Properties

Label 588.3.g.h.295.6
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.6
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.h.295.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.44448 - 1.38328i) q^{2} +1.73205i q^{3} +(0.173067 + 3.99625i) q^{4} -1.50286 q^{5} +(2.39591 - 2.50192i) q^{6} +(5.27795 - 6.01192i) q^{8} -3.00000 q^{9} +(2.17086 + 2.07888i) q^{10} +9.21570i q^{11} +(-6.92172 + 0.299760i) q^{12} -5.97750 q^{13} -2.60304i q^{15} +(-15.9401 + 1.38324i) q^{16} +3.95449 q^{17} +(4.33345 + 4.14984i) q^{18} -3.59885i q^{19} +(-0.260096 - 6.00582i) q^{20} +(12.7479 - 13.3119i) q^{22} +21.6730i q^{23} +(10.4130 + 9.14168i) q^{24} -22.7414 q^{25} +(8.63441 + 8.26857i) q^{26} -5.19615i q^{27} +47.5775 q^{29} +(-3.60073 + 3.76004i) q^{30} -38.5042i q^{31} +(24.9386 + 20.0516i) q^{32} -15.9621 q^{33} +(-5.71220 - 5.47018i) q^{34} +(-0.519200 - 11.9888i) q^{36} -52.4915 q^{37} +(-4.97822 + 5.19847i) q^{38} -10.3533i q^{39} +(-7.93204 + 9.03510i) q^{40} -64.9569 q^{41} +16.8099i q^{43} +(-36.8283 + 1.59493i) q^{44} +4.50859 q^{45} +(29.9798 - 31.3063i) q^{46} -68.2794i q^{47} +(-2.39584 - 27.6091i) q^{48} +(32.8496 + 31.4578i) q^{50} +6.84938i q^{51} +(-1.03451 - 23.8876i) q^{52} -18.1753 q^{53} +(-7.18774 + 7.50576i) q^{54} -13.8499i q^{55} +6.23338 q^{57} +(-68.7249 - 65.8130i) q^{58} -49.0800i q^{59} +(10.4024 - 0.450499i) q^{60} -98.5495 q^{61} +(-53.2622 + 55.6188i) q^{62} +(-8.28647 - 63.4613i) q^{64} +8.98337 q^{65} +(23.0569 + 22.0800i) q^{66} -129.352i q^{67} +(0.684392 + 15.8032i) q^{68} -37.5387 q^{69} +61.8601i q^{71} +(-15.8339 + 18.0358i) q^{72} -95.7877 q^{73} +(75.8232 + 72.6106i) q^{74} -39.3893i q^{75} +(14.3819 - 0.622841i) q^{76} +(-14.3216 + 14.9552i) q^{78} -13.1219i q^{79} +(23.9558 - 2.07882i) q^{80} +9.00000 q^{81} +(93.8292 + 89.8537i) q^{82} +91.0240i q^{83} -5.94306 q^{85} +(23.2528 - 24.2816i) q^{86} +82.4066i q^{87} +(55.4041 + 48.6400i) q^{88} -90.7057 q^{89} +(-6.51258 - 6.23665i) q^{90} +(-86.6108 + 3.75087i) q^{92} +66.6913 q^{93} +(-94.4496 + 98.6285i) q^{94} +5.40857i q^{95} +(-34.7303 + 43.1950i) q^{96} -7.05515 q^{97} -27.6471i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 12 q^{4} - 20 q^{8} - 72 q^{9} - 60 q^{16} - 12 q^{18} + 168 q^{22} + 120 q^{25} + 64 q^{29} - 236 q^{32} - 36 q^{36} - 192 q^{37} - 360 q^{44} - 72 q^{46} + 532 q^{50} + 432 q^{53} + 240 q^{58}+ \cdots - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.44448 1.38328i −0.722242 0.691641i
\(3\) 1.73205i 0.577350i
\(4\) 0.173067 + 3.99625i 0.0432667 + 0.999064i
\(5\) −1.50286 −0.300573 −0.150286 0.988643i \(-0.548020\pi\)
−0.150286 + 0.988643i \(0.548020\pi\)
\(6\) 2.39591 2.50192i 0.399319 0.416987i
\(7\) 0 0
\(8\) 5.27795 6.01192i 0.659744 0.751491i
\(9\) −3.00000 −0.333333
\(10\) 2.17086 + 2.07888i 0.217086 + 0.207888i
\(11\) 9.21570i 0.837791i 0.908034 + 0.418895i \(0.137583\pi\)
−0.908034 + 0.418895i \(0.862417\pi\)
\(12\) −6.92172 + 0.299760i −0.576810 + 0.0249800i
\(13\) −5.97750 −0.459808 −0.229904 0.973213i \(-0.573841\pi\)
−0.229904 + 0.973213i \(0.573841\pi\)
\(14\) 0 0
\(15\) 2.60304i 0.173536i
\(16\) −15.9401 + 1.38324i −0.996256 + 0.0864524i
\(17\) 3.95449 0.232617 0.116309 0.993213i \(-0.462894\pi\)
0.116309 + 0.993213i \(0.462894\pi\)
\(18\) 4.33345 + 4.14984i 0.240747 + 0.230547i
\(19\) 3.59885i 0.189413i −0.995505 0.0947065i \(-0.969809\pi\)
0.995505 0.0947065i \(-0.0301913\pi\)
\(20\) −0.260096 6.00582i −0.0130048 0.300291i
\(21\) 0 0
\(22\) 12.7479 13.3119i 0.579450 0.605088i
\(23\) 21.6730i 0.942304i 0.882052 + 0.471152i \(0.156162\pi\)
−0.882052 + 0.471152i \(0.843838\pi\)
\(24\) 10.4130 + 9.14168i 0.433873 + 0.380903i
\(25\) −22.7414 −0.909656
\(26\) 8.63441 + 8.26857i 0.332093 + 0.318022i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 47.5775 1.64060 0.820301 0.571931i \(-0.193806\pi\)
0.820301 + 0.571931i \(0.193806\pi\)
\(30\) −3.60073 + 3.76004i −0.120024 + 0.125335i
\(31\) 38.5042i 1.24207i −0.783782 0.621036i \(-0.786712\pi\)
0.783782 0.621036i \(-0.213288\pi\)
\(32\) 24.9386 + 20.0516i 0.779332 + 0.626612i
\(33\) −15.9621 −0.483699
\(34\) −5.71220 5.47018i −0.168006 0.160888i
\(35\) 0 0
\(36\) −0.519200 11.9888i −0.0144222 0.333021i
\(37\) −52.4915 −1.41869 −0.709345 0.704861i \(-0.751009\pi\)
−0.709345 + 0.704861i \(0.751009\pi\)
\(38\) −4.97822 + 5.19847i −0.131006 + 0.136802i
\(39\) 10.3533i 0.265470i
\(40\) −7.93204 + 9.03510i −0.198301 + 0.225877i
\(41\) −64.9569 −1.58432 −0.792158 0.610316i \(-0.791042\pi\)
−0.792158 + 0.610316i \(0.791042\pi\)
\(42\) 0 0
\(43\) 16.8099i 0.390928i 0.980711 + 0.195464i \(0.0626212\pi\)
−0.980711 + 0.195464i \(0.937379\pi\)
\(44\) −36.8283 + 1.59493i −0.837006 + 0.0362484i
\(45\) 4.50859 0.100191
\(46\) 29.9798 31.3063i 0.651736 0.680571i
\(47\) 68.2794i 1.45275i −0.687297 0.726377i \(-0.741203\pi\)
0.687297 0.726377i \(-0.258797\pi\)
\(48\) −2.39584 27.6091i −0.0499133 0.575189i
\(49\) 0 0
\(50\) 32.8496 + 31.4578i 0.656992 + 0.629155i
\(51\) 6.84938i 0.134302i
\(52\) −1.03451 23.8876i −0.0198944 0.459377i
\(53\) −18.1753 −0.342929 −0.171465 0.985190i \(-0.554850\pi\)
−0.171465 + 0.985190i \(0.554850\pi\)
\(54\) −7.18774 + 7.50576i −0.133106 + 0.138996i
\(55\) 13.8499i 0.251817i
\(56\) 0 0
\(57\) 6.23338 0.109358
\(58\) −68.7249 65.8130i −1.18491 1.13471i
\(59\) 49.0800i 0.831865i −0.909395 0.415932i \(-0.863455\pi\)
0.909395 0.415932i \(-0.136545\pi\)
\(60\) 10.4024 0.450499i 0.173373 0.00750832i
\(61\) −98.5495 −1.61557 −0.807783 0.589480i \(-0.799333\pi\)
−0.807783 + 0.589480i \(0.799333\pi\)
\(62\) −53.2622 + 55.6188i −0.859068 + 0.897077i
\(63\) 0 0
\(64\) −8.28647 63.4613i −0.129476 0.991583i
\(65\) 8.98337 0.138206
\(66\) 23.0569 + 22.0800i 0.349347 + 0.334546i
\(67\) 129.352i 1.93062i −0.261099 0.965312i \(-0.584085\pi\)
0.261099 0.965312i \(-0.415915\pi\)
\(68\) 0.684392 + 15.8032i 0.0100646 + 0.232399i
\(69\) −37.5387 −0.544039
\(70\) 0 0
\(71\) 61.8601i 0.871269i 0.900124 + 0.435635i \(0.143476\pi\)
−0.900124 + 0.435635i \(0.856524\pi\)
\(72\) −15.8339 + 18.0358i −0.219915 + 0.250497i
\(73\) −95.7877 −1.31216 −0.656080 0.754691i \(-0.727787\pi\)
−0.656080 + 0.754691i \(0.727787\pi\)
\(74\) 75.8232 + 72.6106i 1.02464 + 0.981224i
\(75\) 39.3893i 0.525190i
\(76\) 14.3819 0.622841i 0.189236 0.00819527i
\(77\) 0 0
\(78\) −14.3216 + 14.9552i −0.183610 + 0.191734i
\(79\) 13.1219i 0.166100i −0.996545 0.0830499i \(-0.973534\pi\)
0.996545 0.0830499i \(-0.0264661\pi\)
\(80\) 23.9558 2.07882i 0.299447 0.0259852i
\(81\) 9.00000 0.111111
\(82\) 93.8292 + 89.8537i 1.14426 + 1.09578i
\(83\) 91.0240i 1.09667i 0.836257 + 0.548337i \(0.184739\pi\)
−0.836257 + 0.548337i \(0.815261\pi\)
\(84\) 0 0
\(85\) −5.94306 −0.0699184
\(86\) 23.2528 24.2816i 0.270381 0.282344i
\(87\) 82.4066i 0.947203i
\(88\) 55.4041 + 48.6400i 0.629592 + 0.552727i
\(89\) −90.7057 −1.01917 −0.509583 0.860422i \(-0.670200\pi\)
−0.509583 + 0.860422i \(0.670200\pi\)
\(90\) −6.51258 6.23665i −0.0723620 0.0692961i
\(91\) 0 0
\(92\) −86.6108 + 3.75087i −0.941422 + 0.0407704i
\(93\) 66.6913 0.717111
\(94\) −94.4496 + 98.6285i −1.00478 + 1.04924i
\(95\) 5.40857i 0.0569323i
\(96\) −34.7303 + 43.1950i −0.361774 + 0.449947i
\(97\) −7.05515 −0.0727335 −0.0363668 0.999339i \(-0.511578\pi\)
−0.0363668 + 0.999339i \(0.511578\pi\)
\(98\) 0 0
\(99\) 27.6471i 0.279264i
\(100\) −3.93578 90.8804i −0.0393578 0.908804i
\(101\) −87.1632 −0.863002 −0.431501 0.902112i \(-0.642016\pi\)
−0.431501 + 0.902112i \(0.642016\pi\)
\(102\) 9.47462 9.89383i 0.0928885 0.0969983i
\(103\) 89.5467i 0.869386i 0.900579 + 0.434693i \(0.143143\pi\)
−0.900579 + 0.434693i \(0.856857\pi\)
\(104\) −31.5490 + 35.9363i −0.303356 + 0.345541i
\(105\) 0 0
\(106\) 26.2539 + 25.1415i 0.247678 + 0.237184i
\(107\) 54.0435i 0.505079i 0.967587 + 0.252540i \(0.0812658\pi\)
−0.967587 + 0.252540i \(0.918734\pi\)
\(108\) 20.7651 0.899281i 0.192270 0.00832668i
\(109\) −74.5665 −0.684097 −0.342048 0.939682i \(-0.611121\pi\)
−0.342048 + 0.939682i \(0.611121\pi\)
\(110\) −19.1584 + 20.0060i −0.174167 + 0.181873i
\(111\) 90.9180i 0.819081i
\(112\) 0 0
\(113\) 16.5662 0.146603 0.0733016 0.997310i \(-0.476646\pi\)
0.0733016 + 0.997310i \(0.476646\pi\)
\(114\) −9.00402 8.62252i −0.0789826 0.0756362i
\(115\) 32.5715i 0.283231i
\(116\) 8.23408 + 190.132i 0.0709835 + 1.63907i
\(117\) 17.9325 0.153269
\(118\) −67.8915 + 70.8953i −0.575352 + 0.600808i
\(119\) 0 0
\(120\) −15.6493 13.7387i −0.130410 0.114489i
\(121\) 36.0709 0.298107
\(122\) 142.353 + 136.322i 1.16683 + 1.11739i
\(123\) 112.509i 0.914705i
\(124\) 153.873 6.66380i 1.24091 0.0537404i
\(125\) 71.7488 0.573990
\(126\) 0 0
\(127\) 85.8294i 0.675822i 0.941178 + 0.337911i \(0.109720\pi\)
−0.941178 + 0.337911i \(0.890280\pi\)
\(128\) −75.8151 + 103.131i −0.592306 + 0.805713i
\(129\) −29.1156 −0.225702
\(130\) −12.9763 12.4265i −0.0998179 0.0955887i
\(131\) 225.955i 1.72485i −0.506187 0.862424i \(-0.668945\pi\)
0.506187 0.862424i \(-0.331055\pi\)
\(132\) −2.76250 63.7884i −0.0209280 0.483246i
\(133\) 0 0
\(134\) −178.930 + 186.847i −1.33530 + 1.39438i
\(135\) 7.80911i 0.0578452i
\(136\) 20.8716 23.7741i 0.153468 0.174810i
\(137\) −102.233 −0.746228 −0.373114 0.927785i \(-0.621710\pi\)
−0.373114 + 0.927785i \(0.621710\pi\)
\(138\) 54.2241 + 51.9266i 0.392928 + 0.376280i
\(139\) 204.882i 1.47397i −0.675909 0.736985i \(-0.736249\pi\)
0.675909 0.736985i \(-0.263751\pi\)
\(140\) 0 0
\(141\) 118.263 0.838748
\(142\) 85.5699 89.3559i 0.602605 0.629267i
\(143\) 55.0869i 0.385223i
\(144\) 47.8203 4.14971i 0.332085 0.0288175i
\(145\) −71.5025 −0.493120
\(146\) 138.364 + 132.501i 0.947697 + 0.907544i
\(147\) 0 0
\(148\) −9.08454 209.770i −0.0613820 1.41736i
\(149\) 167.149 1.12180 0.560901 0.827883i \(-0.310455\pi\)
0.560901 + 0.827883i \(0.310455\pi\)
\(150\) −54.4864 + 56.8972i −0.363243 + 0.379314i
\(151\) 102.488i 0.678730i −0.940655 0.339365i \(-0.889788\pi\)
0.940655 0.339365i \(-0.110212\pi\)
\(152\) −21.6360 18.9945i −0.142342 0.124964i
\(153\) −11.8635 −0.0775391
\(154\) 0 0
\(155\) 57.8666i 0.373333i
\(156\) 41.3746 1.79182i 0.265222 0.0114860i
\(157\) 41.4338 0.263910 0.131955 0.991256i \(-0.457875\pi\)
0.131955 + 0.991256i \(0.457875\pi\)
\(158\) −18.1513 + 18.9544i −0.114881 + 0.119964i
\(159\) 31.4805i 0.197990i
\(160\) −37.4793 30.1348i −0.234246 0.188342i
\(161\) 0 0
\(162\) −13.0004 12.4495i −0.0802491 0.0768490i
\(163\) 193.889i 1.18950i 0.803909 + 0.594752i \(0.202750\pi\)
−0.803909 + 0.594752i \(0.797250\pi\)
\(164\) −11.2419 259.584i −0.0685481 1.58283i
\(165\) 23.9888 0.145387
\(166\) 125.912 131.483i 0.758505 0.792064i
\(167\) 149.318i 0.894120i 0.894504 + 0.447060i \(0.147529\pi\)
−0.894504 + 0.447060i \(0.852471\pi\)
\(168\) 0 0
\(169\) −133.269 −0.788577
\(170\) 8.58466 + 8.22093i 0.0504980 + 0.0483584i
\(171\) 10.7965i 0.0631376i
\(172\) −67.1766 + 2.90923i −0.390562 + 0.0169141i
\(173\) 52.1094 0.301210 0.150605 0.988594i \(-0.451878\pi\)
0.150605 + 0.988594i \(0.451878\pi\)
\(174\) 113.992 119.035i 0.655124 0.684109i
\(175\) 0 0
\(176\) −12.7475 146.899i −0.0724290 0.834654i
\(177\) 85.0091 0.480277
\(178\) 131.023 + 125.472i 0.736084 + 0.704896i
\(179\) 16.4589i 0.0919494i 0.998943 + 0.0459747i \(0.0146394\pi\)
−0.998943 + 0.0459747i \(0.985361\pi\)
\(180\) 0.780287 + 18.0175i 0.00433493 + 0.100097i
\(181\) 317.896 1.75633 0.878164 0.478359i \(-0.158768\pi\)
0.878164 + 0.478359i \(0.158768\pi\)
\(182\) 0 0
\(183\) 170.693i 0.932747i
\(184\) 130.296 + 114.389i 0.708132 + 0.621679i
\(185\) 78.8876 0.426419
\(186\) −96.3345 92.2528i −0.517927 0.495983i
\(187\) 36.4434i 0.194885i
\(188\) 272.862 11.8169i 1.45139 0.0628558i
\(189\) 0 0
\(190\) 7.48158 7.81260i 0.0393767 0.0411189i
\(191\) 15.0206i 0.0786418i 0.999227 + 0.0393209i \(0.0125195\pi\)
−0.999227 + 0.0393209i \(0.987481\pi\)
\(192\) 109.918 14.3526i 0.572490 0.0747531i
\(193\) −209.347 −1.08470 −0.542349 0.840153i \(-0.682465\pi\)
−0.542349 + 0.840153i \(0.682465\pi\)
\(194\) 10.1910 + 9.75926i 0.0525312 + 0.0503054i
\(195\) 15.5597i 0.0797931i
\(196\) 0 0
\(197\) 6.06078 0.0307654 0.0153827 0.999882i \(-0.495103\pi\)
0.0153827 + 0.999882i \(0.495103\pi\)
\(198\) −38.2437 + 39.9358i −0.193150 + 0.201696i
\(199\) 128.438i 0.645417i −0.946498 0.322708i \(-0.895407\pi\)
0.946498 0.322708i \(-0.104593\pi\)
\(200\) −120.028 + 136.720i −0.600140 + 0.683598i
\(201\) 224.044 1.11465
\(202\) 125.906 + 120.571i 0.623296 + 0.596887i
\(203\) 0 0
\(204\) −27.3719 + 1.18540i −0.134176 + 0.00581079i
\(205\) 97.6214 0.476202
\(206\) 123.868 129.349i 0.601302 0.627907i
\(207\) 65.0190i 0.314101i
\(208\) 95.2820 8.26831i 0.458086 0.0397515i
\(209\) 33.1659 0.158688
\(210\) 0 0
\(211\) 75.4230i 0.357455i 0.983899 + 0.178727i \(0.0571980\pi\)
−0.983899 + 0.178727i \(0.942802\pi\)
\(212\) −3.14553 72.6329i −0.0148374 0.342608i
\(213\) −107.145 −0.503028
\(214\) 74.7573 78.0649i 0.349333 0.364789i
\(215\) 25.2630i 0.117502i
\(216\) −31.2389 27.4250i −0.144624 0.126968i
\(217\) 0 0
\(218\) 107.710 + 103.146i 0.494083 + 0.473149i
\(219\) 165.909i 0.757576i
\(220\) 55.3479 2.39696i 0.251581 0.0108953i
\(221\) −23.6380 −0.106959
\(222\) −125.765 + 131.330i −0.566510 + 0.591575i
\(223\) 167.759i 0.752282i −0.926562 0.376141i \(-0.877251\pi\)
0.926562 0.376141i \(-0.122749\pi\)
\(224\) 0 0
\(225\) 68.2242 0.303219
\(226\) −23.9295 22.9156i −0.105883 0.101397i
\(227\) 158.856i 0.699808i −0.936786 0.349904i \(-0.886214\pi\)
0.936786 0.349904i \(-0.113786\pi\)
\(228\) 1.07879 + 24.9102i 0.00473154 + 0.109255i
\(229\) −150.418 −0.656849 −0.328425 0.944530i \(-0.606518\pi\)
−0.328425 + 0.944530i \(0.606518\pi\)
\(230\) −45.0556 + 47.0491i −0.195894 + 0.204561i
\(231\) 0 0
\(232\) 251.112 286.032i 1.08238 1.23290i
\(233\) 79.0711 0.339361 0.169681 0.985499i \(-0.445726\pi\)
0.169681 + 0.985499i \(0.445726\pi\)
\(234\) −25.9032 24.8057i −0.110698 0.106007i
\(235\) 102.615i 0.436658i
\(236\) 196.136 8.49412i 0.831086 0.0359920i
\(237\) 22.7278 0.0958978
\(238\) 0 0
\(239\) 98.8210i 0.413477i −0.978396 0.206739i \(-0.933715\pi\)
0.978396 0.206739i \(-0.0662850\pi\)
\(240\) 3.60062 + 41.4926i 0.0150026 + 0.172886i
\(241\) 432.653 1.79524 0.897621 0.440768i \(-0.145294\pi\)
0.897621 + 0.440768i \(0.145294\pi\)
\(242\) −52.1038 49.8962i −0.215305 0.206183i
\(243\) 15.5885i 0.0641500i
\(244\) −17.0556 393.829i −0.0699002 1.61405i
\(245\) 0 0
\(246\) −155.631 + 162.517i −0.632647 + 0.660638i
\(247\) 21.5121i 0.0870936i
\(248\) −231.485 203.223i −0.933406 0.819450i
\(249\) −157.658 −0.633165
\(250\) −103.640 99.2488i −0.414560 0.396995i
\(251\) 311.174i 1.23974i 0.784705 + 0.619869i \(0.212814\pi\)
−0.784705 + 0.619869i \(0.787186\pi\)
\(252\) 0 0
\(253\) −199.732 −0.789454
\(254\) 118.726 123.979i 0.467426 0.488107i
\(255\) 10.2937i 0.0403674i
\(256\) 252.173 44.0979i 0.985052 0.172257i
\(257\) 437.145 1.70095 0.850477 0.526012i \(-0.176313\pi\)
0.850477 + 0.526012i \(0.176313\pi\)
\(258\) 42.0570 + 40.2750i 0.163012 + 0.156105i
\(259\) 0 0
\(260\) 1.55472 + 35.8998i 0.00597970 + 0.138076i
\(261\) −142.732 −0.546868
\(262\) −312.559 + 326.388i −1.19297 + 1.24576i
\(263\) 477.684i 1.81629i 0.418655 + 0.908145i \(0.362502\pi\)
−0.418655 + 0.908145i \(0.637498\pi\)
\(264\) −84.2470 + 95.9627i −0.319117 + 0.363495i
\(265\) 27.3149 0.103075
\(266\) 0 0
\(267\) 157.107i 0.588415i
\(268\) 516.923 22.3865i 1.92882 0.0835317i
\(269\) −102.048 −0.379359 −0.189680 0.981846i \(-0.560745\pi\)
−0.189680 + 0.981846i \(0.560745\pi\)
\(270\) 10.8022 11.2801i 0.0400081 0.0417782i
\(271\) 495.848i 1.82970i 0.403795 + 0.914849i \(0.367691\pi\)
−0.403795 + 0.914849i \(0.632309\pi\)
\(272\) −63.0350 + 5.47000i −0.231746 + 0.0201103i
\(273\) 0 0
\(274\) 147.674 + 141.417i 0.538957 + 0.516122i
\(275\) 209.578i 0.762101i
\(276\) −6.49671 150.014i −0.0235388 0.543530i
\(277\) 297.781 1.07502 0.537511 0.843256i \(-0.319364\pi\)
0.537511 + 0.843256i \(0.319364\pi\)
\(278\) −283.409 + 295.949i −1.01946 + 1.06456i
\(279\) 115.513i 0.414024i
\(280\) 0 0
\(281\) 58.1842 0.207061 0.103531 0.994626i \(-0.466986\pi\)
0.103531 + 0.994626i \(0.466986\pi\)
\(282\) −170.830 163.592i −0.605779 0.580112i
\(283\) 232.119i 0.820209i 0.912038 + 0.410105i \(0.134508\pi\)
−0.912038 + 0.410105i \(0.865492\pi\)
\(284\) −247.209 + 10.7059i −0.870453 + 0.0376969i
\(285\) −9.36792 −0.0328699
\(286\) −76.2006 + 79.5721i −0.266436 + 0.278224i
\(287\) 0 0
\(288\) −74.8158 60.1547i −0.259777 0.208871i
\(289\) −273.362 −0.945889
\(290\) 103.284 + 98.9080i 0.356152 + 0.341062i
\(291\) 12.2199i 0.0419927i
\(292\) −16.5777 382.792i −0.0567729 1.31093i
\(293\) −260.048 −0.887537 −0.443768 0.896142i \(-0.646359\pi\)
−0.443768 + 0.896142i \(0.646359\pi\)
\(294\) 0 0
\(295\) 73.7606i 0.250036i
\(296\) −277.048 + 315.575i −0.935972 + 1.06613i
\(297\) 47.8862 0.161233
\(298\) −241.443 231.214i −0.810213 0.775884i
\(299\) 129.550i 0.433279i
\(300\) 157.410 6.81697i 0.524698 0.0227232i
\(301\) 0 0
\(302\) −141.770 + 148.043i −0.469437 + 0.490207i
\(303\) 150.971i 0.498254i
\(304\) 4.97806 + 57.3659i 0.0163752 + 0.188704i
\(305\) 148.106 0.485595
\(306\) 17.1366 + 16.4105i 0.0560020 + 0.0536292i
\(307\) 126.983i 0.413625i −0.978381 0.206812i \(-0.933691\pi\)
0.978381 0.206812i \(-0.0663090\pi\)
\(308\) 0 0
\(309\) −155.099 −0.501940
\(310\) 80.0458 83.5874i 0.258212 0.269637i
\(311\) 355.612i 1.14345i 0.820447 + 0.571723i \(0.193725\pi\)
−0.820447 + 0.571723i \(0.806275\pi\)
\(312\) −62.2435 54.6444i −0.199498 0.175142i
\(313\) −374.296 −1.19583 −0.597917 0.801558i \(-0.704005\pi\)
−0.597917 + 0.801558i \(0.704005\pi\)
\(314\) −59.8505 57.3146i −0.190607 0.182531i
\(315\) 0 0
\(316\) 52.4384 2.27096i 0.165944 0.00718659i
\(317\) −32.2241 −0.101653 −0.0508266 0.998707i \(-0.516186\pi\)
−0.0508266 + 0.998707i \(0.516186\pi\)
\(318\) −43.5463 + 45.4730i −0.136938 + 0.142997i
\(319\) 438.460i 1.37448i
\(320\) 12.4534 + 95.3736i 0.0389170 + 0.298043i
\(321\) −93.6060 −0.291608
\(322\) 0 0
\(323\) 14.2316i 0.0440607i
\(324\) 1.55760 + 35.9663i 0.00480741 + 0.111007i
\(325\) 135.937 0.418267
\(326\) 268.203 280.070i 0.822709 0.859109i
\(327\) 129.153i 0.394963i
\(328\) −342.840 + 390.516i −1.04524 + 1.19060i
\(329\) 0 0
\(330\) −34.6514 33.1832i −0.105004 0.100555i
\(331\) 388.193i 1.17279i 0.810026 + 0.586394i \(0.199453\pi\)
−0.810026 + 0.586394i \(0.800547\pi\)
\(332\) −363.755 + 15.7532i −1.09565 + 0.0474495i
\(333\) 157.475 0.472897
\(334\) 206.549 215.688i 0.618410 0.645771i
\(335\) 194.398i 0.580293i
\(336\) 0 0
\(337\) −544.804 −1.61663 −0.808314 0.588752i \(-0.799620\pi\)
−0.808314 + 0.588752i \(0.799620\pi\)
\(338\) 192.506 + 184.349i 0.569543 + 0.545412i
\(339\) 28.6934i 0.0846414i
\(340\) −1.02855 23.7500i −0.00302514 0.0698529i
\(341\) 354.843 1.04060
\(342\) 14.9346 15.5954i 0.0436686 0.0456006i
\(343\) 0 0
\(344\) 101.060 + 88.7218i 0.293778 + 0.257912i
\(345\) 56.4156 0.163523
\(346\) −75.2712 72.0820i −0.217547 0.208329i
\(347\) 482.711i 1.39110i −0.718479 0.695548i \(-0.755161\pi\)
0.718479 0.695548i \(-0.244839\pi\)
\(348\) −329.318 + 14.2618i −0.946316 + 0.0409823i
\(349\) −188.243 −0.539378 −0.269689 0.962948i \(-0.586921\pi\)
−0.269689 + 0.962948i \(0.586921\pi\)
\(350\) 0 0
\(351\) 31.0600i 0.0884901i
\(352\) −184.789 + 229.827i −0.524969 + 0.652917i
\(353\) −290.445 −0.822789 −0.411395 0.911457i \(-0.634958\pi\)
−0.411395 + 0.911457i \(0.634958\pi\)
\(354\) −122.794 117.592i −0.346877 0.332179i
\(355\) 92.9673i 0.261880i
\(356\) −15.6981 362.483i −0.0440959 1.01821i
\(357\) 0 0
\(358\) 22.7673 23.7747i 0.0635959 0.0664097i
\(359\) 493.462i 1.37455i −0.726399 0.687273i \(-0.758807\pi\)
0.726399 0.687273i \(-0.241193\pi\)
\(360\) 23.7961 27.1053i 0.0661003 0.0752925i
\(361\) 348.048 0.964123
\(362\) −459.195 439.739i −1.26849 1.21475i
\(363\) 62.4766i 0.172112i
\(364\) 0 0
\(365\) 143.956 0.394400
\(366\) −236.116 + 246.563i −0.645126 + 0.673669i
\(367\) 344.402i 0.938424i 0.883085 + 0.469212i \(0.155462\pi\)
−0.883085 + 0.469212i \(0.844538\pi\)
\(368\) −29.9789 345.470i −0.0814644 0.938776i
\(369\) 194.871 0.528105
\(370\) −113.952 109.124i −0.307978 0.294929i
\(371\) 0 0
\(372\) 11.5420 + 266.515i 0.0310270 + 0.716439i
\(373\) −500.930 −1.34298 −0.671488 0.741015i \(-0.734345\pi\)
−0.671488 + 0.741015i \(0.734345\pi\)
\(374\) 50.4115 52.6419i 0.134790 0.140754i
\(375\) 124.273i 0.331393i
\(376\) −410.491 360.375i −1.09173 0.958445i
\(377\) −284.395 −0.754362
\(378\) 0 0
\(379\) 642.548i 1.69538i 0.530493 + 0.847689i \(0.322007\pi\)
−0.530493 + 0.847689i \(0.677993\pi\)
\(380\) −21.6140 + 0.936044i −0.0568790 + 0.00246327i
\(381\) −148.661 −0.390186
\(382\) 20.7777 21.6970i 0.0543918 0.0567984i
\(383\) 594.877i 1.55320i 0.629992 + 0.776602i \(0.283058\pi\)
−0.629992 + 0.776602i \(0.716942\pi\)
\(384\) −178.629 131.316i −0.465179 0.341968i
\(385\) 0 0
\(386\) 302.398 + 289.585i 0.783415 + 0.750221i
\(387\) 50.4297i 0.130309i
\(388\) −1.22101 28.1942i −0.00314694 0.0726654i
\(389\) 655.009 1.68383 0.841914 0.539612i \(-0.181429\pi\)
0.841914 + 0.539612i \(0.181429\pi\)
\(390\) 21.5234 22.4757i 0.0551881 0.0576299i
\(391\) 85.7057i 0.219196i
\(392\) 0 0
\(393\) 391.366 0.995841
\(394\) −8.75470 8.38376i −0.0222201 0.0212786i
\(395\) 19.7204i 0.0499251i
\(396\) 110.485 4.78479i 0.279002 0.0120828i
\(397\) −227.461 −0.572950 −0.286475 0.958088i \(-0.592484\pi\)
−0.286475 + 0.958088i \(0.592484\pi\)
\(398\) −177.666 + 185.526i −0.446396 + 0.466147i
\(399\) 0 0
\(400\) 362.500 31.4568i 0.906250 0.0786419i
\(401\) −632.391 −1.57704 −0.788518 0.615012i \(-0.789151\pi\)
−0.788518 + 0.615012i \(0.789151\pi\)
\(402\) −323.628 309.916i −0.805044 0.770935i
\(403\) 230.159i 0.571115i
\(404\) −15.0851 348.326i −0.0373392 0.862194i
\(405\) −13.5258 −0.0333970
\(406\) 0 0
\(407\) 483.746i 1.18857i
\(408\) 41.1780 + 36.1507i 0.100926 + 0.0886047i
\(409\) 147.048 0.359531 0.179766 0.983709i \(-0.442466\pi\)
0.179766 + 0.983709i \(0.442466\pi\)
\(410\) −141.013 135.038i −0.343933 0.329361i
\(411\) 177.073i 0.430835i
\(412\) −357.851 + 15.4976i −0.868571 + 0.0376154i
\(413\) 0 0
\(414\) −89.9395 + 93.9188i −0.217245 + 0.226857i
\(415\) 136.797i 0.329630i
\(416\) −149.071 119.858i −0.358343 0.288121i
\(417\) 354.866 0.850997
\(418\) −47.9076 45.8777i −0.114611 0.109755i
\(419\) 706.980i 1.68730i −0.536890 0.843652i \(-0.680401\pi\)
0.536890 0.843652i \(-0.319599\pi\)
\(420\) 0 0
\(421\) 103.455 0.245736 0.122868 0.992423i \(-0.460791\pi\)
0.122868 + 0.992423i \(0.460791\pi\)
\(422\) 104.331 108.947i 0.247230 0.258169i
\(423\) 204.838i 0.484251i
\(424\) −95.9281 + 109.268i −0.226245 + 0.257708i
\(425\) −89.9307 −0.211602
\(426\) 154.769 + 148.211i 0.363308 + 0.347914i
\(427\) 0 0
\(428\) −215.971 + 9.35313i −0.504606 + 0.0218531i
\(429\) 95.4133 0.222409
\(430\) −34.9458 + 36.4919i −0.0812693 + 0.0848650i
\(431\) 163.774i 0.379987i 0.981785 + 0.189993i \(0.0608466\pi\)
−0.981785 + 0.189993i \(0.939153\pi\)
\(432\) 7.18751 + 82.8272i 0.0166378 + 0.191730i
\(433\) −42.7877 −0.0988170 −0.0494085 0.998779i \(-0.515734\pi\)
−0.0494085 + 0.998779i \(0.515734\pi\)
\(434\) 0 0
\(435\) 123.846i 0.284703i
\(436\) −12.9050 297.987i −0.0295986 0.683456i
\(437\) 77.9977 0.178485
\(438\) −229.499 + 239.653i −0.523971 + 0.547153i
\(439\) 788.666i 1.79651i 0.439479 + 0.898253i \(0.355163\pi\)
−0.439479 + 0.898253i \(0.644837\pi\)
\(440\) −83.2648 73.0993i −0.189238 0.166135i
\(441\) 0 0
\(442\) 34.1447 + 32.6980i 0.0772505 + 0.0739774i
\(443\) 142.178i 0.320944i 0.987040 + 0.160472i \(0.0513016\pi\)
−0.987040 + 0.160472i \(0.948698\pi\)
\(444\) 363.332 15.7349i 0.818314 0.0354389i
\(445\) 136.318 0.306333
\(446\) −232.058 + 242.325i −0.520309 + 0.543330i
\(447\) 289.510i 0.647673i
\(448\) 0 0
\(449\) 153.780 0.342495 0.171248 0.985228i \(-0.445220\pi\)
0.171248 + 0.985228i \(0.445220\pi\)
\(450\) −98.5488 94.3733i −0.218997 0.209718i
\(451\) 598.624i 1.32732i
\(452\) 2.86705 + 66.2026i 0.00634303 + 0.146466i
\(453\) 177.515 0.391865
\(454\) −219.743 + 229.465i −0.484015 + 0.505430i
\(455\) 0 0
\(456\) 32.8995 37.4746i 0.0721480 0.0821812i
\(457\) −113.717 −0.248833 −0.124417 0.992230i \(-0.539706\pi\)
−0.124417 + 0.992230i \(0.539706\pi\)
\(458\) 217.277 + 208.071i 0.474404 + 0.454304i
\(459\) 20.5482i 0.0447672i
\(460\) 130.164 5.63705i 0.282966 0.0122545i
\(461\) 350.917 0.761209 0.380605 0.924738i \(-0.375716\pi\)
0.380605 + 0.924738i \(0.375716\pi\)
\(462\) 0 0
\(463\) 408.534i 0.882363i −0.897418 0.441182i \(-0.854559\pi\)
0.897418 0.441182i \(-0.145441\pi\)
\(464\) −758.390 + 65.8110i −1.63446 + 0.141834i
\(465\) −100.228 −0.215544
\(466\) −114.217 109.378i −0.245101 0.234716i
\(467\) 41.4409i 0.0887386i −0.999015 0.0443693i \(-0.985872\pi\)
0.999015 0.0443693i \(-0.0141278\pi\)
\(468\) 3.10352 + 71.6629i 0.00663146 + 0.153126i
\(469\) 0 0
\(470\) 141.945 148.225i 0.302010 0.315373i
\(471\) 71.7654i 0.152368i
\(472\) −295.065 259.042i −0.625139 0.548818i
\(473\) −154.915 −0.327516
\(474\) −32.8299 31.4389i −0.0692614 0.0663268i
\(475\) 81.8428i 0.172301i
\(476\) 0 0
\(477\) 54.5258 0.114310
\(478\) −136.697 + 142.745i −0.285978 + 0.298630i
\(479\) 439.056i 0.916609i 0.888795 + 0.458305i \(0.151543\pi\)
−0.888795 + 0.458305i \(0.848457\pi\)
\(480\) 52.1949 64.9161i 0.108739 0.135242i
\(481\) 313.768 0.652325
\(482\) −624.961 598.481i −1.29660 1.24166i
\(483\) 0 0
\(484\) 6.24267 + 144.148i 0.0128981 + 0.297827i
\(485\) 10.6029 0.0218617
\(486\) 21.5632 22.5173i 0.0443688 0.0463318i
\(487\) 501.637i 1.03005i 0.857174 + 0.515027i \(0.172218\pi\)
−0.857174 + 0.515027i \(0.827782\pi\)
\(488\) −520.139 + 592.472i −1.06586 + 1.21408i
\(489\) −335.826 −0.686760
\(490\) 0 0
\(491\) 581.000i 1.18330i −0.806195 0.591650i \(-0.798477\pi\)
0.806195 0.591650i \(-0.201523\pi\)
\(492\) 449.613 19.4715i 0.913848 0.0395763i
\(493\) 188.145 0.381633
\(494\) 29.7573 31.0739i 0.0602375 0.0629026i
\(495\) 41.5498i 0.0839390i
\(496\) 53.2605 + 613.761i 0.107380 + 1.23742i
\(497\) 0 0
\(498\) 227.735 + 218.086i 0.457299 + 0.437923i
\(499\) 410.045i 0.821734i −0.911695 0.410867i \(-0.865226\pi\)
0.911695 0.410867i \(-0.134774\pi\)
\(500\) 12.4173 + 286.726i 0.0248347 + 0.573453i
\(501\) −258.626 −0.516220
\(502\) 430.442 449.486i 0.857453 0.895391i
\(503\) 220.402i 0.438175i −0.975705 0.219087i \(-0.929692\pi\)
0.975705 0.219087i \(-0.0703080\pi\)
\(504\) 0 0
\(505\) 130.994 0.259395
\(506\) 288.509 + 276.285i 0.570176 + 0.546018i
\(507\) 230.829i 0.455285i
\(508\) −342.996 + 14.8542i −0.675189 + 0.0292406i
\(509\) −130.336 −0.256063 −0.128031 0.991770i \(-0.540866\pi\)
−0.128031 + 0.991770i \(0.540866\pi\)
\(510\) −14.2391 + 14.8691i −0.0279197 + 0.0291550i
\(511\) 0 0
\(512\) −425.260 285.128i −0.830586 0.556890i
\(513\) −18.7002 −0.0364525
\(514\) −631.449 604.695i −1.22850 1.17645i
\(515\) 134.576i 0.261314i
\(516\) −5.03894 116.353i −0.00976539 0.225491i
\(517\) 629.243 1.21710
\(518\) 0 0
\(519\) 90.2562i 0.173904i
\(520\) 47.4138 54.0073i 0.0911804 0.103860i
\(521\) 788.071 1.51261 0.756306 0.654218i \(-0.227002\pi\)
0.756306 + 0.654218i \(0.227002\pi\)
\(522\) 206.175 + 197.439i 0.394971 + 0.378236i
\(523\) 377.791i 0.722354i 0.932497 + 0.361177i \(0.117625\pi\)
−0.932497 + 0.361177i \(0.882375\pi\)
\(524\) 902.974 39.1053i 1.72323 0.0746285i
\(525\) 0 0
\(526\) 660.772 690.007i 1.25622 1.31180i
\(527\) 152.265i 0.288928i
\(528\) 254.437 22.0793i 0.481888 0.0418169i
\(529\) 59.2815 0.112063
\(530\) −39.4560 37.7842i −0.0744452 0.0712910i
\(531\) 147.240i 0.277288i
\(532\) 0 0
\(533\) 388.280 0.728481
\(534\) −217.323 + 226.938i −0.406972 + 0.424978i
\(535\) 81.2199i 0.151813i
\(536\) −777.653 682.713i −1.45085 1.27372i
\(537\) −28.5077 −0.0530870
\(538\) 147.406 + 141.161i 0.273989 + 0.262380i
\(539\) 0 0
\(540\) −31.2072 + 1.35150i −0.0577911 + 0.00250277i
\(541\) −403.833 −0.746456 −0.373228 0.927740i \(-0.621749\pi\)
−0.373228 + 0.927740i \(0.621749\pi\)
\(542\) 685.898 716.245i 1.26549 1.32149i
\(543\) 550.611i 1.01402i
\(544\) 98.6196 + 79.2938i 0.181286 + 0.145761i
\(545\) 112.063 0.205621
\(546\) 0 0
\(547\) 63.3919i 0.115890i 0.998320 + 0.0579451i \(0.0184548\pi\)
−0.998320 + 0.0579451i \(0.981545\pi\)
\(548\) −17.6932 408.550i −0.0322868 0.745530i
\(549\) 295.649 0.538522
\(550\) −289.905 + 302.732i −0.527100 + 0.550422i
\(551\) 171.224i 0.310751i
\(552\) −198.128 + 225.680i −0.358927 + 0.408840i
\(553\) 0 0
\(554\) −430.140 411.915i −0.776427 0.743529i
\(555\) 136.637i 0.246193i
\(556\) 818.760 35.4582i 1.47259 0.0637738i
\(557\) 159.295 0.285988 0.142994 0.989724i \(-0.454327\pi\)
0.142994 + 0.989724i \(0.454327\pi\)
\(558\) 159.787 166.856i 0.286356 0.299026i
\(559\) 100.481i 0.179752i
\(560\) 0 0
\(561\) −63.1219 −0.112517
\(562\) −84.0461 80.4851i −0.149548 0.143212i
\(563\) 300.463i 0.533681i 0.963741 + 0.266841i \(0.0859797\pi\)
−0.963741 + 0.266841i \(0.914020\pi\)
\(564\) 20.4675 + 472.611i 0.0362898 + 0.837962i
\(565\) −24.8967 −0.0440649
\(566\) 321.086 335.293i 0.567290 0.592390i
\(567\) 0 0
\(568\) 371.898 + 326.495i 0.654751 + 0.574815i
\(569\) 177.946 0.312735 0.156367 0.987699i \(-0.450022\pi\)
0.156367 + 0.987699i \(0.450022\pi\)
\(570\) 13.5318 + 12.9585i 0.0237400 + 0.0227342i
\(571\) 768.726i 1.34628i −0.739515 0.673140i \(-0.764945\pi\)
0.739515 0.673140i \(-0.235055\pi\)
\(572\) 220.141 9.53371i 0.384862 0.0166673i
\(573\) −26.0164 −0.0454039
\(574\) 0 0
\(575\) 492.874i 0.857173i
\(576\) 24.8594 + 190.384i 0.0431587 + 0.330528i
\(577\) −870.034 −1.50786 −0.753929 0.656956i \(-0.771844\pi\)
−0.753929 + 0.656956i \(0.771844\pi\)
\(578\) 394.867 + 378.136i 0.683161 + 0.654215i
\(579\) 362.599i 0.626251i
\(580\) −12.3747 285.742i −0.0213357 0.492659i
\(581\) 0 0
\(582\) −16.9035 + 17.6514i −0.0290439 + 0.0303289i
\(583\) 167.498i 0.287303i
\(584\) −505.563 + 575.869i −0.865690 + 0.986076i
\(585\) −26.9501 −0.0460686
\(586\) 375.635 + 359.720i 0.641016 + 0.613856i
\(587\) 270.224i 0.460347i −0.973150 0.230173i \(-0.926071\pi\)
0.973150 0.230173i \(-0.0739294\pi\)
\(588\) 0 0
\(589\) −138.571 −0.235265
\(590\) 102.032 106.546i 0.172935 0.180586i
\(591\) 10.4976i 0.0177624i
\(592\) 836.720 72.6083i 1.41338 0.122649i
\(593\) −498.133 −0.840022 −0.420011 0.907519i \(-0.637974\pi\)
−0.420011 + 0.907519i \(0.637974\pi\)
\(594\) −69.1708 66.2400i −0.116449 0.111515i
\(595\) 0 0
\(596\) 28.9279 + 667.968i 0.0485367 + 1.12075i
\(597\) 222.461 0.372631
\(598\) −179.205 + 187.133i −0.299673 + 0.312932i
\(599\) 306.148i 0.511099i −0.966796 0.255550i \(-0.917744\pi\)
0.966796 0.255550i \(-0.0822564\pi\)
\(600\) −236.805 207.895i −0.394675 0.346491i
\(601\) 61.2555 0.101923 0.0509613 0.998701i \(-0.483771\pi\)
0.0509613 + 0.998701i \(0.483771\pi\)
\(602\) 0 0
\(603\) 388.055i 0.643541i
\(604\) 409.569 17.7373i 0.678095 0.0293664i
\(605\) −54.2096 −0.0896027
\(606\) −208.835 + 218.075i −0.344613 + 0.359860i
\(607\) 675.583i 1.11299i −0.830852 0.556494i \(-0.812146\pi\)
0.830852 0.556494i \(-0.187854\pi\)
\(608\) 72.1625 89.7502i 0.118688 0.147616i
\(609\) 0 0
\(610\) −213.937 204.873i −0.350717 0.335857i
\(611\) 408.141i 0.667988i
\(612\) −2.05317 47.4095i −0.00335486 0.0774665i
\(613\) −975.309 −1.59104 −0.795521 0.605926i \(-0.792803\pi\)
−0.795521 + 0.605926i \(0.792803\pi\)
\(614\) −175.653 + 183.425i −0.286080 + 0.298737i
\(615\) 169.085i 0.274935i
\(616\) 0 0
\(617\) −1017.11 −1.64847 −0.824237 0.566245i \(-0.808396\pi\)
−0.824237 + 0.566245i \(0.808396\pi\)
\(618\) 224.039 + 214.546i 0.362522 + 0.347162i
\(619\) 1034.26i 1.67085i −0.549601 0.835427i \(-0.685220\pi\)
0.549601 0.835427i \(-0.314780\pi\)
\(620\) −231.250 + 10.0148i −0.372983 + 0.0161529i
\(621\) 112.616 0.181346
\(622\) 491.911 513.676i 0.790854 0.825845i
\(623\) 0 0
\(624\) 14.3211 + 165.033i 0.0229505 + 0.264476i
\(625\) 460.706 0.737130
\(626\) 540.664 + 517.756i 0.863681 + 0.827087i
\(627\) 57.4450i 0.0916188i
\(628\) 7.17081 + 165.580i 0.0114185 + 0.263662i
\(629\) −207.577 −0.330012
\(630\) 0 0
\(631\) 557.700i 0.883835i 0.897056 + 0.441917i \(0.145702\pi\)
−0.897056 + 0.441917i \(0.854298\pi\)
\(632\) −78.8878 69.2567i −0.124822 0.109583i
\(633\) −130.636 −0.206377
\(634\) 46.5472 + 44.5750i 0.0734182 + 0.0703075i
\(635\) 128.990i 0.203134i
\(636\) 125.804 5.44822i 0.197805 0.00856639i
\(637\) 0 0
\(638\) 606.513 633.348i 0.950648 0.992709i
\(639\) 185.580i 0.290423i
\(640\) 113.940 154.992i 0.178031 0.242175i
\(641\) −399.002 −0.622468 −0.311234 0.950333i \(-0.600742\pi\)
−0.311234 + 0.950333i \(0.600742\pi\)
\(642\) 135.212 + 129.483i 0.210611 + 0.201688i
\(643\) 646.867i 1.00601i 0.864282 + 0.503007i \(0.167773\pi\)
−0.864282 + 0.503007i \(0.832227\pi\)
\(644\) 0 0
\(645\) 43.7567 0.0678399
\(646\) −19.6863 + 20.5573i −0.0304742 + 0.0318225i
\(647\) 246.758i 0.381388i 0.981650 + 0.190694i \(0.0610738\pi\)
−0.981650 + 0.190694i \(0.938926\pi\)
\(648\) 47.5016 54.1073i 0.0733049 0.0834990i
\(649\) 452.307 0.696929
\(650\) −196.359 188.039i −0.302090 0.289291i
\(651\) 0 0
\(652\) −774.830 + 33.5558i −1.18839 + 0.0514659i
\(653\) 837.563 1.28264 0.641319 0.767274i \(-0.278387\pi\)
0.641319 + 0.767274i \(0.278387\pi\)
\(654\) −178.655 + 186.559i −0.273173 + 0.285259i
\(655\) 339.580i 0.518442i
\(656\) 1035.42 89.8509i 1.57838 0.136968i
\(657\) 287.363 0.437387
\(658\) 0 0
\(659\) 984.401i 1.49378i 0.664948 + 0.746890i \(0.268454\pi\)
−0.664948 + 0.746890i \(0.731546\pi\)
\(660\) 4.15166 + 95.8653i 0.00629040 + 0.145250i
\(661\) 38.8758 0.0588136 0.0294068 0.999568i \(-0.490638\pi\)
0.0294068 + 0.999568i \(0.490638\pi\)
\(662\) 536.980 560.739i 0.811148 0.847037i
\(663\) 40.9422i 0.0617530i
\(664\) 547.229 + 480.420i 0.824141 + 0.723524i
\(665\) 0 0
\(666\) −227.470 217.832i −0.341546 0.327075i
\(667\) 1031.15i 1.54595i
\(668\) −596.713 + 25.8420i −0.893283 + 0.0386856i
\(669\) 290.567 0.434330
\(670\) 268.907 280.805i 0.401354 0.419112i
\(671\) 908.203i 1.35351i
\(672\) 0 0
\(673\) −138.096 −0.205195 −0.102598 0.994723i \(-0.532715\pi\)
−0.102598 + 0.994723i \(0.532715\pi\)
\(674\) 786.960 + 753.616i 1.16760 + 1.11813i
\(675\) 118.168i 0.175063i
\(676\) −23.0645 532.579i −0.0341191 0.787838i
\(677\) 656.741 0.970075 0.485037 0.874493i \(-0.338806\pi\)
0.485037 + 0.874493i \(0.338806\pi\)
\(678\) 39.6911 41.4472i 0.0585414 0.0611315i
\(679\) 0 0
\(680\) −31.3672 + 35.7292i −0.0461282 + 0.0525430i
\(681\) 275.147 0.404034
\(682\) −512.566 490.848i −0.751563 0.719719i
\(683\) 989.363i 1.44855i −0.689509 0.724277i \(-0.742174\pi\)
0.689509 0.724277i \(-0.257826\pi\)
\(684\) −43.1457 + 1.86852i −0.0630785 + 0.00273176i
\(685\) 153.643 0.224296
\(686\) 0 0
\(687\) 260.532i 0.379232i
\(688\) −23.2521 267.951i −0.0337966 0.389464i
\(689\) 108.643 0.157682
\(690\) −81.4914 78.0386i −0.118103 0.113099i
\(691\) 1122.12i 1.62391i −0.583720 0.811955i \(-0.698403\pi\)
0.583720 0.811955i \(-0.301597\pi\)
\(692\) 9.01841 + 208.242i 0.0130324 + 0.300928i
\(693\) 0 0
\(694\) −667.724 + 697.268i −0.962139 + 1.00471i
\(695\) 307.909i 0.443035i
\(696\) 495.422 + 434.938i 0.711814 + 0.624911i
\(697\) −256.872 −0.368539
\(698\) 271.914 + 260.393i 0.389561 + 0.373056i
\(699\) 136.955i 0.195930i
\(700\) 0 0
\(701\) 414.598 0.591438 0.295719 0.955275i \(-0.404441\pi\)
0.295719 + 0.955275i \(0.404441\pi\)
\(702\) 42.9647 44.8657i 0.0612033 0.0639113i
\(703\) 188.909i 0.268718i
\(704\) 584.840 76.3656i 0.830739 0.108474i
\(705\) −177.734 −0.252105
\(706\) 419.543 + 401.767i 0.594253 + 0.569074i
\(707\) 0 0
\(708\) 14.7123 + 339.718i 0.0207800 + 0.479828i
\(709\) 379.857 0.535764 0.267882 0.963452i \(-0.413676\pi\)
0.267882 + 0.963452i \(0.413676\pi\)
\(710\) −128.600 + 134.290i −0.181127 + 0.189140i
\(711\) 39.3657i 0.0553666i
\(712\) −478.740 + 545.316i −0.672388 + 0.765893i
\(713\) 834.502 1.17041
\(714\) 0 0
\(715\) 82.7880i 0.115787i
\(716\) −65.7741 + 2.84850i −0.0918633 + 0.00397835i
\(717\) 171.163 0.238721
\(718\) −682.597 + 712.798i −0.950692 + 0.992755i
\(719\) 319.573i 0.444469i 0.974993 + 0.222234i \(0.0713350\pi\)
−0.974993 + 0.222234i \(0.928665\pi\)
\(720\) −71.8673 + 6.23645i −0.0998158 + 0.00866174i
\(721\) 0 0
\(722\) −502.750 481.449i −0.696330 0.666826i
\(723\) 749.378i 1.03648i
\(724\) 55.0172 + 1270.39i 0.0759905 + 1.75468i
\(725\) −1081.98 −1.49238
\(726\) 86.4227 90.2465i 0.119040 0.124306i
\(727\) 1082.72i 1.48929i 0.667458 + 0.744647i \(0.267382\pi\)
−0.667458 + 0.744647i \(0.732618\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −207.942 199.131i −0.284852 0.272783i
\(731\) 66.4746i 0.0909366i
\(732\) 682.132 29.5412i 0.931874 0.0403569i
\(733\) −367.661 −0.501584 −0.250792 0.968041i \(-0.580691\pi\)
−0.250792 + 0.968041i \(0.580691\pi\)
\(734\) 476.404 497.483i 0.649052 0.677769i
\(735\) 0 0
\(736\) −434.577 + 540.494i −0.590459 + 0.734367i
\(737\) 1192.07 1.61746
\(738\) −281.488 269.561i −0.381420 0.365259i
\(739\) 928.708i 1.25671i −0.777927 0.628354i \(-0.783729\pi\)
0.777927 0.628354i \(-0.216271\pi\)
\(740\) 13.6528 + 315.255i 0.0184498 + 0.426020i
\(741\) −37.2601 −0.0502835
\(742\) 0 0
\(743\) 103.027i 0.138663i −0.997594 0.0693315i \(-0.977913\pi\)
0.997594 0.0693315i \(-0.0220866\pi\)
\(744\) 351.993 400.943i 0.473109 0.538902i
\(745\) −251.201 −0.337183
\(746\) 723.586 + 692.927i 0.969954 + 0.928857i
\(747\) 273.072i 0.365558i
\(748\) −145.637 + 6.30715i −0.194702 + 0.00843201i
\(749\) 0 0
\(750\) 171.904 179.510i 0.229205 0.239346i
\(751\) 788.472i 1.04990i −0.851134 0.524948i \(-0.824085\pi\)
0.851134 0.524948i \(-0.175915\pi\)
\(752\) 94.4467 + 1088.38i 0.125594 + 1.44731i
\(753\) −538.970 −0.715763
\(754\) 410.803 + 393.398i 0.544832 + 0.521748i
\(755\) 154.026i 0.204008i
\(756\) 0 0
\(757\) −876.519 −1.15788 −0.578942 0.815369i \(-0.696534\pi\)
−0.578942 + 0.815369i \(0.696534\pi\)
\(758\) 888.825 928.151i 1.17259 1.22447i
\(759\) 345.946i 0.455791i
\(760\) 32.5159 + 28.5462i 0.0427841 + 0.0375608i
\(761\) −392.509 −0.515781 −0.257890 0.966174i \(-0.583027\pi\)
−0.257890 + 0.966174i \(0.583027\pi\)
\(762\) 214.738 + 205.640i 0.281809 + 0.269868i
\(763\) 0 0
\(764\) −60.0261 + 2.59956i −0.0785681 + 0.00340257i
\(765\) 17.8292 0.0233061
\(766\) 822.882 859.290i 1.07426 1.12179i
\(767\) 293.376i 0.382498i
\(768\) 76.3798 + 436.777i 0.0994528 + 0.568720i
\(769\) −496.681 −0.645879 −0.322939 0.946420i \(-0.604671\pi\)
−0.322939 + 0.946420i \(0.604671\pi\)
\(770\) 0 0
\(771\) 757.158i 0.982046i
\(772\) −36.2310 836.603i −0.0469313 1.08368i
\(773\) −1193.35 −1.54379 −0.771894 0.635751i \(-0.780691\pi\)
−0.771894 + 0.635751i \(0.780691\pi\)
\(774\) −69.7584 + 72.8449i −0.0901272 + 0.0941148i
\(775\) 875.640i 1.12986i
\(776\) −37.2367 + 42.4150i −0.0479855 + 0.0546585i
\(777\) 0 0
\(778\) −946.150 906.062i −1.21613 1.16460i
\(779\) 233.770i 0.300090i
\(780\) −62.1803 + 2.69286i −0.0797184 + 0.00345238i
\(781\) −570.084 −0.729941
\(782\) 118.555 123.801i 0.151605 0.158313i
\(783\) 247.220i 0.315734i
\(784\) 0 0
\(785\) −62.2693 −0.0793240
\(786\) −565.321 541.369i −0.719238 0.688764i
\(787\) 188.057i 0.238955i −0.992837 0.119477i \(-0.961878\pi\)
0.992837 0.119477i \(-0.0381219\pi\)
\(788\) 1.04892 + 24.2204i 0.00133112 + 0.0307366i
\(789\) −827.374 −1.04864
\(790\) 27.2789 28.4858i 0.0345302 0.0360580i
\(791\) 0 0
\(792\) −166.212 145.920i −0.209864 0.184242i
\(793\) 589.080 0.742850
\(794\) 328.564 + 314.643i 0.413809 + 0.396276i
\(795\) 47.3108i 0.0595105i
\(796\) 513.270 22.2283i 0.644812 0.0279250i
\(797\) −1473.12 −1.84833 −0.924165 0.381994i \(-0.875238\pi\)
−0.924165 + 0.381994i \(0.875238\pi\)
\(798\) 0 0
\(799\) 270.011i 0.337936i
\(800\) −567.139 456.001i −0.708924 0.570001i
\(801\) 272.117 0.339722
\(802\) 913.479 + 874.775i 1.13900 + 1.09074i
\(803\) 882.751i 1.09932i
\(804\) 38.7746 + 895.337i 0.0482271 + 1.11360i
\(805\) 0 0
\(806\) 318.375 332.461i 0.395006 0.412483i
\(807\) 176.752i 0.219023i
\(808\) −460.043 + 524.019i −0.569360 + 0.648538i
\(809\) 449.624 0.555778 0.277889 0.960613i \(-0.410365\pi\)
0.277889 + 0.960613i \(0.410365\pi\)
\(810\) 19.5378 + 18.7099i 0.0241207 + 0.0230987i
\(811\) 745.766i 0.919563i −0.888032 0.459782i \(-0.847928\pi\)
0.888032 0.459782i \(-0.152072\pi\)
\(812\) 0 0
\(813\) −858.835 −1.05638
\(814\) −669.157 + 698.764i −0.822060 + 0.858432i
\(815\) 291.389i 0.357532i
\(816\) −9.47433 109.180i −0.0116107 0.133799i
\(817\) 60.4962 0.0740468
\(818\) −212.409 203.409i −0.259669 0.248666i
\(819\) 0 0
\(820\) 16.8950 + 390.120i 0.0206037 + 0.475756i
\(821\) −614.108 −0.748000 −0.374000 0.927429i \(-0.622014\pi\)
−0.374000 + 0.927429i \(0.622014\pi\)
\(822\) −244.942 + 255.779i −0.297983 + 0.311167i
\(823\) 723.683i 0.879323i 0.898163 + 0.439662i \(0.144902\pi\)
−0.898163 + 0.439662i \(0.855098\pi\)
\(824\) 538.348 + 472.623i 0.653335 + 0.573572i
\(825\) 363.000 0.440000
\(826\) 0 0
\(827\) 417.540i 0.504885i 0.967612 + 0.252443i \(0.0812339\pi\)
−0.967612 + 0.252443i \(0.918766\pi\)
\(828\) 259.832 11.2526i 0.313807 0.0135901i
\(829\) 432.322 0.521498 0.260749 0.965407i \(-0.416030\pi\)
0.260749 + 0.965407i \(0.416030\pi\)
\(830\) −189.228 + 197.601i −0.227986 + 0.238073i
\(831\) 515.772i 0.620665i
\(832\) 49.5324 + 379.340i 0.0595341 + 0.455938i
\(833\) 0 0
\(834\) −512.598 490.879i −0.614626 0.588584i
\(835\) 224.405i 0.268748i
\(836\) 5.73991 + 132.539i 0.00686592 + 0.158540i
\(837\) −200.074 −0.239037
\(838\) −977.953 + 1021.22i −1.16701 + 1.21864i
\(839\) 794.458i 0.946911i 0.880818 + 0.473455i \(0.156993\pi\)
−0.880818 + 0.473455i \(0.843007\pi\)
\(840\) 0 0
\(841\) 1422.62 1.69158
\(842\) −149.439 143.107i −0.177481 0.169961i
\(843\) 100.778i 0.119547i
\(844\) −301.409 + 13.0532i −0.357120 + 0.0154659i
\(845\) 200.286 0.237025
\(846\) 283.349 295.886i 0.334928 0.349747i
\(847\) 0 0
\(848\) 289.715 25.1407i 0.341645 0.0296470i
\(849\) −402.042 −0.473548
\(850\) 129.903 + 124.399i 0.152828 + 0.146352i
\(851\) 1137.65i 1.33684i
\(852\) −18.5432 428.178i −0.0217643 0.502557i
\(853\) −276.585 −0.324250 −0.162125 0.986770i \(-0.551835\pi\)
−0.162125 + 0.986770i \(0.551835\pi\)
\(854\) 0 0
\(855\) 16.2257i 0.0189774i
\(856\) 324.905 + 285.239i 0.379562 + 0.333223i
\(857\) −1105.61 −1.29009 −0.645046 0.764144i \(-0.723162\pi\)
−0.645046 + 0.764144i \(0.723162\pi\)
\(858\) −137.823 131.983i −0.160633 0.153827i
\(859\) 1437.66i 1.67364i −0.547476 0.836821i \(-0.684411\pi\)
0.547476 0.836821i \(-0.315589\pi\)
\(860\) 100.957 4.37218i 0.117392 0.00508393i
\(861\) 0 0
\(862\) 226.546 236.569i 0.262814 0.274442i
\(863\) 1230.38i 1.42570i −0.701318 0.712848i \(-0.747405\pi\)
0.701318 0.712848i \(-0.252595\pi\)
\(864\) 104.191 129.585i 0.120591 0.149982i
\(865\) −78.3133 −0.0905356
\(866\) 61.8062 + 59.1875i 0.0713698 + 0.0683458i
\(867\) 473.477i 0.546109i
\(868\) 0 0
\(869\) 120.927 0.139157
\(870\) −171.314 + 178.893i −0.196912 + 0.205625i
\(871\) 773.201i 0.887717i
\(872\) −393.558 + 448.288i −0.451329 + 0.514092i
\(873\) 21.1655 0.0242445
\(874\) −112.666 107.893i −0.128909 0.123447i
\(875\) 0 0
\(876\) 663.015 28.7134i 0.756867 0.0327778i
\(877\) 1074.90 1.22566 0.612830 0.790215i \(-0.290031\pi\)
0.612830 + 0.790215i \(0.290031\pi\)
\(878\) 1090.95 1139.22i 1.24254 1.29751i
\(879\) 450.417i 0.512419i
\(880\) 19.1577 + 220.769i 0.0217702 + 0.250874i
\(881\) 866.262 0.983271 0.491636 0.870801i \(-0.336399\pi\)
0.491636 + 0.870801i \(0.336399\pi\)
\(882\) 0 0
\(883\) 271.473i 0.307443i 0.988114 + 0.153722i \(0.0491259\pi\)
−0.988114 + 0.153722i \(0.950874\pi\)
\(884\) −4.09095 94.4635i −0.00462778 0.106859i
\(885\) −127.757 −0.144358
\(886\) 196.672 205.374i 0.221978 0.231799i
\(887\) 1276.55i 1.43918i 0.694401 + 0.719588i \(0.255670\pi\)
−0.694401 + 0.719588i \(0.744330\pi\)
\(888\) −546.592 479.861i −0.615532 0.540384i
\(889\) 0 0
\(890\) −196.910 188.567i −0.221247 0.211873i
\(891\) 82.9413i 0.0930879i
\(892\) 670.407 29.0335i 0.751578 0.0325488i
\(893\) −245.727 −0.275170
\(894\) 400.474 418.192i 0.447957 0.467777i
\(895\) 24.7355i 0.0276375i
\(896\) 0 0
\(897\) 224.388 0.250154
\(898\) −222.133 212.721i −0.247364 0.236884i
\(899\) 1831.94i 2.03775i
\(900\) 11.8073 + 272.641i 0.0131193 + 0.302935i
\(901\) −71.8739 −0.0797713
\(902\) −828.065 + 864.702i −0.918032 + 0.958650i
\(903\) 0 0
\(904\) 87.4353 99.5945i 0.0967205 0.110171i
\(905\) −477.753 −0.527904
\(906\) −256.417 245.553i −0.283021 0.271030i
\(907\) 1381.29i 1.52292i −0.648212 0.761460i \(-0.724483\pi\)
0.648212 0.761460i \(-0.275517\pi\)
\(908\) 634.830 27.4928i 0.699152 0.0302784i
\(909\) 261.490 0.287667
\(910\) 0 0
\(911\) 866.867i 0.951556i 0.879565 + 0.475778i \(0.157833\pi\)
−0.879565 + 0.475778i \(0.842167\pi\)
\(912\) −99.3607 + 8.62225i −0.108948 + 0.00945422i
\(913\) −838.850 −0.918784
\(914\) 164.262 + 157.302i 0.179718 + 0.172103i
\(915\) 256.528i 0.280358i
\(916\) −26.0324 601.111i −0.0284197 0.656234i
\(917\) 0 0
\(918\) −28.4239 + 29.6815i −0.0309628 + 0.0323328i
\(919\) 894.310i 0.973134i 0.873643 + 0.486567i \(0.161751\pi\)
−0.873643 + 0.486567i \(0.838249\pi\)
\(920\) −195.818 171.911i −0.212845 0.186860i
\(921\) 219.941 0.238806
\(922\) −506.895 485.417i −0.549777 0.526483i
\(923\) 369.769i 0.400617i
\(924\) 0 0
\(925\) 1193.73 1.29052
\(926\) −565.118 + 590.121i −0.610278 + 0.637280i
\(927\) 268.640i 0.289795i
\(928\) 1186.52 + 954.003i 1.27857 + 1.02802i
\(929\) −1320.64 −1.42157 −0.710785 0.703409i \(-0.751660\pi\)
−0.710785 + 0.703409i \(0.751660\pi\)
\(930\) 144.778 + 138.643i 0.155675 + 0.149079i
\(931\) 0 0
\(932\) 13.6846 + 315.988i 0.0146830 + 0.339043i
\(933\) −615.938 −0.660169
\(934\) −57.3245 + 59.8608i −0.0613752 + 0.0640908i
\(935\) 54.7695i 0.0585770i
\(936\) 94.6469 107.809i 0.101119 0.115180i
\(937\) −450.769 −0.481076 −0.240538 0.970640i \(-0.577324\pi\)
−0.240538 + 0.970640i \(0.577324\pi\)
\(938\) 0 0
\(939\) 648.299i 0.690415i
\(940\) −410.074 + 17.7592i −0.436249 + 0.0188927i
\(941\) 1060.66 1.12716 0.563581 0.826061i \(-0.309423\pi\)
0.563581 + 0.826061i \(0.309423\pi\)
\(942\) 99.2718 103.664i 0.105384 0.110047i
\(943\) 1407.81i 1.49291i
\(944\) 67.8893 + 782.340i 0.0719167 + 0.828750i
\(945\) 0 0
\(946\) 223.772 + 214.291i 0.236546 + 0.226523i
\(947\) 1697.01i 1.79198i 0.444073 + 0.895990i \(0.353533\pi\)
−0.444073 + 0.895990i \(0.646467\pi\)
\(948\) 3.93342 + 90.8260i 0.00414918 + 0.0958080i
\(949\) 572.572 0.603342
\(950\) 113.212 118.221i 0.119170 0.124443i
\(951\) 55.8137i 0.0586895i
\(952\) 0 0
\(953\) 292.816 0.307257 0.153628 0.988129i \(-0.450904\pi\)
0.153628 + 0.988129i \(0.450904\pi\)
\(954\) −78.7616 75.4244i −0.0825593 0.0790613i
\(955\) 22.5739i 0.0236376i
\(956\) 394.914 17.1026i 0.413090 0.0178898i
\(957\) −759.435 −0.793558
\(958\) 607.338 634.209i 0.633964 0.662013i
\(959\) 0 0
\(960\) −165.192 + 21.5700i −0.172075 + 0.0224687i
\(961\) −521.577 −0.542744
\(962\) −453.233 434.030i −0.471137 0.451175i
\(963\) 162.130i 0.168360i
\(964\) 74.8779 + 1728.99i 0.0776742 + 1.79356i
\(965\) 314.620 0.326031
\(966\) 0 0
\(967\) 1740.04i 1.79942i −0.436486 0.899711i \(-0.643777\pi\)
0.436486 0.899711i \(-0.356223\pi\)
\(968\) 190.380 216.856i 0.196674 0.224024i
\(969\) 24.6499 0.0254385
\(970\) −15.3158 14.6668i −0.0157894 0.0151204i
\(971\) 809.699i 0.833881i −0.908934 0.416941i \(-0.863102\pi\)
0.908934 0.416941i \(-0.136898\pi\)
\(972\) −62.2954 + 2.69784i −0.0640900 + 0.00277556i
\(973\) 0 0
\(974\) 693.904 724.606i 0.712427 0.743949i
\(975\) 235.449i 0.241487i
\(976\) 1570.89 136.317i 1.60952 0.139669i
\(977\) −431.197 −0.441348 −0.220674 0.975348i \(-0.570826\pi\)
−0.220674 + 0.975348i \(0.570826\pi\)
\(978\) 485.095 + 464.542i 0.496007 + 0.474991i
\(979\) 835.917i 0.853847i
\(980\) 0 0
\(981\) 223.700 0.228032
\(982\) −803.686 + 839.245i −0.818418 + 0.854629i
\(983\) 91.8393i 0.0934275i 0.998908 + 0.0467138i \(0.0148749\pi\)
−0.998908 + 0.0467138i \(0.985125\pi\)
\(984\) −676.394 593.815i −0.687392 0.603471i
\(985\) −9.10853 −0.00924723
\(986\) −271.772 260.257i −0.275631 0.263953i
\(987\) 0 0
\(988\) −85.9679 + 3.72303i −0.0870120 + 0.00376825i
\(989\) −364.321 −0.368373
\(990\) 57.4751 60.0180i 0.0580556 0.0606243i
\(991\) 297.377i 0.300077i 0.988680 + 0.150039i \(0.0479398\pi\)
−0.988680 + 0.150039i \(0.952060\pi\)
\(992\) 772.070 960.243i 0.778297 0.967986i
\(993\) −672.370 −0.677110
\(994\) 0 0
\(995\) 193.025i 0.193995i
\(996\) −27.2854 630.042i −0.0273950 0.632573i
\(997\) −685.012 −0.687073 −0.343537 0.939139i \(-0.611625\pi\)
−0.343537 + 0.939139i \(0.611625\pi\)
\(998\) −567.208 + 592.303i −0.568344 + 0.593490i
\(999\) 272.754i 0.273027i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.h.295.6 yes 24
4.3 odd 2 inner 588.3.g.h.295.7 yes 24
7.6 odd 2 inner 588.3.g.h.295.5 24
28.27 even 2 inner 588.3.g.h.295.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.3.g.h.295.5 24 7.6 odd 2 inner
588.3.g.h.295.6 yes 24 1.1 even 1 trivial
588.3.g.h.295.7 yes 24 4.3 odd 2 inner
588.3.g.h.295.8 yes 24 28.27 even 2 inner