Properties

Label 588.3.g.h.295.2
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.2
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.h.295.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96525 - 0.371196i) q^{2} +1.73205i q^{3} +(3.72443 + 1.45899i) q^{4} -4.44657 q^{5} +(0.642930 - 3.40392i) q^{6} +(-6.77787 - 4.24976i) q^{8} -3.00000 q^{9} +(8.73863 + 1.65055i) q^{10} +14.7729i q^{11} +(-2.52704 + 6.45090i) q^{12} +0.580073 q^{13} -7.70169i q^{15} +(11.7427 + 10.8678i) q^{16} +1.84226 q^{17} +(5.89575 + 1.11359i) q^{18} -27.1631i q^{19} +(-16.5609 - 6.48748i) q^{20} +(5.48363 - 29.0324i) q^{22} +32.0092i q^{23} +(7.36081 - 11.7396i) q^{24} -5.22800 q^{25} +(-1.13999 - 0.215321i) q^{26} -5.19615i q^{27} -52.0783 q^{29} +(-2.85883 + 15.1358i) q^{30} +5.90518i q^{31} +(-19.0433 - 25.7168i) q^{32} -25.5874 q^{33} +(-3.62051 - 0.683840i) q^{34} +(-11.1733 - 4.37696i) q^{36} +29.9086 q^{37} +(-10.0828 + 53.3824i) q^{38} +1.00472i q^{39} +(30.1383 + 18.8969i) q^{40} +34.8858 q^{41} -63.2821i q^{43} +(-21.5534 + 55.0205i) q^{44} +13.3397 q^{45} +(11.8817 - 62.9061i) q^{46} -58.0829i q^{47} +(-18.8235 + 20.3390i) q^{48} +(10.2743 + 1.94061i) q^{50} +3.19089i q^{51} +(2.16044 + 0.846319i) q^{52} -24.1811 q^{53} +(-1.92879 + 10.2117i) q^{54} -65.6886i q^{55} +47.0479 q^{57} +(102.347 + 19.3312i) q^{58} -64.9879i q^{59} +(11.2367 - 28.6844i) q^{60} +44.3593 q^{61} +(2.19198 - 11.6052i) q^{62} +(27.8790 + 57.6087i) q^{64} -2.57934 q^{65} +(50.2856 + 9.49792i) q^{66} +42.3973i q^{67} +(6.86138 + 2.68784i) q^{68} -55.4416 q^{69} -33.6089i q^{71} +(20.3336 + 12.7493i) q^{72} -130.569 q^{73} +(-58.7779 - 11.1019i) q^{74} -9.05516i q^{75} +(39.6306 - 101.167i) q^{76} +(0.372946 - 1.97452i) q^{78} -48.7790i q^{79} +(-52.2149 - 48.3243i) q^{80} +9.00000 q^{81} +(-68.5594 - 12.9495i) q^{82} -137.835i q^{83} -8.19176 q^{85} +(-23.4900 + 124.365i) q^{86} -90.2022i q^{87} +(62.7812 - 100.129i) q^{88} -116.851 q^{89} +(-26.2159 - 4.95164i) q^{90} +(-46.7010 + 119.216i) q^{92} -10.2281 q^{93} +(-21.5601 + 114.148i) q^{94} +120.783i q^{95} +(44.5427 - 32.9840i) q^{96} -133.593 q^{97} -44.3186i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 12 q^{4} - 20 q^{8} - 72 q^{9} - 60 q^{16} - 12 q^{18} + 168 q^{22} + 120 q^{25} + 64 q^{29} - 236 q^{32} - 36 q^{36} - 192 q^{37} - 360 q^{44} - 72 q^{46} + 532 q^{50} + 432 q^{53} + 240 q^{58}+ \cdots - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96525 0.371196i −0.982626 0.185598i
\(3\) 1.73205i 0.577350i
\(4\) 3.72443 + 1.45899i 0.931107 + 0.364746i
\(5\) −4.44657 −0.889314 −0.444657 0.895701i \(-0.646674\pi\)
−0.444657 + 0.895701i \(0.646674\pi\)
\(6\) 0.642930 3.40392i 0.107155 0.567319i
\(7\) 0 0
\(8\) −6.77787 4.24976i −0.847234 0.531221i
\(9\) −3.00000 −0.333333
\(10\) 8.73863 + 1.65055i 0.873863 + 0.165055i
\(11\) 14.7729i 1.34299i 0.741010 + 0.671494i \(0.234347\pi\)
−0.741010 + 0.671494i \(0.765653\pi\)
\(12\) −2.52704 + 6.45090i −0.210586 + 0.537575i
\(13\) 0.580073 0.0446210 0.0223105 0.999751i \(-0.492898\pi\)
0.0223105 + 0.999751i \(0.492898\pi\)
\(14\) 0 0
\(15\) 7.70169i 0.513446i
\(16\) 11.7427 + 10.8678i 0.733920 + 0.679236i
\(17\) 1.84226 0.108368 0.0541842 0.998531i \(-0.482744\pi\)
0.0541842 + 0.998531i \(0.482744\pi\)
\(18\) 5.89575 + 1.11359i 0.327542 + 0.0618659i
\(19\) 27.1631i 1.42964i −0.699310 0.714819i \(-0.746509\pi\)
0.699310 0.714819i \(-0.253491\pi\)
\(20\) −16.5609 6.48748i −0.828047 0.324374i
\(21\) 0 0
\(22\) 5.48363 29.0324i 0.249256 1.31965i
\(23\) 32.0092i 1.39170i 0.718185 + 0.695852i \(0.244973\pi\)
−0.718185 + 0.695852i \(0.755027\pi\)
\(24\) 7.36081 11.7396i 0.306700 0.489151i
\(25\) −5.22800 −0.209120
\(26\) −1.13999 0.215321i −0.0438458 0.00828157i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −52.0783 −1.79580 −0.897901 0.440197i \(-0.854909\pi\)
−0.897901 + 0.440197i \(0.854909\pi\)
\(30\) −2.85883 + 15.1358i −0.0952944 + 0.504525i
\(31\) 5.90518i 0.190490i 0.995454 + 0.0952449i \(0.0303634\pi\)
−0.995454 + 0.0952449i \(0.969637\pi\)
\(32\) −19.0433 25.7168i −0.595104 0.803649i
\(33\) −25.5874 −0.775375
\(34\) −3.62051 0.683840i −0.106486 0.0201129i
\(35\) 0 0
\(36\) −11.1733 4.37696i −0.310369 0.121582i
\(37\) 29.9086 0.808340 0.404170 0.914684i \(-0.367560\pi\)
0.404170 + 0.914684i \(0.367560\pi\)
\(38\) −10.0828 + 53.3824i −0.265338 + 1.40480i
\(39\) 1.00472i 0.0257620i
\(40\) 30.1383 + 18.8969i 0.753457 + 0.472422i
\(41\) 34.8858 0.850873 0.425436 0.904988i \(-0.360121\pi\)
0.425436 + 0.904988i \(0.360121\pi\)
\(42\) 0 0
\(43\) 63.2821i 1.47168i −0.677158 0.735838i \(-0.736788\pi\)
0.677158 0.735838i \(-0.263212\pi\)
\(44\) −21.5534 + 55.0205i −0.489850 + 1.25047i
\(45\) 13.3397 0.296438
\(46\) 11.8817 62.9061i 0.258297 1.36752i
\(47\) 58.0829i 1.23581i −0.786254 0.617903i \(-0.787982\pi\)
0.786254 0.617903i \(-0.212018\pi\)
\(48\) −18.8235 + 20.3390i −0.392157 + 0.423729i
\(49\) 0 0
\(50\) 10.2743 + 1.94061i 0.205487 + 0.0388122i
\(51\) 3.19089i 0.0625666i
\(52\) 2.16044 + 0.846319i 0.0415470 + 0.0162754i
\(53\) −24.1811 −0.456247 −0.228124 0.973632i \(-0.573259\pi\)
−0.228124 + 0.973632i \(0.573259\pi\)
\(54\) −1.92879 + 10.2117i −0.0357183 + 0.189106i
\(55\) 65.6886i 1.19434i
\(56\) 0 0
\(57\) 47.0479 0.825402
\(58\) 102.347 + 19.3312i 1.76460 + 0.333297i
\(59\) 64.9879i 1.10149i −0.834674 0.550745i \(-0.814344\pi\)
0.834674 0.550745i \(-0.185656\pi\)
\(60\) 11.2367 28.6844i 0.187278 0.478073i
\(61\) 44.3593 0.727202 0.363601 0.931555i \(-0.381547\pi\)
0.363601 + 0.931555i \(0.381547\pi\)
\(62\) 2.19198 11.6052i 0.0353545 0.187180i
\(63\) 0 0
\(64\) 27.8790 + 57.6087i 0.435609 + 0.900136i
\(65\) −2.57934 −0.0396821
\(66\) 50.2856 + 9.49792i 0.761903 + 0.143908i
\(67\) 42.3973i 0.632795i 0.948627 + 0.316398i \(0.102473\pi\)
−0.948627 + 0.316398i \(0.897527\pi\)
\(68\) 6.86138 + 2.68784i 0.100903 + 0.0395270i
\(69\) −55.4416 −0.803501
\(70\) 0 0
\(71\) 33.6089i 0.473364i −0.971587 0.236682i \(-0.923940\pi\)
0.971587 0.236682i \(-0.0760600\pi\)
\(72\) 20.3336 + 12.7493i 0.282411 + 0.177074i
\(73\) −130.569 −1.78862 −0.894308 0.447453i \(-0.852331\pi\)
−0.894308 + 0.447453i \(0.852331\pi\)
\(74\) −58.7779 11.1019i −0.794296 0.150026i
\(75\) 9.05516i 0.120736i
\(76\) 39.6306 101.167i 0.521455 1.33115i
\(77\) 0 0
\(78\) 0.372946 1.97452i 0.00478136 0.0253144i
\(79\) 48.7790i 0.617456i −0.951150 0.308728i \(-0.900097\pi\)
0.951150 0.308728i \(-0.0999032\pi\)
\(80\) −52.2149 48.3243i −0.652686 0.604054i
\(81\) 9.00000 0.111111
\(82\) −68.5594 12.9495i −0.836090 0.157920i
\(83\) 137.835i 1.66066i −0.557271 0.830330i \(-0.688152\pi\)
0.557271 0.830330i \(-0.311848\pi\)
\(84\) 0 0
\(85\) −8.19176 −0.0963736
\(86\) −23.4900 + 124.365i −0.273140 + 1.44611i
\(87\) 90.2022i 1.03681i
\(88\) 62.7812 100.129i 0.713423 1.13782i
\(89\) −116.851 −1.31294 −0.656468 0.754354i \(-0.727950\pi\)
−0.656468 + 0.754354i \(0.727950\pi\)
\(90\) −26.2159 4.95164i −0.291288 0.0550183i
\(91\) 0 0
\(92\) −46.7010 + 119.216i −0.507619 + 1.29583i
\(93\) −10.2281 −0.109979
\(94\) −21.5601 + 114.148i −0.229363 + 1.21434i
\(95\) 120.783i 1.27140i
\(96\) 44.5427 32.9840i 0.463987 0.343584i
\(97\) −133.593 −1.37725 −0.688623 0.725120i \(-0.741784\pi\)
−0.688623 + 0.725120i \(0.741784\pi\)
\(98\) 0 0
\(99\) 44.3186i 0.447663i
\(100\) −19.4713 7.62758i −0.194713 0.0762758i
\(101\) 44.7373 0.442944 0.221472 0.975167i \(-0.428914\pi\)
0.221472 + 0.975167i \(0.428914\pi\)
\(102\) 1.18445 6.27091i 0.0116122 0.0614795i
\(103\) 189.267i 1.83755i −0.394785 0.918774i \(-0.629181\pi\)
0.394785 0.918774i \(-0.370819\pi\)
\(104\) −3.93166 2.46518i −0.0378044 0.0237036i
\(105\) 0 0
\(106\) 47.5219 + 8.97592i 0.448320 + 0.0846785i
\(107\) 167.732i 1.56759i −0.621018 0.783796i \(-0.713281\pi\)
0.621018 0.783796i \(-0.286719\pi\)
\(108\) 7.58111 19.3527i 0.0701955 0.179192i
\(109\) 169.830 1.55807 0.779036 0.626979i \(-0.215709\pi\)
0.779036 + 0.626979i \(0.215709\pi\)
\(110\) −24.3833 + 129.095i −0.221667 + 1.17359i
\(111\) 51.8032i 0.466695i
\(112\) 0 0
\(113\) −15.2588 −0.135033 −0.0675167 0.997718i \(-0.521508\pi\)
−0.0675167 + 0.997718i \(0.521508\pi\)
\(114\) −92.4610 17.4640i −0.811061 0.153193i
\(115\) 142.331i 1.23766i
\(116\) −193.962 75.9815i −1.67208 0.655013i
\(117\) −1.74022 −0.0148737
\(118\) −24.1232 + 127.718i −0.204434 + 1.08235i
\(119\) 0 0
\(120\) −32.7304 + 52.2010i −0.272753 + 0.435009i
\(121\) −97.2377 −0.803618
\(122\) −87.1772 16.4660i −0.714567 0.134967i
\(123\) 60.4240i 0.491252i
\(124\) −8.61557 + 21.9934i −0.0694804 + 0.177366i
\(125\) 134.411 1.07529
\(126\) 0 0
\(127\) 79.0861i 0.622725i 0.950291 + 0.311363i \(0.100785\pi\)
−0.950291 + 0.311363i \(0.899215\pi\)
\(128\) −33.4052 123.564i −0.260978 0.965345i
\(129\) 109.608 0.849673
\(130\) 5.06905 + 0.957439i 0.0389927 + 0.00736492i
\(131\) 42.9470i 0.327840i −0.986474 0.163920i \(-0.947586\pi\)
0.986474 0.163920i \(-0.0524138\pi\)
\(132\) −95.2983 37.3316i −0.721957 0.282815i
\(133\) 0 0
\(134\) 15.7377 83.3213i 0.117445 0.621801i
\(135\) 23.1051i 0.171149i
\(136\) −12.4866 7.82919i −0.0918134 0.0575676i
\(137\) −120.018 −0.876043 −0.438021 0.898965i \(-0.644321\pi\)
−0.438021 + 0.898965i \(0.644321\pi\)
\(138\) 108.957 + 20.5797i 0.789541 + 0.149128i
\(139\) 159.348i 1.14639i 0.819418 + 0.573196i \(0.194297\pi\)
−0.819418 + 0.573196i \(0.805703\pi\)
\(140\) 0 0
\(141\) 100.603 0.713493
\(142\) −12.4755 + 66.0499i −0.0878554 + 0.465140i
\(143\) 8.56935i 0.0599255i
\(144\) −35.2282 32.6033i −0.244640 0.226412i
\(145\) 231.570 1.59703
\(146\) 256.601 + 48.4666i 1.75754 + 0.331963i
\(147\) 0 0
\(148\) 111.392 + 43.6362i 0.752651 + 0.294839i
\(149\) −3.71015 −0.0249003 −0.0124502 0.999922i \(-0.503963\pi\)
−0.0124502 + 0.999922i \(0.503963\pi\)
\(150\) −3.36124 + 17.7957i −0.0224082 + 0.118638i
\(151\) 55.4227i 0.367038i 0.983016 + 0.183519i \(0.0587488\pi\)
−0.983016 + 0.183519i \(0.941251\pi\)
\(152\) −115.437 + 184.108i −0.759453 + 1.21124i
\(153\) −5.52679 −0.0361228
\(154\) 0 0
\(155\) 26.2578i 0.169405i
\(156\) −1.46587 + 3.74199i −0.00939658 + 0.0239871i
\(157\) 67.8733 0.432314 0.216157 0.976359i \(-0.430648\pi\)
0.216157 + 0.976359i \(0.430648\pi\)
\(158\) −18.1065 + 95.8630i −0.114598 + 0.606728i
\(159\) 41.8829i 0.263414i
\(160\) 84.6776 + 114.351i 0.529235 + 0.714696i
\(161\) 0 0
\(162\) −17.6873 3.34076i −0.109181 0.0206220i
\(163\) 99.9061i 0.612921i −0.951883 0.306460i \(-0.900855\pi\)
0.951883 0.306460i \(-0.0991447\pi\)
\(164\) 129.930 + 50.8979i 0.792254 + 0.310353i
\(165\) 113.776 0.689552
\(166\) −51.1637 + 270.880i −0.308215 + 1.63181i
\(167\) 140.330i 0.840299i 0.907455 + 0.420149i \(0.138022\pi\)
−0.907455 + 0.420149i \(0.861978\pi\)
\(168\) 0 0
\(169\) −168.664 −0.998009
\(170\) 16.0989 + 3.04074i 0.0946992 + 0.0178867i
\(171\) 81.4894i 0.476546i
\(172\) 92.3276 235.690i 0.536789 1.37029i
\(173\) −226.422 −1.30880 −0.654399 0.756149i \(-0.727078\pi\)
−0.654399 + 0.756149i \(0.727078\pi\)
\(174\) −33.4827 + 177.270i −0.192429 + 1.01879i
\(175\) 0 0
\(176\) −160.548 + 173.474i −0.912206 + 0.985646i
\(177\) 112.562 0.635945
\(178\) 229.642 + 43.3747i 1.29012 + 0.243678i
\(179\) 227.065i 1.26852i 0.773121 + 0.634258i \(0.218694\pi\)
−0.773121 + 0.634258i \(0.781306\pi\)
\(180\) 49.6828 + 19.4625i 0.276016 + 0.108125i
\(181\) −203.981 −1.12696 −0.563482 0.826128i \(-0.690539\pi\)
−0.563482 + 0.826128i \(0.690539\pi\)
\(182\) 0 0
\(183\) 76.8326i 0.419850i
\(184\) 136.032 216.954i 0.739302 1.17910i
\(185\) −132.991 −0.718869
\(186\) 20.1007 + 3.79662i 0.108068 + 0.0204119i
\(187\) 27.2155i 0.145538i
\(188\) 84.7421 216.326i 0.450756 1.15067i
\(189\) 0 0
\(190\) 44.8340 237.369i 0.235969 1.24931i
\(191\) 49.7977i 0.260721i 0.991467 + 0.130360i \(0.0416135\pi\)
−0.991467 + 0.130360i \(0.958387\pi\)
\(192\) −99.7812 + 48.2878i −0.519694 + 0.251499i
\(193\) −30.2425 −0.156697 −0.0783484 0.996926i \(-0.524965\pi\)
−0.0783484 + 0.996926i \(0.524965\pi\)
\(194\) 262.544 + 49.5891i 1.35332 + 0.255614i
\(195\) 4.46754i 0.0229105i
\(196\) 0 0
\(197\) 294.382 1.49432 0.747162 0.664642i \(-0.231416\pi\)
0.747162 + 0.664642i \(0.231416\pi\)
\(198\) −16.4509 + 87.0972i −0.0830852 + 0.439885i
\(199\) 289.112i 1.45283i 0.687259 + 0.726413i \(0.258814\pi\)
−0.687259 + 0.726413i \(0.741186\pi\)
\(200\) 35.4347 + 22.2178i 0.177174 + 0.111089i
\(201\) −73.4342 −0.365345
\(202\) −87.9201 16.6063i −0.435248 0.0822094i
\(203\) 0 0
\(204\) −4.65547 + 11.8843i −0.0228209 + 0.0582562i
\(205\) −155.122 −0.756693
\(206\) −70.2552 + 371.958i −0.341045 + 1.80562i
\(207\) 96.0276i 0.463902i
\(208\) 6.81164 + 6.30411i 0.0327483 + 0.0303082i
\(209\) 401.277 1.91999
\(210\) 0 0
\(211\) 94.7081i 0.448854i −0.974491 0.224427i \(-0.927949\pi\)
0.974491 0.224427i \(-0.0720510\pi\)
\(212\) −90.0608 35.2799i −0.424815 0.166414i
\(213\) 58.2123 0.273297
\(214\) −62.2615 + 329.636i −0.290942 + 1.54036i
\(215\) 281.388i 1.30878i
\(216\) −22.0824 + 35.2188i −0.102233 + 0.163050i
\(217\) 0 0
\(218\) −333.758 63.0401i −1.53100 0.289175i
\(219\) 226.152i 1.03266i
\(220\) 95.8388 244.653i 0.435631 1.11206i
\(221\) 1.06865 0.00483551
\(222\) 19.2291 101.806i 0.0866176 0.458587i
\(223\) 189.481i 0.849689i 0.905266 + 0.424845i \(0.139671\pi\)
−0.905266 + 0.424845i \(0.860329\pi\)
\(224\) 0 0
\(225\) 15.6840 0.0697067
\(226\) 29.9873 + 5.66399i 0.132687 + 0.0250619i
\(227\) 41.4861i 0.182758i 0.995816 + 0.0913790i \(0.0291275\pi\)
−0.995816 + 0.0913790i \(0.970873\pi\)
\(228\) 175.227 + 68.6422i 0.768537 + 0.301062i
\(229\) 392.105 1.71225 0.856124 0.516771i \(-0.172866\pi\)
0.856124 + 0.516771i \(0.172866\pi\)
\(230\) −52.8327 + 279.717i −0.229708 + 1.21616i
\(231\) 0 0
\(232\) 352.980 + 221.320i 1.52146 + 0.953967i
\(233\) 7.03829 0.0302073 0.0151036 0.999886i \(-0.495192\pi\)
0.0151036 + 0.999886i \(0.495192\pi\)
\(234\) 3.41997 + 0.645962i 0.0146153 + 0.00276052i
\(235\) 258.270i 1.09902i
\(236\) 94.8164 242.043i 0.401764 1.02560i
\(237\) 84.4877 0.356488
\(238\) 0 0
\(239\) 118.480i 0.495732i 0.968794 + 0.247866i \(0.0797293\pi\)
−0.968794 + 0.247866i \(0.920271\pi\)
\(240\) 83.7002 90.4388i 0.348751 0.376828i
\(241\) 110.239 0.457425 0.228712 0.973494i \(-0.426548\pi\)
0.228712 + 0.973494i \(0.426548\pi\)
\(242\) 191.097 + 36.0942i 0.789655 + 0.149150i
\(243\) 15.5885i 0.0641500i
\(244\) 165.213 + 64.7196i 0.677102 + 0.265244i
\(245\) 0 0
\(246\) 22.4291 118.748i 0.0911752 0.482717i
\(247\) 15.7566i 0.0637919i
\(248\) 25.0956 40.0245i 0.101192 0.161389i
\(249\) 238.737 0.958783
\(250\) −264.151 49.8928i −1.05661 0.199571i
\(251\) 26.0919i 0.103952i −0.998648 0.0519759i \(-0.983448\pi\)
0.998648 0.0519759i \(-0.0165519\pi\)
\(252\) 0 0
\(253\) −472.868 −1.86904
\(254\) 29.3564 155.424i 0.115576 0.611906i
\(255\) 14.1885i 0.0556413i
\(256\) 19.7831 + 255.234i 0.0772776 + 0.997010i
\(257\) −8.63546 −0.0336010 −0.0168005 0.999859i \(-0.505348\pi\)
−0.0168005 + 0.999859i \(0.505348\pi\)
\(258\) −215.407 40.6859i −0.834910 0.157697i
\(259\) 0 0
\(260\) −9.60656 3.76322i −0.0369483 0.0144739i
\(261\) 156.235 0.598601
\(262\) −15.9417 + 84.4016i −0.0608463 + 0.322144i
\(263\) 138.275i 0.525760i −0.964829 0.262880i \(-0.915328\pi\)
0.964829 0.262880i \(-0.0846723\pi\)
\(264\) 173.428 + 108.740i 0.656923 + 0.411895i
\(265\) 107.523 0.405747
\(266\) 0 0
\(267\) 202.392i 0.758024i
\(268\) −61.8570 + 157.906i −0.230810 + 0.589200i
\(269\) −361.224 −1.34284 −0.671419 0.741078i \(-0.734315\pi\)
−0.671419 + 0.741078i \(0.734315\pi\)
\(270\) 8.57650 45.4073i 0.0317648 0.168175i
\(271\) 197.285i 0.727989i 0.931401 + 0.363995i \(0.118587\pi\)
−0.931401 + 0.363995i \(0.881413\pi\)
\(272\) 21.6332 + 20.0213i 0.0795338 + 0.0736077i
\(273\) 0 0
\(274\) 235.865 + 44.5501i 0.860822 + 0.162592i
\(275\) 77.2326i 0.280846i
\(276\) −206.488 80.8885i −0.748145 0.293074i
\(277\) −282.947 −1.02147 −0.510734 0.859739i \(-0.670626\pi\)
−0.510734 + 0.859739i \(0.670626\pi\)
\(278\) 59.1494 313.160i 0.212768 1.12647i
\(279\) 17.7155i 0.0634966i
\(280\) 0 0
\(281\) −232.341 −0.826836 −0.413418 0.910541i \(-0.635665\pi\)
−0.413418 + 0.910541i \(0.635665\pi\)
\(282\) −197.709 37.3432i −0.701097 0.132423i
\(283\) 347.649i 1.22844i −0.789134 0.614222i \(-0.789470\pi\)
0.789134 0.614222i \(-0.210530\pi\)
\(284\) 49.0348 125.174i 0.172658 0.440753i
\(285\) −209.202 −0.734042
\(286\) 3.18091 16.8409i 0.0111220 0.0588844i
\(287\) 0 0
\(288\) 57.1300 + 77.1503i 0.198368 + 0.267883i
\(289\) −285.606 −0.988256
\(290\) −455.093 85.9577i −1.56929 0.296406i
\(291\) 231.390i 0.795153i
\(292\) −486.294 190.498i −1.66539 0.652391i
\(293\) −207.320 −0.707576 −0.353788 0.935326i \(-0.615107\pi\)
−0.353788 + 0.935326i \(0.615107\pi\)
\(294\) 0 0
\(295\) 288.973i 0.979570i
\(296\) −202.716 127.104i −0.684853 0.429407i
\(297\) 76.7621 0.258458
\(298\) 7.29138 + 1.37719i 0.0244677 + 0.00462145i
\(299\) 18.5677i 0.0620993i
\(300\) 13.2114 33.7253i 0.0440378 0.112418i
\(301\) 0 0
\(302\) 20.5727 108.920i 0.0681214 0.360661i
\(303\) 77.4873i 0.255734i
\(304\) 295.203 318.969i 0.971061 1.04924i
\(305\) −197.247 −0.646711
\(306\) 10.8615 + 2.05152i 0.0354952 + 0.00670432i
\(307\) 249.900i 0.814006i −0.913427 0.407003i \(-0.866574\pi\)
0.913427 0.407003i \(-0.133426\pi\)
\(308\) 0 0
\(309\) 327.821 1.06091
\(310\) −9.74679 + 51.6032i −0.0314412 + 0.166462i
\(311\) 257.172i 0.826921i 0.910522 + 0.413460i \(0.135680\pi\)
−0.910522 + 0.413460i \(0.864320\pi\)
\(312\) 4.26981 6.80984i 0.0136853 0.0218264i
\(313\) −125.903 −0.402245 −0.201123 0.979566i \(-0.564459\pi\)
−0.201123 + 0.979566i \(0.564459\pi\)
\(314\) −133.388 25.1943i −0.424803 0.0802366i
\(315\) 0 0
\(316\) 71.1678 181.674i 0.225215 0.574917i
\(317\) 127.002 0.400638 0.200319 0.979731i \(-0.435802\pi\)
0.200319 + 0.979731i \(0.435802\pi\)
\(318\) −15.5467 + 82.3104i −0.0488891 + 0.258838i
\(319\) 769.346i 2.41174i
\(320\) −123.966 256.161i −0.387394 0.800504i
\(321\) 290.521 0.905050
\(322\) 0 0
\(323\) 50.0416i 0.154928i
\(324\) 33.5198 + 13.1309i 0.103456 + 0.0405274i
\(325\) −3.03262 −0.00933115
\(326\) −37.0847 + 196.341i −0.113757 + 0.602272i
\(327\) 294.154i 0.899554i
\(328\) −236.451 148.256i −0.720888 0.452001i
\(329\) 0 0
\(330\) −223.599 42.2332i −0.677571 0.127979i
\(331\) 535.736i 1.61854i 0.587438 + 0.809269i \(0.300137\pi\)
−0.587438 + 0.809269i \(0.699863\pi\)
\(332\) 201.099 513.356i 0.605720 1.54625i
\(333\) −89.7258 −0.269447
\(334\) 52.0898 275.784i 0.155958 0.825699i
\(335\) 188.523i 0.562754i
\(336\) 0 0
\(337\) 123.246 0.365715 0.182858 0.983139i \(-0.441465\pi\)
0.182858 + 0.983139i \(0.441465\pi\)
\(338\) 331.466 + 62.6072i 0.980669 + 0.185228i
\(339\) 26.4290i 0.0779615i
\(340\) −30.5096 11.9517i −0.0897341 0.0351519i
\(341\) −87.2365 −0.255826
\(342\) 30.2485 160.147i 0.0884459 0.468266i
\(343\) 0 0
\(344\) −268.934 + 428.918i −0.781785 + 1.24685i
\(345\) 246.525 0.714565
\(346\) 444.976 + 84.0469i 1.28606 + 0.242910i
\(347\) 590.358i 1.70132i −0.525717 0.850659i \(-0.676203\pi\)
0.525717 0.850659i \(-0.323797\pi\)
\(348\) 131.604 335.952i 0.378172 0.965378i
\(349\) −553.502 −1.58596 −0.792982 0.609245i \(-0.791473\pi\)
−0.792982 + 0.609245i \(0.791473\pi\)
\(350\) 0 0
\(351\) 3.01415i 0.00858732i
\(352\) 379.910 281.325i 1.07929 0.799218i
\(353\) 271.205 0.768286 0.384143 0.923274i \(-0.374497\pi\)
0.384143 + 0.923274i \(0.374497\pi\)
\(354\) −221.213 41.7826i −0.624896 0.118030i
\(355\) 149.444i 0.420970i
\(356\) −435.204 170.484i −1.22248 0.478889i
\(357\) 0 0
\(358\) 84.2854 446.239i 0.235434 1.24648i
\(359\) 405.543i 1.12965i 0.825212 + 0.564823i \(0.191055\pi\)
−0.825212 + 0.564823i \(0.808945\pi\)
\(360\) −90.4148 56.6906i −0.251152 0.157474i
\(361\) −376.835 −1.04386
\(362\) 400.873 + 75.7167i 1.10738 + 0.209162i
\(363\) 168.421i 0.463969i
\(364\) 0 0
\(365\) 580.584 1.59064
\(366\) 28.5199 150.995i 0.0779233 0.412556i
\(367\) 33.2577i 0.0906204i 0.998973 + 0.0453102i \(0.0144276\pi\)
−0.998973 + 0.0453102i \(0.985572\pi\)
\(368\) −347.869 + 375.875i −0.945296 + 1.02140i
\(369\) −104.657 −0.283624
\(370\) 261.360 + 49.3656i 0.706379 + 0.133420i
\(371\) 0 0
\(372\) −38.0937 14.9226i −0.102402 0.0401146i
\(373\) −311.937 −0.836292 −0.418146 0.908380i \(-0.637320\pi\)
−0.418146 + 0.908380i \(0.637320\pi\)
\(374\) 10.1023 53.4854i 0.0270115 0.143009i
\(375\) 232.807i 0.620818i
\(376\) −246.839 + 393.678i −0.656486 + 1.04702i
\(377\) −30.2092 −0.0801306
\(378\) 0 0
\(379\) 339.175i 0.894921i 0.894304 + 0.447461i \(0.147672\pi\)
−0.894304 + 0.447461i \(0.852328\pi\)
\(380\) −176.220 + 449.847i −0.463738 + 1.18381i
\(381\) −136.981 −0.359531
\(382\) 18.4847 97.8650i 0.0483892 0.256191i
\(383\) 18.1397i 0.0473622i 0.999720 + 0.0236811i \(0.00753863\pi\)
−0.999720 + 0.0236811i \(0.992461\pi\)
\(384\) 214.019 57.8594i 0.557342 0.150676i
\(385\) 0 0
\(386\) 59.4341 + 11.2259i 0.153974 + 0.0290826i
\(387\) 189.846i 0.490559i
\(388\) −497.557 194.910i −1.28236 0.502345i
\(389\) 6.54448 0.0168239 0.00841193 0.999965i \(-0.497322\pi\)
0.00841193 + 0.999965i \(0.497322\pi\)
\(390\) −1.65833 + 8.77985i −0.00425214 + 0.0225124i
\(391\) 58.9694i 0.150817i
\(392\) 0 0
\(393\) 74.3863 0.189278
\(394\) −578.535 109.273i −1.46836 0.277343i
\(395\) 216.899i 0.549112i
\(396\) 64.6602 165.061i 0.163283 0.416822i
\(397\) 619.101 1.55945 0.779724 0.626124i \(-0.215360\pi\)
0.779724 + 0.626124i \(0.215360\pi\)
\(398\) 107.317 568.178i 0.269641 1.42758i
\(399\) 0 0
\(400\) −61.3910 56.8167i −0.153477 0.142042i
\(401\) 342.787 0.854830 0.427415 0.904056i \(-0.359424\pi\)
0.427415 + 0.904056i \(0.359424\pi\)
\(402\) 144.317 + 27.2585i 0.358997 + 0.0678071i
\(403\) 3.42544i 0.00849985i
\(404\) 166.621 + 65.2711i 0.412428 + 0.161562i
\(405\) −40.0191 −0.0988127
\(406\) 0 0
\(407\) 441.836i 1.08559i
\(408\) 13.5606 21.6275i 0.0332366 0.0530085i
\(409\) −497.138 −1.21550 −0.607749 0.794129i \(-0.707927\pi\)
−0.607749 + 0.794129i \(0.707927\pi\)
\(410\) 304.854 + 57.5807i 0.743547 + 0.140441i
\(411\) 207.877i 0.505784i
\(412\) 276.138 704.913i 0.670239 1.71095i
\(413\) 0 0
\(414\) −35.6450 + 188.718i −0.0860991 + 0.455842i
\(415\) 612.892i 1.47685i
\(416\) −11.0465 14.9176i −0.0265542 0.0358596i
\(417\) −276.000 −0.661870
\(418\) −788.611 148.952i −1.88663 0.356345i
\(419\) 20.5194i 0.0489723i −0.999700 0.0244861i \(-0.992205\pi\)
0.999700 0.0244861i \(-0.00779496\pi\)
\(420\) 0 0
\(421\) −628.679 −1.49330 −0.746650 0.665217i \(-0.768339\pi\)
−0.746650 + 0.665217i \(0.768339\pi\)
\(422\) −35.1552 + 186.125i −0.0833063 + 0.441055i
\(423\) 174.249i 0.411936i
\(424\) 163.896 + 102.764i 0.386548 + 0.242368i
\(425\) −9.63136 −0.0226620
\(426\) −114.402 21.6081i −0.268549 0.0507233i
\(427\) 0 0
\(428\) 244.719 624.707i 0.571774 1.45960i
\(429\) −14.8426 −0.0345980
\(430\) 104.450 552.999i 0.242907 1.28604i
\(431\) 843.895i 1.95799i −0.203876 0.978997i \(-0.565354\pi\)
0.203876 0.978997i \(-0.434646\pi\)
\(432\) 56.4706 61.0170i 0.130719 0.141243i
\(433\) −478.239 −1.10448 −0.552239 0.833686i \(-0.686226\pi\)
−0.552239 + 0.833686i \(0.686226\pi\)
\(434\) 0 0
\(435\) 401.091i 0.922047i
\(436\) 632.519 + 247.779i 1.45073 + 0.568301i
\(437\) 869.470 1.98963
\(438\) −83.9466 + 444.446i −0.191659 + 1.01472i
\(439\) 299.816i 0.682953i 0.939890 + 0.341477i \(0.110927\pi\)
−0.939890 + 0.341477i \(0.889073\pi\)
\(440\) −279.161 + 445.229i −0.634457 + 1.01188i
\(441\) 0 0
\(442\) −2.10016 0.396678i −0.00475150 0.000897461i
\(443\) 141.174i 0.318678i 0.987224 + 0.159339i \(0.0509363\pi\)
−0.987224 + 0.159339i \(0.949064\pi\)
\(444\) −75.5801 + 192.937i −0.170225 + 0.434543i
\(445\) 519.588 1.16761
\(446\) 70.3344 372.377i 0.157700 0.834927i
\(447\) 6.42617i 0.0143762i
\(448\) 0 0
\(449\) −9.59195 −0.0213629 −0.0106815 0.999943i \(-0.503400\pi\)
−0.0106815 + 0.999943i \(0.503400\pi\)
\(450\) −30.8230 5.82183i −0.0684956 0.0129374i
\(451\) 515.363i 1.14271i
\(452\) −56.8302 22.2623i −0.125730 0.0492529i
\(453\) −95.9949 −0.211909
\(454\) 15.3994 81.5305i 0.0339195 0.179583i
\(455\) 0 0
\(456\) −318.885 199.943i −0.699308 0.438470i
\(457\) 140.950 0.308426 0.154213 0.988038i \(-0.450716\pi\)
0.154213 + 0.988038i \(0.450716\pi\)
\(458\) −770.584 145.548i −1.68250 0.317789i
\(459\) 9.57268i 0.0208555i
\(460\) 207.659 530.102i 0.451433 1.15240i
\(461\) 77.7365 0.168626 0.0843129 0.996439i \(-0.473130\pi\)
0.0843129 + 0.996439i \(0.473130\pi\)
\(462\) 0 0
\(463\) 396.222i 0.855771i −0.903833 0.427886i \(-0.859259\pi\)
0.903833 0.427886i \(-0.140741\pi\)
\(464\) −611.541 565.975i −1.31798 1.21977i
\(465\) 45.4799 0.0978062
\(466\) −13.8320 2.61258i −0.0296824 0.00560640i
\(467\) 358.771i 0.768247i −0.923282 0.384123i \(-0.874504\pi\)
0.923282 0.384123i \(-0.125496\pi\)
\(468\) −6.48132 2.53896i −0.0138490 0.00542512i
\(469\) 0 0
\(470\) 95.8686 507.565i 0.203976 1.07993i
\(471\) 117.560i 0.249597i
\(472\) −276.183 + 440.479i −0.585134 + 0.933219i
\(473\) 934.858 1.97644
\(474\) −166.040 31.3615i −0.350294 0.0661634i
\(475\) 142.009i 0.298966i
\(476\) 0 0
\(477\) 72.5433 0.152082
\(478\) 43.9793 232.843i 0.0920068 0.487119i
\(479\) 175.970i 0.367369i −0.982985 0.183684i \(-0.941198\pi\)
0.982985 0.183684i \(-0.0588024\pi\)
\(480\) −198.062 + 146.666i −0.412630 + 0.305554i
\(481\) 17.3492 0.0360690
\(482\) −216.648 40.9204i −0.449478 0.0848971i
\(483\) 0 0
\(484\) −362.155 141.868i −0.748254 0.293117i
\(485\) 594.030 1.22480
\(486\) 5.78637 30.6352i 0.0119061 0.0630355i
\(487\) 356.695i 0.732434i −0.930529 0.366217i \(-0.880653\pi\)
0.930529 0.366217i \(-0.119347\pi\)
\(488\) −300.662 188.517i −0.616110 0.386304i
\(489\) 173.042 0.353870
\(490\) 0 0
\(491\) 826.372i 1.68304i −0.540227 0.841519i \(-0.681662\pi\)
0.540227 0.841519i \(-0.318338\pi\)
\(492\) −88.1577 + 225.045i −0.179182 + 0.457408i
\(493\) −95.9419 −0.194608
\(494\) −5.84878 + 30.9657i −0.0118396 + 0.0626836i
\(495\) 197.066i 0.398113i
\(496\) −64.1762 + 69.3429i −0.129387 + 0.139804i
\(497\) 0 0
\(498\) −469.178 88.6181i −0.942125 0.177948i
\(499\) 114.303i 0.229064i −0.993420 0.114532i \(-0.963463\pi\)
0.993420 0.114532i \(-0.0365369\pi\)
\(500\) 500.604 + 196.104i 1.00121 + 0.392207i
\(501\) −243.058 −0.485147
\(502\) −9.68520 + 51.2772i −0.0192932 + 0.102146i
\(503\) 76.9798i 0.153041i −0.997068 0.0765207i \(-0.975619\pi\)
0.997068 0.0765207i \(-0.0243811\pi\)
\(504\) 0 0
\(505\) −198.928 −0.393916
\(506\) 929.304 + 175.526i 1.83657 + 0.346890i
\(507\) 292.134i 0.576201i
\(508\) −115.385 + 294.551i −0.227137 + 0.579824i
\(509\) 13.7617 0.0270367 0.0135183 0.999909i \(-0.495697\pi\)
0.0135183 + 0.999909i \(0.495697\pi\)
\(510\) −5.26672 + 27.8841i −0.0103269 + 0.0546746i
\(511\) 0 0
\(512\) 55.8632 508.943i 0.109108 0.994030i
\(513\) −141.144 −0.275134
\(514\) 16.9709 + 3.20545i 0.0330172 + 0.00623628i
\(515\) 841.591i 1.63416i
\(516\) 408.226 + 159.916i 0.791136 + 0.309915i
\(517\) 858.052 1.65967
\(518\) 0 0
\(519\) 392.174i 0.755635i
\(520\) 17.4824 + 10.9616i 0.0336200 + 0.0210800i
\(521\) 332.169 0.637561 0.318781 0.947829i \(-0.396727\pi\)
0.318781 + 0.947829i \(0.396727\pi\)
\(522\) −307.041 57.9937i −0.588201 0.111099i
\(523\) 999.341i 1.91079i −0.295337 0.955393i \(-0.595432\pi\)
0.295337 0.955393i \(-0.404568\pi\)
\(524\) 62.6590 159.953i 0.119578 0.305254i
\(525\) 0 0
\(526\) −51.3270 + 271.745i −0.0975799 + 0.516625i
\(527\) 10.8789i 0.0206431i
\(528\) −300.465 278.078i −0.569063 0.526662i
\(529\) −495.589 −0.936842
\(530\) −211.310 39.9121i −0.398698 0.0753058i
\(531\) 194.964i 0.367163i
\(532\) 0 0
\(533\) 20.2363 0.0379668
\(534\) −75.1271 + 397.752i −0.140688 + 0.744854i
\(535\) 745.834i 1.39408i
\(536\) 180.178 287.363i 0.336154 0.536125i
\(537\) −393.287 −0.732379
\(538\) 709.895 + 134.085i 1.31951 + 0.249228i
\(539\) 0 0
\(540\) −33.7100 + 86.0531i −0.0624258 + 0.159358i
\(541\) 267.767 0.494948 0.247474 0.968895i \(-0.420399\pi\)
0.247474 + 0.968895i \(0.420399\pi\)
\(542\) 73.2314 387.715i 0.135113 0.715341i
\(543\) 353.305i 0.650653i
\(544\) −35.0828 47.3770i −0.0644905 0.0870902i
\(545\) −755.161 −1.38562
\(546\) 0 0
\(547\) 43.0970i 0.0787879i 0.999224 + 0.0393940i \(0.0125427\pi\)
−0.999224 + 0.0393940i \(0.987457\pi\)
\(548\) −446.998 175.104i −0.815690 0.319533i
\(549\) −133.078 −0.242401
\(550\) −28.6684 + 151.781i −0.0521244 + 0.275966i
\(551\) 1414.61i 2.56735i
\(552\) 375.776 + 235.614i 0.680753 + 0.426836i
\(553\) 0 0
\(554\) 556.061 + 105.029i 1.00372 + 0.189582i
\(555\) 230.347i 0.415039i
\(556\) −232.487 + 593.482i −0.418142 + 1.06741i
\(557\) 592.394 1.06354 0.531772 0.846887i \(-0.321526\pi\)
0.531772 + 0.846887i \(0.321526\pi\)
\(558\) −6.57593 + 34.8155i −0.0117848 + 0.0623934i
\(559\) 36.7083i 0.0656677i
\(560\) 0 0
\(561\) −47.1387 −0.0840262
\(562\) 456.608 + 86.2439i 0.812470 + 0.153459i
\(563\) 763.753i 1.35658i −0.734796 0.678288i \(-0.762722\pi\)
0.734796 0.678288i \(-0.237278\pi\)
\(564\) 374.687 + 146.778i 0.664339 + 0.260244i
\(565\) 67.8492 0.120087
\(566\) −129.046 + 683.219i −0.227996 + 1.20710i
\(567\) 0 0
\(568\) −142.830 + 227.796i −0.251461 + 0.401050i
\(569\) −336.581 −0.591530 −0.295765 0.955261i \(-0.595575\pi\)
−0.295765 + 0.955261i \(0.595575\pi\)
\(570\) 411.134 + 77.6548i 0.721288 + 0.136237i
\(571\) 599.028i 1.04909i 0.851384 + 0.524543i \(0.175764\pi\)
−0.851384 + 0.524543i \(0.824236\pi\)
\(572\) −12.5026 + 31.9159i −0.0218576 + 0.0557971i
\(573\) −86.2522 −0.150527
\(574\) 0 0
\(575\) 167.344i 0.291033i
\(576\) −83.6370 172.826i −0.145203 0.300045i
\(577\) −1038.35 −1.79957 −0.899785 0.436333i \(-0.856277\pi\)
−0.899785 + 0.436333i \(0.856277\pi\)
\(578\) 561.288 + 106.016i 0.971086 + 0.183418i
\(579\) 52.3815i 0.0904689i
\(580\) 862.465 + 337.857i 1.48701 + 0.582512i
\(581\) 0 0
\(582\) −85.8908 + 454.739i −0.147579 + 0.781338i
\(583\) 357.224i 0.612735i
\(584\) 884.979 + 554.887i 1.51537 + 0.950149i
\(585\) 7.73801 0.0132274
\(586\) 407.435 + 76.9562i 0.695282 + 0.131325i
\(587\) 753.468i 1.28359i 0.766876 + 0.641796i \(0.221810\pi\)
−0.766876 + 0.641796i \(0.778190\pi\)
\(588\) 0 0
\(589\) 160.403 0.272331
\(590\) 107.266 567.905i 0.181806 0.962551i
\(591\) 509.885i 0.862749i
\(592\) 351.208 + 325.040i 0.593257 + 0.549054i
\(593\) 323.430 0.545412 0.272706 0.962097i \(-0.412081\pi\)
0.272706 + 0.962097i \(0.412081\pi\)
\(594\) −150.857 28.4938i −0.253968 0.0479693i
\(595\) 0 0
\(596\) −13.8182 5.41306i −0.0231849 0.00908231i
\(597\) −500.757 −0.838789
\(598\) 6.89225 36.4902i 0.0115255 0.0610204i
\(599\) 519.116i 0.866638i −0.901241 0.433319i \(-0.857342\pi\)
0.901241 0.433319i \(-0.142658\pi\)
\(600\) −38.4823 + 61.3747i −0.0641372 + 0.102291i
\(601\) 70.0467 0.116550 0.0582752 0.998301i \(-0.481440\pi\)
0.0582752 + 0.998301i \(0.481440\pi\)
\(602\) 0 0
\(603\) 127.192i 0.210932i
\(604\) −80.8609 + 206.418i −0.133876 + 0.341751i
\(605\) 432.375 0.714669
\(606\) 28.7630 152.282i 0.0474636 0.251291i
\(607\) 930.701i 1.53328i 0.642077 + 0.766640i \(0.278073\pi\)
−0.642077 + 0.766640i \(0.721927\pi\)
\(608\) −698.547 + 517.276i −1.14893 + 0.850784i
\(609\) 0 0
\(610\) 387.640 + 73.2171i 0.635475 + 0.120028i
\(611\) 33.6924i 0.0551430i
\(612\) −20.5841 8.06351i −0.0336342 0.0131757i
\(613\) −353.932 −0.577377 −0.288688 0.957423i \(-0.593219\pi\)
−0.288688 + 0.957423i \(0.593219\pi\)
\(614\) −92.7618 + 491.116i −0.151078 + 0.799864i
\(615\) 268.679i 0.436877i
\(616\) 0 0
\(617\) 302.934 0.490979 0.245490 0.969399i \(-0.421051\pi\)
0.245490 + 0.969399i \(0.421051\pi\)
\(618\) −644.250 121.686i −1.04248 0.196902i
\(619\) 176.432i 0.285028i −0.989793 0.142514i \(-0.954481\pi\)
0.989793 0.142514i \(-0.0455186\pi\)
\(620\) 38.3098 97.7953i 0.0617900 0.157734i
\(621\) 166.325 0.267834
\(622\) 95.4613 505.409i 0.153475 0.812554i
\(623\) 0 0
\(624\) −10.9190 + 11.7981i −0.0174984 + 0.0189072i
\(625\) −466.968 −0.747149
\(626\) 247.431 + 46.7346i 0.395257 + 0.0746558i
\(627\) 695.033i 1.10851i
\(628\) 252.789 + 99.0262i 0.402531 + 0.157685i
\(629\) 55.0995 0.0875986
\(630\) 0 0
\(631\) 348.007i 0.551516i 0.961227 + 0.275758i \(0.0889288\pi\)
−0.961227 + 0.275758i \(0.911071\pi\)
\(632\) −207.299 + 330.618i −0.328005 + 0.523129i
\(633\) 164.039 0.259146
\(634\) −249.591 47.1426i −0.393677 0.0743575i
\(635\) 351.662i 0.553799i
\(636\) 61.1065 155.990i 0.0960795 0.245267i
\(637\) 0 0
\(638\) −285.578 + 1511.96i −0.447614 + 2.36984i
\(639\) 100.827i 0.157788i
\(640\) 148.538 + 549.437i 0.232091 + 0.858495i
\(641\) −526.352 −0.821141 −0.410571 0.911829i \(-0.634670\pi\)
−0.410571 + 0.911829i \(0.634670\pi\)
\(642\) −570.947 107.840i −0.889325 0.167975i
\(643\) 801.421i 1.24638i −0.782071 0.623189i \(-0.785837\pi\)
0.782071 0.623189i \(-0.214163\pi\)
\(644\) 0 0
\(645\) −487.379 −0.755626
\(646\) −18.5752 + 98.3444i −0.0287542 + 0.152236i
\(647\) 98.8731i 0.152818i −0.997077 0.0764089i \(-0.975655\pi\)
0.997077 0.0764089i \(-0.0243454\pi\)
\(648\) −61.0008 38.2479i −0.0941371 0.0590245i
\(649\) 960.058 1.47929
\(650\) 5.95987 + 1.12570i 0.00916903 + 0.00173184i
\(651\) 0 0
\(652\) 145.762 372.093i 0.223561 0.570695i
\(653\) −224.973 −0.344523 −0.172261 0.985051i \(-0.555107\pi\)
−0.172261 + 0.985051i \(0.555107\pi\)
\(654\) 109.189 578.087i 0.166955 0.883925i
\(655\) 190.967i 0.291552i
\(656\) 409.654 + 379.131i 0.624473 + 0.577943i
\(657\) 391.707 0.596205
\(658\) 0 0
\(659\) 372.583i 0.565376i 0.959212 + 0.282688i \(0.0912260\pi\)
−0.959212 + 0.282688i \(0.908774\pi\)
\(660\) 423.751 + 165.998i 0.642046 + 0.251512i
\(661\) 571.609 0.864764 0.432382 0.901691i \(-0.357673\pi\)
0.432382 + 0.901691i \(0.357673\pi\)
\(662\) 198.863 1052.86i 0.300397 1.59042i
\(663\) 1.85095i 0.00279178i
\(664\) −585.766 + 934.226i −0.882177 + 1.40697i
\(665\) 0 0
\(666\) 176.334 + 33.3058i 0.264765 + 0.0500087i
\(667\) 1666.98i 2.49923i
\(668\) −204.739 + 522.649i −0.306496 + 0.782408i
\(669\) −328.190 −0.490568
\(670\) −69.9787 + 370.494i −0.104446 + 0.552976i
\(671\) 655.314i 0.976623i
\(672\) 0 0
\(673\) 389.233 0.578355 0.289177 0.957276i \(-0.406618\pi\)
0.289177 + 0.957276i \(0.406618\pi\)
\(674\) −242.210 45.7484i −0.359361 0.0678760i
\(675\) 27.1655i 0.0402452i
\(676\) −628.175 246.078i −0.929253 0.364020i
\(677\) −831.064 −1.22757 −0.613784 0.789474i \(-0.710354\pi\)
−0.613784 + 0.789474i \(0.710354\pi\)
\(678\) −9.81031 + 51.9396i −0.0144695 + 0.0766070i
\(679\) 0 0
\(680\) 55.5227 + 34.8130i 0.0816510 + 0.0511957i
\(681\) −71.8559 −0.105515
\(682\) 171.442 + 32.3818i 0.251381 + 0.0474807i
\(683\) 1146.27i 1.67828i 0.543915 + 0.839141i \(0.316942\pi\)
−0.543915 + 0.839141i \(0.683058\pi\)
\(684\) −118.892 + 303.501i −0.173818 + 0.443715i
\(685\) 533.668 0.779077
\(686\) 0 0
\(687\) 679.145i 0.988567i
\(688\) 687.735 743.104i 0.999615 1.08009i
\(689\) −14.0268 −0.0203582
\(690\) −484.483 91.5090i −0.702150 0.132622i
\(691\) 604.353i 0.874607i −0.899314 0.437303i \(-0.855934\pi\)
0.899314 0.437303i \(-0.144066\pi\)
\(692\) −843.292 330.346i −1.21863 0.477379i
\(693\) 0 0
\(694\) −219.138 + 1160.20i −0.315761 + 1.67176i
\(695\) 708.554i 1.01950i
\(696\) −383.338 + 611.379i −0.550773 + 0.878418i
\(697\) 64.2688 0.0922078
\(698\) 1087.77 + 205.457i 1.55841 + 0.294352i
\(699\) 12.1907i 0.0174402i
\(700\) 0 0
\(701\) 136.164 0.194243 0.0971214 0.995273i \(-0.469037\pi\)
0.0971214 + 0.995273i \(0.469037\pi\)
\(702\) −1.11884 + 5.92356i −0.00159379 + 0.00843812i
\(703\) 812.411i 1.15563i
\(704\) −851.046 + 411.853i −1.20887 + 0.585018i
\(705\) −447.337 −0.634520
\(706\) −532.986 100.670i −0.754938 0.142592i
\(707\) 0 0
\(708\) 419.230 + 164.227i 0.592133 + 0.231959i
\(709\) 660.285 0.931291 0.465645 0.884971i \(-0.345822\pi\)
0.465645 + 0.884971i \(0.345822\pi\)
\(710\) 55.4730 293.696i 0.0781310 0.413656i
\(711\) 146.337i 0.205819i
\(712\) 792.003 + 496.590i 1.11236 + 0.697458i
\(713\) −189.020 −0.265105
\(714\) 0 0
\(715\) 38.1042i 0.0532926i
\(716\) −331.284 + 845.685i −0.462687 + 1.18112i
\(717\) −205.213 −0.286211
\(718\) 150.536 796.993i 0.209660 1.11002i
\(719\) 820.759i 1.14153i −0.821114 0.570764i \(-0.806647\pi\)
0.821114 0.570764i \(-0.193353\pi\)
\(720\) 156.645 + 144.973i 0.217562 + 0.201351i
\(721\) 0 0
\(722\) 740.576 + 139.880i 1.02573 + 0.193739i
\(723\) 190.940i 0.264094i
\(724\) −759.711 297.605i −1.04932 0.411056i
\(725\) 272.265 0.375538
\(726\) −62.5170 + 330.989i −0.0861116 + 0.455908i
\(727\) 242.765i 0.333928i 0.985963 + 0.166964i \(0.0533963\pi\)
−0.985963 + 0.166964i \(0.946604\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −1140.99 215.510i −1.56300 0.295219i
\(731\) 116.582i 0.159483i
\(732\) −112.098 + 286.157i −0.153139 + 0.390925i
\(733\) −1104.69 −1.50708 −0.753541 0.657400i \(-0.771656\pi\)
−0.753541 + 0.657400i \(0.771656\pi\)
\(734\) 12.3451 65.3597i 0.0168189 0.0890459i
\(735\) 0 0
\(736\) 823.173 609.562i 1.11844 0.828209i
\(737\) −626.330 −0.849837
\(738\) 205.678 + 38.8484i 0.278697 + 0.0526400i
\(739\) 442.727i 0.599089i 0.954082 + 0.299545i \(0.0968347\pi\)
−0.954082 + 0.299545i \(0.903165\pi\)
\(740\) −495.314 194.031i −0.669343 0.262205i
\(741\) 27.2912 0.0368303
\(742\) 0 0
\(743\) 235.734i 0.317274i 0.987337 + 0.158637i \(0.0507099\pi\)
−0.987337 + 0.158637i \(0.949290\pi\)
\(744\) 69.3245 + 43.4669i 0.0931782 + 0.0584233i
\(745\) 16.4975 0.0221442
\(746\) 613.034 + 115.790i 0.821762 + 0.155214i
\(747\) 413.505i 0.553554i
\(748\) −39.7071 + 101.362i −0.0530843 + 0.135511i
\(749\) 0 0
\(750\) 86.4168 457.524i 0.115222 0.610031i
\(751\) 216.209i 0.287895i 0.989585 + 0.143948i \(0.0459797\pi\)
−0.989585 + 0.143948i \(0.954020\pi\)
\(752\) 631.232 682.052i 0.839404 0.906984i
\(753\) 45.1925 0.0600166
\(754\) 59.3687 + 11.2135i 0.0787384 + 0.0148721i
\(755\) 246.441i 0.326412i
\(756\) 0 0
\(757\) −750.692 −0.991667 −0.495834 0.868418i \(-0.665137\pi\)
−0.495834 + 0.868418i \(0.665137\pi\)
\(758\) 125.900 666.565i 0.166095 0.879373i
\(759\) 819.031i 1.07909i
\(760\) 513.298 818.650i 0.675393 1.07717i
\(761\) 951.226 1.24997 0.624984 0.780637i \(-0.285105\pi\)
0.624984 + 0.780637i \(0.285105\pi\)
\(762\) 269.202 + 50.8468i 0.353284 + 0.0667281i
\(763\) 0 0
\(764\) −72.6541 + 185.468i −0.0950970 + 0.242759i
\(765\) 24.5753 0.0321245
\(766\) 6.73338 35.6491i 0.00879031 0.0465393i
\(767\) 37.6977i 0.0491496i
\(768\) −442.079 + 34.2653i −0.575624 + 0.0446163i
\(769\) 860.996 1.11963 0.559816 0.828617i \(-0.310872\pi\)
0.559816 + 0.828617i \(0.310872\pi\)
\(770\) 0 0
\(771\) 14.9571i 0.0193996i
\(772\) −112.636 44.1233i −0.145901 0.0571546i
\(773\) −1310.03 −1.69474 −0.847368 0.531006i \(-0.821814\pi\)
−0.847368 + 0.531006i \(0.821814\pi\)
\(774\) 70.4701 373.096i 0.0910466 0.482036i
\(775\) 30.8723i 0.0398352i
\(776\) 905.475 + 567.738i 1.16685 + 0.731621i
\(777\) 0 0
\(778\) −12.8615 2.42928i −0.0165316 0.00312247i
\(779\) 947.607i 1.21644i
\(780\) 6.51808 16.6390i 0.00835652 0.0213321i
\(781\) 496.499 0.635723
\(782\) 21.8892 115.890i 0.0279913 0.148197i
\(783\) 270.607i 0.345602i
\(784\) 0 0
\(785\) −301.804 −0.384463
\(786\) −146.188 27.6119i −0.185990 0.0351296i
\(787\) 545.873i 0.693612i −0.937937 0.346806i \(-0.887266\pi\)
0.937937 0.346806i \(-0.112734\pi\)
\(788\) 1096.40 + 429.499i 1.39138 + 0.545050i
\(789\) 239.499 0.303548
\(790\) 80.5121 426.262i 0.101914 0.539572i
\(791\) 0 0
\(792\) −188.344 + 300.386i −0.237808 + 0.379275i
\(793\) 25.7317 0.0324485
\(794\) −1216.69 229.807i −1.53235 0.289430i
\(795\) 186.235i 0.234258i
\(796\) −421.810 + 1076.78i −0.529913 + 1.35274i
\(797\) −637.380 −0.799724 −0.399862 0.916575i \(-0.630942\pi\)
−0.399862 + 0.916575i \(0.630942\pi\)
\(798\) 0 0
\(799\) 107.004i 0.133922i
\(800\) 99.5586 + 134.447i 0.124448 + 0.168059i
\(801\) 350.554 0.437645
\(802\) −673.662 127.241i −0.839978 0.158654i
\(803\) 1928.88i 2.40209i
\(804\) −273.501 107.139i −0.340175 0.133258i
\(805\) 0 0
\(806\) 1.27151 6.73185i 0.00157755 0.00835217i
\(807\) 625.658i 0.775288i
\(808\) −303.224 190.123i −0.375277 0.235301i
\(809\) 180.314 0.222885 0.111442 0.993771i \(-0.464453\pi\)
0.111442 + 0.993771i \(0.464453\pi\)
\(810\) 78.6477 + 14.8549i 0.0970959 + 0.0183394i
\(811\) 1483.99i 1.82982i 0.403654 + 0.914912i \(0.367740\pi\)
−0.403654 + 0.914912i \(0.632260\pi\)
\(812\) 0 0
\(813\) −341.708 −0.420305
\(814\) 164.007 868.318i 0.201483 1.06673i
\(815\) 444.240i 0.545079i
\(816\) −34.6779 + 37.4698i −0.0424974 + 0.0459189i
\(817\) −1718.94 −2.10396
\(818\) 977.002 + 184.536i 1.19438 + 0.225594i
\(819\) 0 0
\(820\) −577.741 226.321i −0.704563 0.276001i
\(821\) −1508.64 −1.83756 −0.918779 0.394772i \(-0.870824\pi\)
−0.918779 + 0.394772i \(0.870824\pi\)
\(822\) −77.1630 + 408.531i −0.0938723 + 0.496996i
\(823\) 924.774i 1.12366i 0.827252 + 0.561831i \(0.189903\pi\)
−0.827252 + 0.561831i \(0.810097\pi\)
\(824\) −804.342 + 1282.83i −0.976143 + 1.55683i
\(825\) 133.771 0.162146
\(826\) 0 0
\(827\) 760.522i 0.919615i 0.888019 + 0.459808i \(0.152082\pi\)
−0.888019 + 0.459808i \(0.847918\pi\)
\(828\) 140.103 357.648i 0.169206 0.431942i
\(829\) −650.325 −0.784469 −0.392234 0.919865i \(-0.628298\pi\)
−0.392234 + 0.919865i \(0.628298\pi\)
\(830\) 227.503 1204.49i 0.274100 1.45119i
\(831\) 490.078i 0.589745i
\(832\) 16.1719 + 33.4173i 0.0194373 + 0.0401650i
\(833\) 0 0
\(834\) 542.409 + 102.450i 0.650370 + 0.122842i
\(835\) 623.987i 0.747290i
\(836\) 1494.53 + 585.458i 1.78771 + 0.700308i
\(837\) 30.6842 0.0366598
\(838\) −7.61670 + 40.3258i −0.00908915 + 0.0481214i
\(839\) 836.751i 0.997319i −0.866798 0.498660i \(-0.833826\pi\)
0.866798 0.498660i \(-0.166174\pi\)
\(840\) 0 0
\(841\) 1871.15 2.22491
\(842\) 1235.51 + 233.363i 1.46736 + 0.277153i
\(843\) 402.426i 0.477374i
\(844\) 138.178 352.734i 0.163718 0.417931i
\(845\) 749.974 0.887544
\(846\) 64.6804 342.443i 0.0764543 0.404779i
\(847\) 0 0
\(848\) −283.952 262.795i −0.334849 0.309899i
\(849\) 602.146 0.709242
\(850\) 18.9280 + 3.57512i 0.0222683 + 0.00420602i
\(851\) 957.350i 1.12497i
\(852\) 216.807 + 84.9309i 0.254469 + 0.0996841i
\(853\) 24.8289 0.0291078 0.0145539 0.999894i \(-0.495367\pi\)
0.0145539 + 0.999894i \(0.495367\pi\)
\(854\) 0 0
\(855\) 362.348i 0.423799i
\(856\) −712.823 + 1136.87i −0.832737 + 1.32812i
\(857\) −623.609 −0.727665 −0.363832 0.931464i \(-0.618532\pi\)
−0.363832 + 0.931464i \(0.618532\pi\)
\(858\) 29.1693 + 5.50949i 0.0339969 + 0.00642132i
\(859\) 1325.05i 1.54255i −0.636501 0.771276i \(-0.719619\pi\)
0.636501 0.771276i \(-0.280381\pi\)
\(860\) −410.541 + 1048.01i −0.477374 + 1.21862i
\(861\) 0 0
\(862\) −313.250 + 1658.47i −0.363399 + 1.92397i
\(863\) 0.0467712i 5.41961e-5i −1.00000 2.70980e-5i \(-0.999991\pi\)
1.00000 2.70980e-5i \(-8.62558e-6\pi\)
\(864\) −133.628 + 98.9521i −0.154662 + 0.114528i
\(865\) 1006.80 1.16393
\(866\) 939.860 + 177.520i 1.08529 + 0.204989i
\(867\) 494.684i 0.570570i
\(868\) 0 0
\(869\) 720.606 0.829236
\(870\) 148.883 788.244i 0.171130 0.906028i
\(871\) 24.5935i 0.0282360i
\(872\) −1151.08 721.737i −1.32005 0.827680i
\(873\) 400.779 0.459082
\(874\) −1708.73 322.743i −1.95507 0.369272i
\(875\) 0 0
\(876\) 329.952 842.287i 0.376658 0.961514i
\(877\) 162.979 0.185837 0.0929186 0.995674i \(-0.470380\pi\)
0.0929186 + 0.995674i \(0.470380\pi\)
\(878\) 111.291 589.215i 0.126755 0.671087i
\(879\) 359.088i 0.408519i
\(880\) 713.889 771.363i 0.811238 0.876549i
\(881\) −385.225 −0.437258 −0.218629 0.975808i \(-0.570159\pi\)
−0.218629 + 0.975808i \(0.570159\pi\)
\(882\) 0 0
\(883\) 1319.84i 1.49472i −0.664419 0.747360i \(-0.731321\pi\)
0.664419 0.747360i \(-0.268679\pi\)
\(884\) 3.98010 + 1.55914i 0.00450238 + 0.00176374i
\(885\) −500.516 −0.565555
\(886\) 52.4033 277.443i 0.0591459 0.313141i
\(887\) 31.8112i 0.0358638i −0.999839 0.0179319i \(-0.994292\pi\)
0.999839 0.0179319i \(-0.00570821\pi\)
\(888\) 220.151 351.115i 0.247918 0.395400i
\(889\) 0 0
\(890\) −1021.12 192.869i −1.14733 0.216706i
\(891\) 132.956i 0.149221i
\(892\) −276.450 + 705.707i −0.309921 + 0.791152i
\(893\) −1577.71 −1.76676
\(894\) −2.38537 + 12.6290i −0.00266819 + 0.0141264i
\(895\) 1009.66i 1.12811i
\(896\) 0 0
\(897\) −32.1602 −0.0358530
\(898\) 18.8506 + 3.56049i 0.0209917 + 0.00396491i
\(899\) 307.532i 0.342082i
\(900\) 58.4139 + 22.8827i 0.0649044 + 0.0254253i
\(901\) −44.5480 −0.0494428
\(902\) 191.301 1012.82i 0.212085 1.12286i
\(903\) 0 0
\(904\) 103.422 + 64.8462i 0.114405 + 0.0717325i
\(905\) 907.014 1.00223
\(906\) 188.654 + 35.6329i 0.208228 + 0.0393299i
\(907\) 551.111i 0.607619i 0.952733 + 0.303810i \(0.0982587\pi\)
−0.952733 + 0.303810i \(0.901741\pi\)
\(908\) −60.5275 + 154.512i −0.0666603 + 0.170167i
\(909\) −134.212 −0.147648
\(910\) 0 0
\(911\) 1357.71i 1.49035i −0.666868 0.745176i \(-0.732365\pi\)
0.666868 0.745176i \(-0.267635\pi\)
\(912\) 552.470 + 511.306i 0.605779 + 0.560642i
\(913\) 2036.22 2.23025
\(914\) −277.003 52.3202i −0.303067 0.0572431i
\(915\) 341.641i 0.373379i
\(916\) 1460.37 + 572.075i 1.59429 + 0.624536i
\(917\) 0 0
\(918\) −3.55334 + 18.8127i −0.00387074 + 0.0204932i
\(919\) 1644.63i 1.78959i 0.446477 + 0.894795i \(0.352678\pi\)
−0.446477 + 0.894795i \(0.647322\pi\)
\(920\) −604.874 + 964.702i −0.657472 + 1.04859i
\(921\) 432.839 0.469967
\(922\) −152.772 28.8554i −0.165696 0.0312966i
\(923\) 19.4956i 0.0211220i
\(924\) 0 0
\(925\) −156.362 −0.169040
\(926\) −147.076 + 778.676i −0.158829 + 0.840903i
\(927\) 567.802i 0.612516i
\(928\) 991.744 + 1339.28i 1.06869 + 1.44319i
\(929\) 27.3333 0.0294222 0.0147111 0.999892i \(-0.495317\pi\)
0.0147111 + 0.999892i \(0.495317\pi\)
\(930\) −89.3794 16.8819i −0.0961069 0.0181526i
\(931\) 0 0
\(932\) 26.2136 + 10.2688i 0.0281262 + 0.0110180i
\(933\) −445.436 −0.477423
\(934\) −133.174 + 705.076i −0.142585 + 0.754899i
\(935\) 121.016i 0.129429i
\(936\) 11.7950 + 7.39553i 0.0126015 + 0.00790120i
\(937\) −703.111 −0.750385 −0.375193 0.926947i \(-0.622423\pi\)
−0.375193 + 0.926947i \(0.622423\pi\)
\(938\) 0 0
\(939\) 218.070i 0.232236i
\(940\) −376.812 + 961.907i −0.400864 + 1.02331i
\(941\) 28.5002 0.0302871 0.0151436 0.999885i \(-0.495179\pi\)
0.0151436 + 0.999885i \(0.495179\pi\)
\(942\) 43.6378 231.035i 0.0463246 0.245260i
\(943\) 1116.67i 1.18416i
\(944\) 706.273 763.135i 0.748171 0.808405i
\(945\) 0 0
\(946\) −1837.23 347.015i −1.94210 0.366824i
\(947\) 449.028i 0.474158i 0.971490 + 0.237079i \(0.0761901\pi\)
−0.971490 + 0.237079i \(0.923810\pi\)
\(948\) 314.668 + 123.266i 0.331929 + 0.130028i
\(949\) −75.7396 −0.0798099
\(950\) 52.7131 279.083i 0.0554874 0.293772i
\(951\) 219.974i 0.231308i
\(952\) 0 0
\(953\) −1455.66 −1.52745 −0.763724 0.645543i \(-0.776631\pi\)
−0.763724 + 0.645543i \(0.776631\pi\)
\(954\) −142.566 26.9278i −0.149440 0.0282262i
\(955\) 221.429i 0.231863i
\(956\) −172.861 + 441.270i −0.180817 + 0.461580i
\(957\) 1332.55 1.39242
\(958\) −65.3191 + 345.825i −0.0681828 + 0.360986i
\(959\) 0 0
\(960\) 443.684 214.715i 0.462171 0.223662i
\(961\) 926.129 0.963714
\(962\) −34.0955 6.43994i −0.0354423 0.00669432i
\(963\) 503.197i 0.522531i
\(964\) 410.579 + 160.838i 0.425912 + 0.166844i
\(965\) 134.475 0.139353
\(966\) 0 0
\(967\) 1048.55i 1.08433i 0.840272 + 0.542165i \(0.182395\pi\)
−0.840272 + 0.542165i \(0.817605\pi\)
\(968\) 659.065 + 413.238i 0.680852 + 0.426898i
\(969\) 86.6747 0.0894475
\(970\) −1167.42 220.501i −1.20352 0.227321i
\(971\) 531.198i 0.547062i 0.961863 + 0.273531i \(0.0881917\pi\)
−0.961863 + 0.273531i \(0.911808\pi\)
\(972\) −22.7433 + 58.0581i −0.0233985 + 0.0597305i
\(973\) 0 0
\(974\) −132.404 + 700.996i −0.135938 + 0.719708i
\(975\) 5.25266i 0.00538734i
\(976\) 520.899 + 482.087i 0.533708 + 0.493941i
\(977\) 863.471 0.883798 0.441899 0.897065i \(-0.354305\pi\)
0.441899 + 0.897065i \(0.354305\pi\)
\(978\) −340.072 64.2326i −0.347722 0.0656775i
\(979\) 1726.23i 1.76326i
\(980\) 0 0
\(981\) −509.490 −0.519357
\(982\) −306.746 + 1624.03i −0.312368 + 1.65380i
\(983\) 1127.79i 1.14730i 0.819102 + 0.573648i \(0.194472\pi\)
−0.819102 + 0.573648i \(0.805528\pi\)
\(984\) 256.788 409.546i 0.260963 0.416205i
\(985\) −1308.99 −1.32892
\(986\) 188.550 + 35.6132i 0.191227 + 0.0361189i
\(987\) 0 0
\(988\) 22.9887 58.6843i 0.0232679 0.0593971i
\(989\) 2025.61 2.04814
\(990\) 73.1500 387.284i 0.0738889 0.391196i
\(991\) 1099.50i 1.10949i −0.832021 0.554744i \(-0.812816\pi\)
0.832021 0.554744i \(-0.187184\pi\)
\(992\) 151.862 112.454i 0.153087 0.113361i
\(993\) −927.922 −0.934463
\(994\) 0 0
\(995\) 1285.56i 1.29202i
\(996\) 889.159 + 348.314i 0.892729 + 0.349713i
\(997\) 567.785 0.569494 0.284747 0.958603i \(-0.408090\pi\)
0.284747 + 0.958603i \(0.408090\pi\)
\(998\) −42.4288 + 224.634i −0.0425139 + 0.225085i
\(999\) 155.410i 0.155565i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.h.295.2 yes 24
4.3 odd 2 inner 588.3.g.h.295.3 yes 24
7.6 odd 2 inner 588.3.g.h.295.1 24
28.27 even 2 inner 588.3.g.h.295.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.3.g.h.295.1 24 7.6 odd 2 inner
588.3.g.h.295.2 yes 24 1.1 even 1 trivial
588.3.g.h.295.3 yes 24 4.3 odd 2 inner
588.3.g.h.295.4 yes 24 28.27 even 2 inner