 16 7.2 even 3 inner
588.3.p.i.569.4 16 21.5 even 6 inner
588.3.p.i.569.5 16 21.2 odd 6 inner
588.3.p.i.569.7 16 7.5 odd 6 inner