Properties

Label 588.3.g.h.295.17
Level $588$
Weight $3$
Character 588.295
Analytic conductor $16.022$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,3,Mod(295,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.295"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 588.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,4,0,12,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0218395444\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 295.17
Character \(\chi\) \(=\) 588.295
Dual form 588.3.g.h.295.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71300 - 1.03229i) q^{2} -1.73205i q^{3} +(1.86874 - 3.53664i) q^{4} -2.98338 q^{5} +(-1.78799 - 2.96700i) q^{6} +(-0.449712 - 7.98735i) q^{8} -3.00000 q^{9} +(-5.11054 + 3.07973i) q^{10} +7.51244i q^{11} +(-6.12564 - 3.23675i) q^{12} -23.3458 q^{13} +5.16737i q^{15} +(-9.01565 - 13.2181i) q^{16} -10.3105 q^{17} +(-5.13900 + 3.09688i) q^{18} -15.5324i q^{19} +(-5.57516 + 10.5512i) q^{20} +(7.75505 + 12.8688i) q^{22} -27.5813i q^{23} +(-13.8345 + 0.778924i) q^{24} -16.0994 q^{25} +(-39.9914 + 24.0998i) q^{26} +5.19615i q^{27} +19.6775 q^{29} +(5.33425 + 8.85171i) q^{30} +28.5622i q^{31} +(-29.0888 - 13.3358i) q^{32} +13.0119 q^{33} +(-17.6619 + 10.6435i) q^{34} +(-5.60621 + 10.6099i) q^{36} +53.4171 q^{37} +(-16.0341 - 26.6071i) q^{38} +40.4361i q^{39} +(1.34166 + 23.8293i) q^{40} -31.1234 q^{41} +15.2200i q^{43} +(26.5688 + 14.0388i) q^{44} +8.95015 q^{45} +(-28.4720 - 47.2467i) q^{46} -3.62503i q^{47} +(-22.8944 + 15.6156i) q^{48} +(-27.5783 + 16.6193i) q^{50} +17.8583i q^{51} +(-43.6272 + 82.5658i) q^{52} -68.8586 q^{53} +(5.36396 + 8.90101i) q^{54} -22.4125i q^{55} -26.9030 q^{57} +(33.7075 - 20.3130i) q^{58} -113.268i q^{59} +(18.2751 + 9.65645i) q^{60} -3.30747 q^{61} +(29.4846 + 48.9270i) q^{62} +(-63.5955 + 7.18401i) q^{64} +69.6496 q^{65} +(22.2894 - 13.4321i) q^{66} +92.9042i q^{67} +(-19.2676 + 36.4645i) q^{68} -47.7721 q^{69} -72.5872i q^{71} +(1.34914 + 23.9620i) q^{72} +69.3610 q^{73} +(91.5034 - 55.1422i) q^{74} +27.8850i q^{75} +(-54.9327 - 29.0260i) q^{76} +(41.7420 + 69.2671i) q^{78} -156.100i q^{79} +(26.8972 + 39.4346i) q^{80} +9.00000 q^{81} +(-53.3143 + 32.1285i) q^{82} +85.1194i q^{83} +30.7602 q^{85} +(15.7115 + 26.0719i) q^{86} -34.0824i q^{87} +(60.0045 - 3.37843i) q^{88} +17.2213 q^{89} +(15.3316 - 9.23919i) q^{90} +(-97.5450 - 51.5421i) q^{92} +49.4711 q^{93} +(-3.74210 - 6.20967i) q^{94} +46.3392i q^{95} +(-23.0982 + 50.3832i) q^{96} +110.824 q^{97} -22.5373i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{2} + 12 q^{4} - 20 q^{8} - 72 q^{9} - 60 q^{16} - 12 q^{18} + 168 q^{22} + 120 q^{25} + 64 q^{29} - 236 q^{32} - 36 q^{36} - 192 q^{37} - 360 q^{44} - 72 q^{46} + 532 q^{50} + 432 q^{53} + 240 q^{58}+ \cdots - 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71300 1.03229i 0.856500 0.516147i
\(3\) 1.73205i 0.577350i
\(4\) 1.86874 3.53664i 0.467184 0.884160i
\(5\) −2.98338 −0.596677 −0.298338 0.954460i \(-0.596432\pi\)
−0.298338 + 0.954460i \(0.596432\pi\)
\(6\) −1.78799 2.96700i −0.297998 0.494500i
\(7\) 0 0
\(8\) −0.449712 7.98735i −0.0562140 0.998419i
\(9\) −3.00000 −0.333333
\(10\) −5.11054 + 3.07973i −0.511054 + 0.307973i
\(11\) 7.51244i 0.682949i 0.939891 + 0.341474i \(0.110926\pi\)
−0.939891 + 0.341474i \(0.889074\pi\)
\(12\) −6.12564 3.23675i −0.510470 0.269729i
\(13\) −23.3458 −1.79583 −0.897916 0.440166i \(-0.854919\pi\)
−0.897916 + 0.440166i \(0.854919\pi\)
\(14\) 0 0
\(15\) 5.16737i 0.344492i
\(16\) −9.01565 13.2181i −0.563478 0.826131i
\(17\) −10.3105 −0.606499 −0.303250 0.952911i \(-0.598072\pi\)
−0.303250 + 0.952911i \(0.598072\pi\)
\(18\) −5.13900 + 3.09688i −0.285500 + 0.172049i
\(19\) 15.5324i 0.817497i −0.912647 0.408748i \(-0.865965\pi\)
0.912647 0.408748i \(-0.134035\pi\)
\(20\) −5.57516 + 10.5512i −0.278758 + 0.527558i
\(21\) 0 0
\(22\) 7.75505 + 12.8688i 0.352502 + 0.584946i
\(23\) 27.5813i 1.19919i −0.800305 0.599593i \(-0.795329\pi\)
0.800305 0.599593i \(-0.204671\pi\)
\(24\) −13.8345 + 0.778924i −0.576437 + 0.0324551i
\(25\) −16.0994 −0.643977
\(26\) −39.9914 + 24.0998i −1.53813 + 0.926914i
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 19.6775 0.678534 0.339267 0.940690i \(-0.389821\pi\)
0.339267 + 0.940690i \(0.389821\pi\)
\(30\) 5.33425 + 8.85171i 0.177808 + 0.295057i
\(31\) 28.5622i 0.921360i 0.887566 + 0.460680i \(0.152394\pi\)
−0.887566 + 0.460680i \(0.847606\pi\)
\(32\) −29.0888 13.3358i −0.909024 0.416743i
\(33\) 13.0119 0.394301
\(34\) −17.6619 + 10.6435i −0.519467 + 0.313043i
\(35\) 0 0
\(36\) −5.60621 + 10.6099i −0.155728 + 0.294720i
\(37\) 53.4171 1.44371 0.721853 0.692047i \(-0.243291\pi\)
0.721853 + 0.692047i \(0.243291\pi\)
\(38\) −16.0341 26.6071i −0.421949 0.700186i
\(39\) 40.4361i 1.03682i
\(40\) 1.34166 + 23.8293i 0.0335416 + 0.595733i
\(41\) −31.1234 −0.759107 −0.379553 0.925170i \(-0.623922\pi\)
−0.379553 + 0.925170i \(0.623922\pi\)
\(42\) 0 0
\(43\) 15.2200i 0.353954i 0.984215 + 0.176977i \(0.0566318\pi\)
−0.984215 + 0.176977i \(0.943368\pi\)
\(44\) 26.5688 + 14.0388i 0.603836 + 0.319063i
\(45\) 8.95015 0.198892
\(46\) −28.4720 47.2467i −0.618956 1.02710i
\(47\) 3.62503i 0.0771282i −0.999256 0.0385641i \(-0.987722\pi\)
0.999256 0.0385641i \(-0.0122784\pi\)
\(48\) −22.8944 + 15.6156i −0.476967 + 0.325324i
\(49\) 0 0
\(50\) −27.5783 + 16.6193i −0.551566 + 0.332387i
\(51\) 17.8583i 0.350163i
\(52\) −43.6272 + 82.5658i −0.838984 + 1.58780i
\(53\) −68.8586 −1.29922 −0.649610 0.760268i \(-0.725068\pi\)
−0.649610 + 0.760268i \(0.725068\pi\)
\(54\) 5.36396 + 8.90101i 0.0993326 + 0.164833i
\(55\) 22.4125i 0.407500i
\(56\) 0 0
\(57\) −26.9030 −0.471982
\(58\) 33.7075 20.3130i 0.581164 0.350223i
\(59\) 113.268i 1.91979i −0.280359 0.959895i \(-0.590453\pi\)
0.280359 0.959895i \(-0.409547\pi\)
\(60\) 18.2751 + 9.65645i 0.304586 + 0.160941i
\(61\) −3.30747 −0.0542209 −0.0271104 0.999632i \(-0.508631\pi\)
−0.0271104 + 0.999632i \(0.508631\pi\)
\(62\) 29.4846 + 48.9270i 0.475558 + 0.789145i
\(63\) 0 0
\(64\) −63.5955 + 7.18401i −0.993680 + 0.112250i
\(65\) 69.6496 1.07153
\(66\) 22.2894 13.4321i 0.337718 0.203517i
\(67\) 92.9042i 1.38663i 0.720634 + 0.693315i \(0.243851\pi\)
−0.720634 + 0.693315i \(0.756149\pi\)
\(68\) −19.2676 + 36.4645i −0.283347 + 0.536243i
\(69\) −47.7721 −0.692350
\(70\) 0 0
\(71\) 72.5872i 1.02236i −0.859475 0.511178i \(-0.829209\pi\)
0.859475 0.511178i \(-0.170791\pi\)
\(72\) 1.34914 + 23.9620i 0.0187380 + 0.332806i
\(73\) 69.3610 0.950151 0.475075 0.879945i \(-0.342421\pi\)
0.475075 + 0.879945i \(0.342421\pi\)
\(74\) 91.5034 55.1422i 1.23653 0.745164i
\(75\) 27.8850i 0.371800i
\(76\) −54.9327 29.0260i −0.722798 0.381921i
\(77\) 0 0
\(78\) 41.7420 + 69.2671i 0.535154 + 0.888040i
\(79\) 156.100i 1.97595i −0.154610 0.987976i \(-0.549412\pi\)
0.154610 0.987976i \(-0.450588\pi\)
\(80\) 26.8972 + 39.4346i 0.336215 + 0.492933i
\(81\) 9.00000 0.111111
\(82\) −53.3143 + 32.1285i −0.650175 + 0.391811i
\(83\) 85.1194i 1.02554i 0.858527 + 0.512768i \(0.171380\pi\)
−0.858527 + 0.512768i \(0.828620\pi\)
\(84\) 0 0
\(85\) 30.7602 0.361884
\(86\) 15.7115 + 26.0719i 0.182692 + 0.303161i
\(87\) 34.0824i 0.391752i
\(88\) 60.0045 3.37843i 0.681869 0.0383913i
\(89\) 17.2213 0.193498 0.0967492 0.995309i \(-0.469156\pi\)
0.0967492 + 0.995309i \(0.469156\pi\)
\(90\) 15.3316 9.23919i 0.170351 0.102658i
\(91\) 0 0
\(92\) −97.5450 51.5421i −1.06027 0.560240i
\(93\) 49.4711 0.531948
\(94\) −3.74210 6.20967i −0.0398095 0.0660603i
\(95\) 46.3392i 0.487781i
\(96\) −23.0982 + 50.3832i −0.240607 + 0.524825i
\(97\) 110.824 1.14251 0.571256 0.820772i \(-0.306456\pi\)
0.571256 + 0.820772i \(0.306456\pi\)
\(98\) 0 0
\(99\) 22.5373i 0.227650i
\(100\) −30.0856 + 56.9379i −0.300856 + 0.569379i
\(101\) 5.57758 0.0552236 0.0276118 0.999619i \(-0.491210\pi\)
0.0276118 + 0.999619i \(0.491210\pi\)
\(102\) 18.4350 + 30.5913i 0.180736 + 0.299914i
\(103\) 189.953i 1.84420i −0.386951 0.922100i \(-0.626472\pi\)
0.386951 0.922100i \(-0.373528\pi\)
\(104\) 10.4989 + 186.471i 0.100951 + 1.79299i
\(105\) 0 0
\(106\) −117.955 + 71.0824i −1.11278 + 0.670589i
\(107\) 31.3034i 0.292555i −0.989244 0.146278i \(-0.953271\pi\)
0.989244 0.146278i \(-0.0467293\pi\)
\(108\) 18.3769 + 9.71024i 0.170157 + 0.0899096i
\(109\) 27.0700 0.248349 0.124174 0.992260i \(-0.460372\pi\)
0.124174 + 0.992260i \(0.460372\pi\)
\(110\) −23.1363 38.3926i −0.210330 0.349023i
\(111\) 92.5211i 0.833523i
\(112\) 0 0
\(113\) −162.124 −1.43472 −0.717362 0.696701i \(-0.754650\pi\)
−0.717362 + 0.696701i \(0.754650\pi\)
\(114\) −46.0848 + 27.7718i −0.404253 + 0.243612i
\(115\) 82.2855i 0.715526i
\(116\) 36.7720 69.5922i 0.317000 0.599932i
\(117\) 70.0375 0.598611
\(118\) −116.926 194.027i −0.990895 1.64430i
\(119\) 0 0
\(120\) 41.2736 2.32383i 0.343947 0.0193652i
\(121\) 64.5633 0.533581
\(122\) −5.66570 + 3.41429i −0.0464402 + 0.0279860i
\(123\) 53.9073i 0.438271i
\(124\) 101.014 + 53.3751i 0.814630 + 0.430445i
\(125\) 122.615 0.980923
\(126\) 0 0
\(127\) 59.4108i 0.467802i −0.972260 0.233901i \(-0.924851\pi\)
0.972260 0.233901i \(-0.0751491\pi\)
\(128\) −101.523 + 77.9555i −0.793149 + 0.609027i
\(129\) 26.3618 0.204355
\(130\) 119.310 71.8989i 0.917767 0.553068i
\(131\) 210.537i 1.60715i −0.595202 0.803576i \(-0.702928\pi\)
0.595202 0.803576i \(-0.297072\pi\)
\(132\) 24.3158 46.0185i 0.184211 0.348625i
\(133\) 0 0
\(134\) 95.9045 + 159.145i 0.715706 + 1.18765i
\(135\) 15.5021i 0.114831i
\(136\) 4.63675 + 82.3535i 0.0340937 + 0.605540i
\(137\) −203.528 −1.48561 −0.742804 0.669509i \(-0.766504\pi\)
−0.742804 + 0.669509i \(0.766504\pi\)
\(138\) −81.8337 + 49.3149i −0.592998 + 0.357355i
\(139\) 81.6255i 0.587233i −0.955923 0.293617i \(-0.905141\pi\)
0.955923 0.293617i \(-0.0948589\pi\)
\(140\) 0 0
\(141\) −6.27873 −0.0445300
\(142\) −74.9314 124.342i −0.527686 0.875647i
\(143\) 175.384i 1.22646i
\(144\) 27.0470 + 39.6543i 0.187826 + 0.275377i
\(145\) −58.7055 −0.404865
\(146\) 118.815 71.6010i 0.813804 0.490418i
\(147\) 0 0
\(148\) 99.8224 188.917i 0.674476 1.27647i
\(149\) −242.330 −1.62638 −0.813188 0.582001i \(-0.802270\pi\)
−0.813188 + 0.582001i \(0.802270\pi\)
\(150\) 28.7855 + 47.7670i 0.191904 + 0.318447i
\(151\) 113.491i 0.751597i 0.926701 + 0.375798i \(0.122632\pi\)
−0.926701 + 0.375798i \(0.877368\pi\)
\(152\) −124.063 + 6.98512i −0.816204 + 0.0459547i
\(153\) 30.9315 0.202166
\(154\) 0 0
\(155\) 85.2119i 0.549754i
\(156\) 143.008 + 75.5645i 0.916719 + 0.484388i
\(157\) 120.548 0.767823 0.383911 0.923370i \(-0.374577\pi\)
0.383911 + 0.923370i \(0.374577\pi\)
\(158\) −161.141 267.399i −1.01988 1.69240i
\(159\) 119.267i 0.750105i
\(160\) 86.7830 + 39.7857i 0.542394 + 0.248661i
\(161\) 0 0
\(162\) 15.4170 9.29065i 0.0951666 0.0573497i
\(163\) 194.724i 1.19463i 0.802008 + 0.597313i \(0.203765\pi\)
−0.802008 + 0.597313i \(0.796235\pi\)
\(164\) −58.1614 + 110.072i −0.354643 + 0.671172i
\(165\) −38.8196 −0.235270
\(166\) 87.8683 + 145.810i 0.529327 + 0.878371i
\(167\) 150.495i 0.901165i 0.892735 + 0.450583i \(0.148784\pi\)
−0.892735 + 0.450583i \(0.851216\pi\)
\(168\) 0 0
\(169\) 376.027 2.22501
\(170\) 52.6921 31.7535i 0.309954 0.186786i
\(171\) 46.5973i 0.272499i
\(172\) 53.8277 + 28.4422i 0.312952 + 0.165362i
\(173\) 306.516 1.77177 0.885885 0.463906i \(-0.153552\pi\)
0.885885 + 0.463906i \(0.153552\pi\)
\(174\) −35.1831 58.3831i −0.202202 0.335535i
\(175\) 0 0
\(176\) 99.3001 67.7295i 0.564205 0.384827i
\(177\) −196.185 −1.10839
\(178\) 29.5002 17.7775i 0.165731 0.0998736i
\(179\) 219.711i 1.22743i −0.789526 0.613717i \(-0.789674\pi\)
0.789526 0.613717i \(-0.210326\pi\)
\(180\) 16.7255 31.6535i 0.0929193 0.175853i
\(181\) −10.3397 −0.0571255 −0.0285627 0.999592i \(-0.509093\pi\)
−0.0285627 + 0.999592i \(0.509093\pi\)
\(182\) 0 0
\(183\) 5.72871i 0.0313044i
\(184\) −220.301 + 12.4036i −1.19729 + 0.0674110i
\(185\) −159.364 −0.861425
\(186\) 84.7440 51.0688i 0.455613 0.274563i
\(187\) 77.4569i 0.414208i
\(188\) −12.8204 6.77422i −0.0681937 0.0360331i
\(189\) 0 0
\(190\) 47.8357 + 79.3791i 0.251767 + 0.417785i
\(191\) 31.1378i 0.163025i −0.996672 0.0815126i \(-0.974025\pi\)
0.996672 0.0815126i \(-0.0259751\pi\)
\(192\) 12.4431 + 110.151i 0.0648077 + 0.573701i
\(193\) −68.2099 −0.353419 −0.176709 0.984263i \(-0.556545\pi\)
−0.176709 + 0.984263i \(0.556545\pi\)
\(194\) 189.841 114.403i 0.978561 0.589704i
\(195\) 120.637i 0.618649i
\(196\) 0 0
\(197\) 113.365 0.575456 0.287728 0.957712i \(-0.407100\pi\)
0.287728 + 0.957712i \(0.407100\pi\)
\(198\) −23.2651 38.6064i −0.117501 0.194982i
\(199\) 154.567i 0.776720i −0.921508 0.388360i \(-0.873042\pi\)
0.921508 0.388360i \(-0.126958\pi\)
\(200\) 7.24010 + 128.592i 0.0362005 + 0.642958i
\(201\) 160.915 0.800571
\(202\) 9.55440 5.75771i 0.0472990 0.0285035i
\(203\) 0 0
\(204\) 63.1584 + 33.3724i 0.309600 + 0.163590i
\(205\) 92.8530 0.452942
\(206\) −196.087 325.389i −0.951879 1.57956i
\(207\) 82.7438i 0.399728i
\(208\) 210.478 + 308.587i 1.01191 + 1.48359i
\(209\) 116.686 0.558308
\(210\) 0 0
\(211\) 308.247i 1.46089i 0.682974 + 0.730443i \(0.260686\pi\)
−0.682974 + 0.730443i \(0.739314\pi\)
\(212\) −128.679 + 243.528i −0.606974 + 1.14872i
\(213\) −125.725 −0.590257
\(214\) −32.3144 53.6228i −0.151002 0.250574i
\(215\) 45.4072i 0.211196i
\(216\) 41.5035 2.33677i 0.192146 0.0108184i
\(217\) 0 0
\(218\) 46.3710 27.9443i 0.212711 0.128185i
\(219\) 120.137i 0.548570i
\(220\) −79.2649 41.8830i −0.360295 0.190377i
\(221\) 240.707 1.08917
\(222\) −95.5090 158.489i −0.430221 0.713913i
\(223\) 79.3494i 0.355827i −0.984046 0.177913i \(-0.943065\pi\)
0.984046 0.177913i \(-0.0569347\pi\)
\(224\) 0 0
\(225\) 48.2983 0.214659
\(226\) −277.718 + 167.359i −1.22884 + 0.740529i
\(227\) 228.474i 1.00649i 0.864142 + 0.503247i \(0.167862\pi\)
−0.864142 + 0.503247i \(0.832138\pi\)
\(228\) −50.2745 + 95.1462i −0.220502 + 0.417308i
\(229\) −280.501 −1.22489 −0.612447 0.790512i \(-0.709815\pi\)
−0.612447 + 0.790512i \(0.709815\pi\)
\(230\) 84.9429 + 140.955i 0.369317 + 0.612848i
\(231\) 0 0
\(232\) −8.84919 157.171i −0.0381431 0.677461i
\(233\) −47.6232 −0.204392 −0.102196 0.994764i \(-0.532587\pi\)
−0.102196 + 0.994764i \(0.532587\pi\)
\(234\) 119.974 72.2993i 0.512710 0.308971i
\(235\) 10.8148i 0.0460206i
\(236\) −400.587 211.667i −1.69740 0.896895i
\(237\) −270.373 −1.14082
\(238\) 0 0
\(239\) 399.469i 1.67142i −0.549173 0.835709i \(-0.685057\pi\)
0.549173 0.835709i \(-0.314943\pi\)
\(240\) 68.3028 46.5872i 0.284595 0.194114i
\(241\) −42.8635 −0.177857 −0.0889284 0.996038i \(-0.528344\pi\)
−0.0889284 + 0.996038i \(0.528344\pi\)
\(242\) 110.597 66.6483i 0.457012 0.275406i
\(243\) 15.5885i 0.0641500i
\(244\) −6.18079 + 11.6973i −0.0253311 + 0.0479399i
\(245\) 0 0
\(246\) 55.6482 + 92.3432i 0.226212 + 0.375379i
\(247\) 362.618i 1.46809i
\(248\) 228.136 12.8447i 0.919903 0.0517933i
\(249\) 147.431 0.592093
\(250\) 210.040 126.575i 0.840160 0.506301i
\(251\) 134.620i 0.536335i −0.963372 0.268168i \(-0.913582\pi\)
0.963372 0.268168i \(-0.0864181\pi\)
\(252\) 0 0
\(253\) 207.202 0.818982
\(254\) −61.3295 101.771i −0.241455 0.400672i
\(255\) 53.2782i 0.208934i
\(256\) −93.4359 + 238.340i −0.364984 + 0.931014i
\(257\) −84.4840 −0.328732 −0.164366 0.986399i \(-0.552558\pi\)
−0.164366 + 0.986399i \(0.552558\pi\)
\(258\) 45.1578 27.2132i 0.175030 0.105477i
\(259\) 0 0
\(260\) 130.157 246.325i 0.500602 0.947406i
\(261\) −59.0324 −0.226178
\(262\) −217.336 360.650i −0.829527 1.37653i
\(263\) 4.76125i 0.0181036i −0.999959 0.00905180i \(-0.997119\pi\)
0.999959 0.00905180i \(-0.00288132\pi\)
\(264\) −5.85161 103.931i −0.0221652 0.393677i
\(265\) 205.432 0.775214
\(266\) 0 0
\(267\) 29.8283i 0.111716i
\(268\) 328.569 + 173.613i 1.22600 + 0.647811i
\(269\) 110.458 0.410626 0.205313 0.978696i \(-0.434179\pi\)
0.205313 + 0.978696i \(0.434179\pi\)
\(270\) −16.0028 26.5551i −0.0592695 0.0983523i
\(271\) 169.430i 0.625202i 0.949885 + 0.312601i \(0.101200\pi\)
−0.949885 + 0.312601i \(0.898800\pi\)
\(272\) 92.9558 + 136.285i 0.341749 + 0.501048i
\(273\) 0 0
\(274\) −348.644 + 210.101i −1.27242 + 0.766792i
\(275\) 120.946i 0.439803i
\(276\) −89.2735 + 168.953i −0.323455 + 0.612148i
\(277\) 368.077 1.32880 0.664398 0.747379i \(-0.268688\pi\)
0.664398 + 0.747379i \(0.268688\pi\)
\(278\) −84.2615 139.824i −0.303099 0.502965i
\(279\) 85.6865i 0.307120i
\(280\) 0 0
\(281\) −395.717 −1.40825 −0.704123 0.710078i \(-0.748659\pi\)
−0.704123 + 0.710078i \(0.748659\pi\)
\(282\) −10.7555 + 6.48150i −0.0381399 + 0.0229840i
\(283\) 96.9072i 0.342428i 0.985234 + 0.171214i \(0.0547690\pi\)
−0.985234 + 0.171214i \(0.945231\pi\)
\(284\) −256.715 135.646i −0.903926 0.477628i
\(285\) 80.2619 0.281621
\(286\) −181.048 300.433i −0.633035 1.05046i
\(287\) 0 0
\(288\) 87.2663 + 40.0073i 0.303008 + 0.138914i
\(289\) −182.694 −0.632158
\(290\) −100.562 + 60.6013i −0.346767 + 0.208970i
\(291\) 191.952i 0.659629i
\(292\) 129.617 245.305i 0.443895 0.840086i
\(293\) −151.346 −0.516538 −0.258269 0.966073i \(-0.583152\pi\)
−0.258269 + 0.966073i \(0.583152\pi\)
\(294\) 0 0
\(295\) 337.921i 1.14549i
\(296\) −24.0223 426.661i −0.0811564 1.44142i
\(297\) −39.0358 −0.131434
\(298\) −415.111 + 250.156i −1.39299 + 0.839450i
\(299\) 643.907i 2.15354i
\(300\) 98.6193 + 52.1097i 0.328731 + 0.173699i
\(301\) 0 0
\(302\) 117.156 + 194.410i 0.387935 + 0.643743i
\(303\) 9.66066i 0.0318834i
\(304\) −205.309 + 140.035i −0.675359 + 0.460642i
\(305\) 9.86747 0.0323523
\(306\) 52.9856 31.9304i 0.173156 0.104348i
\(307\) 514.328i 1.67533i 0.546181 + 0.837667i \(0.316081\pi\)
−0.546181 + 0.837667i \(0.683919\pi\)
\(308\) 0 0
\(309\) −329.008 −1.06475
\(310\) −87.9638 145.968i −0.283754 0.470865i
\(311\) 135.081i 0.434344i −0.976133 0.217172i \(-0.930317\pi\)
0.976133 0.217172i \(-0.0696832\pi\)
\(312\) 322.978 18.1846i 1.03518 0.0582840i
\(313\) −288.360 −0.921279 −0.460640 0.887587i \(-0.652380\pi\)
−0.460640 + 0.887587i \(0.652380\pi\)
\(314\) 206.499 124.441i 0.657640 0.396310i
\(315\) 0 0
\(316\) −552.070 291.710i −1.74706 0.923133i
\(317\) 159.576 0.503395 0.251698 0.967806i \(-0.419011\pi\)
0.251698 + 0.967806i \(0.419011\pi\)
\(318\) 123.118 + 204.304i 0.387165 + 0.642465i
\(319\) 147.826i 0.463404i
\(320\) 189.730 21.4327i 0.592906 0.0669771i
\(321\) −54.2191 −0.168907
\(322\) 0 0
\(323\) 160.147i 0.495811i
\(324\) 16.8186 31.8298i 0.0519093 0.0982400i
\(325\) 375.854 1.15647
\(326\) 201.013 + 333.562i 0.616603 + 1.02320i
\(327\) 46.8867i 0.143384i
\(328\) 13.9966 + 248.593i 0.0426724 + 0.757907i
\(329\) 0 0
\(330\) −66.4979 + 40.0732i −0.201509 + 0.121434i
\(331\) 278.329i 0.840874i 0.907322 + 0.420437i \(0.138123\pi\)
−0.907322 + 0.420437i \(0.861877\pi\)
\(332\) 301.037 + 159.066i 0.906738 + 0.479114i
\(333\) −160.251 −0.481235
\(334\) 155.355 + 257.797i 0.465134 + 0.771848i
\(335\) 277.169i 0.827370i
\(336\) 0 0
\(337\) 123.224 0.365651 0.182825 0.983145i \(-0.441476\pi\)
0.182825 + 0.983145i \(0.441476\pi\)
\(338\) 644.135 388.171i 1.90572 1.14843i
\(339\) 280.807i 0.828338i
\(340\) 57.4826 108.788i 0.169066 0.319964i
\(341\) −214.571 −0.629242
\(342\) 48.1022 + 79.8212i 0.140650 + 0.233395i
\(343\) 0 0
\(344\) 121.568 6.84462i 0.353394 0.0198972i
\(345\) 142.523 0.413109
\(346\) 525.062 316.415i 1.51752 0.914494i
\(347\) 601.315i 1.73290i −0.499268 0.866448i \(-0.666398\pi\)
0.499268 0.866448i \(-0.333602\pi\)
\(348\) −120.537 63.6910i −0.346371 0.183020i
\(349\) 146.665 0.420244 0.210122 0.977675i \(-0.432614\pi\)
0.210122 + 0.977675i \(0.432614\pi\)
\(350\) 0 0
\(351\) 121.308i 0.345608i
\(352\) 100.184 218.528i 0.284614 0.620817i
\(353\) −49.7171 −0.140842 −0.0704208 0.997517i \(-0.522434\pi\)
−0.0704208 + 0.997517i \(0.522434\pi\)
\(354\) −336.065 + 202.521i −0.949337 + 0.572093i
\(355\) 216.556i 0.610016i
\(356\) 32.1821 60.9057i 0.0903993 0.171083i
\(357\) 0 0
\(358\) −226.806 376.364i −0.633537 1.05130i
\(359\) 172.708i 0.481082i −0.970639 0.240541i \(-0.922675\pi\)
0.970639 0.240541i \(-0.0773249\pi\)
\(360\) −4.02499 71.4880i −0.0111805 0.198578i
\(361\) 119.743 0.331699
\(362\) −17.7119 + 10.6736i −0.0489279 + 0.0294851i
\(363\) 111.827i 0.308063i
\(364\) 0 0
\(365\) −206.931 −0.566933
\(366\) 5.91372 + 9.81328i 0.0161577 + 0.0268122i
\(367\) 396.276i 1.07977i 0.841738 + 0.539886i \(0.181533\pi\)
−0.841738 + 0.539886i \(0.818467\pi\)
\(368\) −364.572 + 248.663i −0.990684 + 0.675715i
\(369\) 93.3702 0.253036
\(370\) −272.990 + 164.510i −0.737811 + 0.444622i
\(371\) 0 0
\(372\) 92.4485 174.962i 0.248517 0.470327i
\(373\) 568.935 1.52530 0.762648 0.646814i \(-0.223899\pi\)
0.762648 + 0.646814i \(0.223899\pi\)
\(374\) −79.9584 132.684i −0.213792 0.354769i
\(375\) 212.376i 0.566336i
\(376\) −28.9544 + 1.63022i −0.0770063 + 0.00433568i
\(377\) −459.387 −1.21853
\(378\) 0 0
\(379\) 228.766i 0.603605i 0.953370 + 0.301803i \(0.0975884\pi\)
−0.953370 + 0.301803i \(0.902412\pi\)
\(380\) 163.885 + 86.5958i 0.431277 + 0.227884i
\(381\) −102.903 −0.270085
\(382\) −32.1434 53.3391i −0.0841451 0.139631i
\(383\) 59.1583i 0.154460i 0.997013 + 0.0772301i \(0.0246076\pi\)
−0.997013 + 0.0772301i \(0.975392\pi\)
\(384\) 135.023 + 175.843i 0.351622 + 0.457925i
\(385\) 0 0
\(386\) −116.843 + 70.4127i −0.302703 + 0.182416i
\(387\) 45.6601i 0.117985i
\(388\) 207.100 391.943i 0.533763 1.01016i
\(389\) 123.606 0.317752 0.158876 0.987299i \(-0.449213\pi\)
0.158876 + 0.987299i \(0.449213\pi\)
\(390\) −124.532 206.650i −0.319314 0.529873i
\(391\) 284.376i 0.727305i
\(392\) 0 0
\(393\) −364.661 −0.927890
\(394\) 194.194 117.026i 0.492878 0.297020i
\(395\) 465.707i 1.17900i
\(396\) −79.7064 42.1163i −0.201279 0.106354i
\(397\) −388.759 −0.979242 −0.489621 0.871935i \(-0.662865\pi\)
−0.489621 + 0.871935i \(0.662865\pi\)
\(398\) −159.559 264.774i −0.400902 0.665260i
\(399\) 0 0
\(400\) 145.147 + 212.804i 0.362867 + 0.532009i
\(401\) −85.5616 −0.213371 −0.106685 0.994293i \(-0.534024\pi\)
−0.106685 + 0.994293i \(0.534024\pi\)
\(402\) 275.647 166.112i 0.685689 0.413213i
\(403\) 666.807i 1.65461i
\(404\) 10.4230 19.7259i 0.0257996 0.0488265i
\(405\) −26.8505 −0.0662974
\(406\) 0 0
\(407\) 401.292i 0.985977i
\(408\) 142.640 8.03108i 0.349609 0.0196840i
\(409\) −212.321 −0.519123 −0.259561 0.965727i \(-0.583578\pi\)
−0.259561 + 0.965727i \(0.583578\pi\)
\(410\) 159.057 95.8517i 0.387944 0.233785i
\(411\) 352.521i 0.857716i
\(412\) −671.794 354.971i −1.63057 0.861581i
\(413\) 0 0
\(414\) 85.4160 + 141.740i 0.206319 + 0.342367i
\(415\) 253.944i 0.611913i
\(416\) 679.101 + 311.335i 1.63246 + 0.748401i
\(417\) −141.379 −0.339039
\(418\) 199.884 120.455i 0.478191 0.288169i
\(419\) 411.422i 0.981914i 0.871184 + 0.490957i \(0.163353\pi\)
−0.871184 + 0.490957i \(0.836647\pi\)
\(420\) 0 0
\(421\) −307.278 −0.729876 −0.364938 0.931032i \(-0.618910\pi\)
−0.364938 + 0.931032i \(0.618910\pi\)
\(422\) 318.201 + 528.027i 0.754032 + 1.25125i
\(423\) 10.8751i 0.0257094i
\(424\) 30.9665 + 549.998i 0.0730343 + 1.29717i
\(425\) 165.993 0.390572
\(426\) −215.366 + 129.785i −0.505555 + 0.304660i
\(427\) 0 0
\(428\) −110.709 58.4978i −0.258666 0.136677i
\(429\) −303.774 −0.708098
\(430\) −46.8736 77.7825i −0.109008 0.180889i
\(431\) 286.486i 0.664701i 0.943156 + 0.332351i \(0.107842\pi\)
−0.943156 + 0.332351i \(0.892158\pi\)
\(432\) 68.6832 46.8467i 0.158989 0.108441i
\(433\) −158.782 −0.366702 −0.183351 0.983047i \(-0.558695\pi\)
−0.183351 + 0.983047i \(0.558695\pi\)
\(434\) 0 0
\(435\) 101.681i 0.233749i
\(436\) 50.5867 95.7370i 0.116025 0.219580i
\(437\) −428.404 −0.980330
\(438\) −124.017 205.794i −0.283143 0.469850i
\(439\) 662.533i 1.50919i −0.656193 0.754593i \(-0.727834\pi\)
0.656193 0.754593i \(-0.272166\pi\)
\(440\) −179.016 + 10.0792i −0.406855 + 0.0229072i
\(441\) 0 0
\(442\) 412.331 248.480i 0.932875 0.562173i
\(443\) 660.309i 1.49054i 0.666763 + 0.745270i \(0.267680\pi\)
−0.666763 + 0.745270i \(0.732320\pi\)
\(444\) −327.214 172.897i −0.736968 0.389409i
\(445\) −51.3779 −0.115456
\(446\) −81.9119 135.925i −0.183659 0.304766i
\(447\) 419.728i 0.938989i
\(448\) 0 0
\(449\) −334.712 −0.745462 −0.372731 0.927940i \(-0.621578\pi\)
−0.372731 + 0.927940i \(0.621578\pi\)
\(450\) 82.7349 49.8580i 0.183855 0.110796i
\(451\) 233.812i 0.518431i
\(452\) −302.966 + 573.373i −0.670280 + 1.26853i
\(453\) 196.572 0.433935
\(454\) 235.853 + 391.376i 0.519500 + 0.862063i
\(455\) 0 0
\(456\) 12.0986 + 214.883i 0.0265320 + 0.471236i
\(457\) 393.880 0.861883 0.430941 0.902380i \(-0.358182\pi\)
0.430941 + 0.902380i \(0.358182\pi\)
\(458\) −480.498 + 289.559i −1.04912 + 0.632226i
\(459\) 53.5749i 0.116721i
\(460\) 291.014 + 153.770i 0.632640 + 0.334282i
\(461\) −274.690 −0.595856 −0.297928 0.954588i \(-0.596296\pi\)
−0.297928 + 0.954588i \(0.596296\pi\)
\(462\) 0 0
\(463\) 28.3801i 0.0612961i −0.999530 0.0306481i \(-0.990243\pi\)
0.999530 0.0306481i \(-0.00975711\pi\)
\(464\) −177.405 260.099i −0.382339 0.560558i
\(465\) −147.591 −0.317401
\(466\) −81.5786 + 49.1612i −0.175061 + 0.105496i
\(467\) 658.235i 1.40950i 0.709457 + 0.704749i \(0.248940\pi\)
−0.709457 + 0.704749i \(0.751060\pi\)
\(468\) 130.882 247.697i 0.279661 0.529268i
\(469\) 0 0
\(470\) 11.1641 + 18.5258i 0.0237534 + 0.0394167i
\(471\) 208.796i 0.443303i
\(472\) −904.708 + 50.9378i −1.91675 + 0.107919i
\(473\) −114.339 −0.241732
\(474\) −463.149 + 279.105i −0.977109 + 0.588829i
\(475\) 250.063i 0.526449i
\(476\) 0 0
\(477\) 206.576 0.433073
\(478\) −412.370 684.290i −0.862698 1.43157i
\(479\) 48.9758i 0.102246i 0.998692 + 0.0511230i \(0.0162800\pi\)
−0.998692 + 0.0511230i \(0.983720\pi\)
\(480\) 68.9109 150.313i 0.143564 0.313151i
\(481\) −1247.07 −2.59265
\(482\) −73.4251 + 44.2477i −0.152334 + 0.0918003i
\(483\) 0 0
\(484\) 120.652 228.337i 0.249280 0.471771i
\(485\) −330.629 −0.681710
\(486\) −16.0919 26.7030i −0.0331109 0.0549445i
\(487\) 67.6020i 0.138813i 0.997588 + 0.0694066i \(0.0221106\pi\)
−0.997588 + 0.0694066i \(0.977889\pi\)
\(488\) 1.48741 + 26.4180i 0.00304797 + 0.0541351i
\(489\) 337.272 0.689718
\(490\) 0 0
\(491\) 317.695i 0.647036i 0.946222 + 0.323518i \(0.104866\pi\)
−0.946222 + 0.323518i \(0.895134\pi\)
\(492\) 190.651 + 100.738i 0.387501 + 0.204753i
\(493\) −202.884 −0.411530
\(494\) 374.328 + 621.164i 0.757749 + 1.25742i
\(495\) 67.2375i 0.135833i
\(496\) 377.537 257.507i 0.761164 0.519167i
\(497\) 0 0
\(498\) 252.550 152.192i 0.507128 0.305607i
\(499\) 358.220i 0.717876i 0.933361 + 0.358938i \(0.116861\pi\)
−0.933361 + 0.358938i \(0.883139\pi\)
\(500\) 229.136 433.646i 0.458271 0.867293i
\(501\) 260.664 0.520288
\(502\) −138.968 230.604i −0.276828 0.459371i
\(503\) 326.404i 0.648914i −0.945900 0.324457i \(-0.894818\pi\)
0.945900 0.324457i \(-0.105182\pi\)
\(504\) 0 0
\(505\) −16.6401 −0.0329506
\(506\) 354.938 213.894i 0.701458 0.422715i
\(507\) 651.298i 1.28461i
\(508\) −210.115 111.023i −0.413612 0.218549i
\(509\) −22.7983 −0.0447904 −0.0223952 0.999749i \(-0.507129\pi\)
−0.0223952 + 0.999749i \(0.507129\pi\)
\(510\) −54.9988 91.2655i −0.107841 0.178952i
\(511\) 0 0
\(512\) 85.9808 + 504.729i 0.167931 + 0.985799i
\(513\) 80.7089 0.157327
\(514\) −144.721 + 87.2124i −0.281559 + 0.169674i
\(515\) 566.702i 1.10039i
\(516\) 49.2633 93.2324i 0.0954715 0.180683i
\(517\) 27.2328 0.0526746
\(518\) 0 0
\(519\) 530.901i 1.02293i
\(520\) −31.3222 556.315i −0.0602350 1.06984i
\(521\) −251.073 −0.481906 −0.240953 0.970537i \(-0.577460\pi\)
−0.240953 + 0.970537i \(0.577460\pi\)
\(522\) −101.123 + 60.9389i −0.193721 + 0.116741i
\(523\) 574.271i 1.09803i 0.835811 + 0.549017i \(0.184998\pi\)
−0.835811 + 0.549017i \(0.815002\pi\)
\(524\) −744.593 393.438i −1.42098 0.750835i
\(525\) 0 0
\(526\) −4.91501 8.15602i −0.00934413 0.0155057i
\(527\) 294.490i 0.558805i
\(528\) −117.311 171.993i −0.222180 0.325744i
\(529\) −231.726 −0.438045
\(530\) 351.905 212.066i 0.663971 0.400125i
\(531\) 339.803i 0.639930i
\(532\) 0 0
\(533\) 726.601 1.36323
\(534\) −30.7915 51.0958i −0.0576621 0.0956850i
\(535\) 93.3901i 0.174561i
\(536\) 742.059 41.7801i 1.38444 0.0779480i
\(537\) −380.550 −0.708659
\(538\) 189.215 114.026i 0.351701 0.211943i
\(539\) 0 0
\(540\) −54.8254 28.9694i −0.101529 0.0536470i
\(541\) −350.497 −0.647869 −0.323934 0.946080i \(-0.605006\pi\)
−0.323934 + 0.946080i \(0.605006\pi\)
\(542\) 174.901 + 290.233i 0.322696 + 0.535485i
\(543\) 17.9089i 0.0329814i
\(544\) 299.920 + 137.498i 0.551323 + 0.252754i
\(545\) −80.7603 −0.148184
\(546\) 0 0
\(547\) 206.339i 0.377219i −0.982052 0.188610i \(-0.939602\pi\)
0.982052 0.188610i \(-0.0603980\pi\)
\(548\) −380.340 + 719.806i −0.694052 + 1.31351i
\(549\) 9.92242 0.0180736
\(550\) −124.852 207.180i −0.227003 0.376691i
\(551\) 305.639i 0.554699i
\(552\) 21.4837 + 381.573i 0.0389197 + 0.691255i
\(553\) 0 0
\(554\) 630.515 379.963i 1.13811 0.685855i
\(555\) 276.026i 0.497344i
\(556\) −288.680 152.536i −0.519208 0.274346i
\(557\) −189.749 −0.340662 −0.170331 0.985387i \(-0.554484\pi\)
−0.170331 + 0.985387i \(0.554484\pi\)
\(558\) −88.4537 146.781i −0.158519 0.263048i
\(559\) 355.324i 0.635642i
\(560\) 0 0
\(561\) −134.159 −0.239143
\(562\) −677.863 + 408.496i −1.20616 + 0.726862i
\(563\) 121.571i 0.215934i −0.994154 0.107967i \(-0.965566\pi\)
0.994154 0.107967i \(-0.0344341\pi\)
\(564\) −11.7333 + 22.2056i −0.0208037 + 0.0393717i
\(565\) 483.677 0.856066
\(566\) 100.037 + 166.002i 0.176744 + 0.293290i
\(567\) 0 0
\(568\) −579.779 + 32.6433i −1.02074 + 0.0574706i
\(569\) −411.249 −0.722757 −0.361379 0.932419i \(-0.617694\pi\)
−0.361379 + 0.932419i \(0.617694\pi\)
\(570\) 137.489 82.8539i 0.241208 0.145358i
\(571\) 876.837i 1.53562i −0.640680 0.767808i \(-0.721347\pi\)
0.640680 0.767808i \(-0.278653\pi\)
\(572\) −620.270 327.746i −1.08439 0.572983i
\(573\) −53.9323 −0.0941227
\(574\) 0 0
\(575\) 444.042i 0.772247i
\(576\) 190.787 21.5520i 0.331227 0.0374167i
\(577\) −236.500 −0.409879 −0.204940 0.978775i \(-0.565700\pi\)
−0.204940 + 0.978775i \(0.565700\pi\)
\(578\) −312.954 + 188.594i −0.541444 + 0.326287i
\(579\) 118.143i 0.204047i
\(580\) −109.705 + 207.620i −0.189147 + 0.357966i
\(581\) 0 0
\(582\) −198.151 328.814i −0.340466 0.564972i
\(583\) 517.296i 0.887300i
\(584\) −31.1925 554.011i −0.0534117 0.948648i
\(585\) −208.949 −0.357177
\(586\) −259.255 + 156.233i −0.442414 + 0.266610i
\(587\) 1015.68i 1.73030i −0.501516 0.865149i \(-0.667224\pi\)
0.501516 0.865149i \(-0.332776\pi\)
\(588\) 0 0
\(589\) 443.640 0.753209
\(590\) 348.834 + 578.858i 0.591244 + 0.981116i
\(591\) 196.354i 0.332239i
\(592\) −481.590 706.072i −0.813497 1.19269i
\(593\) 938.566 1.58274 0.791371 0.611337i \(-0.209368\pi\)
0.791371 + 0.611337i \(0.209368\pi\)
\(594\) −66.8683 + 40.2964i −0.112573 + 0.0678391i
\(595\) 0 0
\(596\) −452.851 + 857.034i −0.759817 + 1.43798i
\(597\) −267.718 −0.448439
\(598\) 664.702 + 1103.01i 1.11154 + 1.84450i
\(599\) 21.5179i 0.0359230i −0.999839 0.0179615i \(-0.994282\pi\)
0.999839 0.0179615i \(-0.00571764\pi\)
\(600\) 222.727 12.5402i 0.371212 0.0209004i
\(601\) 796.035 1.32452 0.662258 0.749275i \(-0.269598\pi\)
0.662258 + 0.749275i \(0.269598\pi\)
\(602\) 0 0
\(603\) 278.713i 0.462210i
\(604\) 401.377 + 212.085i 0.664532 + 0.351134i
\(605\) −192.617 −0.318375
\(606\) −9.97265 16.5487i −0.0164565 0.0273081i
\(607\) 1036.00i 1.70675i −0.521296 0.853376i \(-0.674551\pi\)
0.521296 0.853376i \(-0.325449\pi\)
\(608\) −207.137 + 451.820i −0.340686 + 0.743125i
\(609\) 0 0
\(610\) 16.9030 10.1861i 0.0277098 0.0166986i
\(611\) 84.6292i 0.138509i
\(612\) 57.8027 109.394i 0.0944489 0.178748i
\(613\) −302.872 −0.494081 −0.247041 0.969005i \(-0.579458\pi\)
−0.247041 + 0.969005i \(0.579458\pi\)
\(614\) 530.938 + 881.043i 0.864719 + 1.43492i
\(615\) 160.826i 0.261506i
\(616\) 0 0
\(617\) 634.576 1.02849 0.514243 0.857644i \(-0.328073\pi\)
0.514243 + 0.857644i \(0.328073\pi\)
\(618\) −563.590 + 339.633i −0.911958 + 0.549568i
\(619\) 912.748i 1.47455i 0.675591 + 0.737276i \(0.263888\pi\)
−0.675591 + 0.737276i \(0.736112\pi\)
\(620\) −301.364 159.239i −0.486071 0.256836i
\(621\) 143.316 0.230783
\(622\) −139.443 231.394i −0.224185 0.372015i
\(623\) 0 0
\(624\) 534.489 364.558i 0.856552 0.584228i
\(625\) 36.6767 0.0586828
\(626\) −493.961 + 297.673i −0.789076 + 0.475516i
\(627\) 202.107i 0.322340i
\(628\) 225.273 426.336i 0.358714 0.678878i
\(629\) −550.756 −0.875606
\(630\) 0 0
\(631\) 915.136i 1.45030i −0.688593 0.725148i \(-0.741771\pi\)
0.688593 0.725148i \(-0.258229\pi\)
\(632\) −1246.83 + 70.2001i −1.97283 + 0.111076i
\(633\) 533.899 0.843442
\(634\) 273.354 164.730i 0.431158 0.259826i
\(635\) 177.245i 0.279126i
\(636\) 421.803 + 222.878i 0.663213 + 0.350437i
\(637\) 0 0
\(638\) 152.600 + 253.226i 0.239185 + 0.396905i
\(639\) 217.762i 0.340785i
\(640\) 302.882 232.571i 0.473254 0.363393i
\(641\) 1107.74 1.72815 0.864074 0.503365i \(-0.167905\pi\)
0.864074 + 0.503365i \(0.167905\pi\)
\(642\) −92.8773 + 55.9701i −0.144669 + 0.0871809i
\(643\) 160.376i 0.249418i −0.992193 0.124709i \(-0.960200\pi\)
0.992193 0.124709i \(-0.0397998\pi\)
\(644\) 0 0
\(645\) −78.6475 −0.121934
\(646\) 165.319 + 274.332i 0.255912 + 0.424662i
\(647\) 13.8092i 0.0213434i 0.999943 + 0.0106717i \(0.00339697\pi\)
−0.999943 + 0.0106717i \(0.996603\pi\)
\(648\) −4.04741 71.8861i −0.00624600 0.110935i
\(649\) 850.916 1.31112
\(650\) 643.838 387.992i 0.990520 0.596911i
\(651\) 0 0
\(652\) 688.669 + 363.888i 1.05624 + 0.558110i
\(653\) 903.251 1.38323 0.691617 0.722265i \(-0.256899\pi\)
0.691617 + 0.722265i \(0.256899\pi\)
\(654\) −48.4009 80.3169i −0.0740074 0.122809i
\(655\) 628.112i 0.958950i
\(656\) 280.598 + 411.392i 0.427740 + 0.627122i
\(657\) −208.083 −0.316717
\(658\) 0 0
\(659\) 155.924i 0.236607i −0.992977 0.118304i \(-0.962254\pi\)
0.992977 0.118304i \(-0.0377456\pi\)
\(660\) −72.5435 + 137.291i −0.109914 + 0.208016i
\(661\) 789.862 1.19495 0.597475 0.801888i \(-0.296171\pi\)
0.597475 + 0.801888i \(0.296171\pi\)
\(662\) 287.318 + 476.778i 0.434015 + 0.720208i
\(663\) 416.917i 0.628833i
\(664\) 679.879 38.2792i 1.02391 0.0576494i
\(665\) 0 0
\(666\) −274.510 + 165.427i −0.412178 + 0.248388i
\(667\) 542.730i 0.813687i
\(668\) 532.245 + 281.235i 0.796774 + 0.421010i
\(669\) −137.437 −0.205437
\(670\) −286.120 474.790i −0.427045 0.708643i
\(671\) 24.8472i 0.0370301i
\(672\) 0 0
\(673\) 788.072 1.17098 0.585491 0.810679i \(-0.300902\pi\)
0.585491 + 0.810679i \(0.300902\pi\)
\(674\) 211.083 127.204i 0.313180 0.188730i
\(675\) 83.6550i 0.123933i
\(676\) 702.696 1329.87i 1.03949 1.96727i
\(677\) −641.385 −0.947393 −0.473696 0.880688i \(-0.657081\pi\)
−0.473696 + 0.880688i \(0.657081\pi\)
\(678\) 289.875 + 481.022i 0.427544 + 0.709471i
\(679\) 0 0
\(680\) −13.8332 245.692i −0.0203429 0.361312i
\(681\) 395.729 0.581100
\(682\) −367.561 + 221.501i −0.538946 + 0.324782i
\(683\) 321.852i 0.471232i 0.971846 + 0.235616i \(0.0757108\pi\)
−0.971846 + 0.235616i \(0.924289\pi\)
\(684\) 164.798 + 87.0781i 0.240933 + 0.127307i
\(685\) 607.203 0.886427
\(686\) 0 0
\(687\) 485.842i 0.707193i
\(688\) 201.180 137.218i 0.292412 0.199445i
\(689\) 1607.56 2.33318
\(690\) 244.141 147.125i 0.353828 0.213225i
\(691\) 242.318i 0.350678i 0.984508 + 0.175339i \(0.0561021\pi\)
−0.984508 + 0.175339i \(0.943898\pi\)
\(692\) 572.798 1084.04i 0.827742 1.56653i
\(693\) 0 0
\(694\) −620.734 1030.05i −0.894429 1.48422i
\(695\) 243.520i 0.350389i
\(696\) −272.228 + 15.3272i −0.391132 + 0.0220219i
\(697\) 320.897 0.460398
\(698\) 251.238 151.402i 0.359939 0.216908i
\(699\) 82.4858i 0.118006i
\(700\) 0 0
\(701\) −460.014 −0.656225 −0.328112 0.944639i \(-0.606412\pi\)
−0.328112 + 0.944639i \(0.606412\pi\)
\(702\) −125.226 207.801i −0.178385 0.296013i
\(703\) 829.698i 1.18022i
\(704\) −53.9694 477.757i −0.0766611 0.678633i
\(705\) 18.7319 0.0265700
\(706\) −85.1654 + 51.3227i −0.120631 + 0.0726950i
\(707\) 0 0
\(708\) −366.618 + 693.837i −0.517823 + 0.979996i
\(709\) −1039.84 −1.46663 −0.733314 0.679890i \(-0.762027\pi\)
−0.733314 + 0.679890i \(0.762027\pi\)
\(710\) 223.549 + 370.960i 0.314858 + 0.522478i
\(711\) 468.300i 0.658650i
\(712\) −7.74464 137.553i −0.0108773 0.193192i
\(713\) 787.781 1.10488
\(714\) 0 0
\(715\) 523.238i 0.731801i
\(716\) −777.038 410.581i −1.08525 0.573437i
\(717\) −691.900 −0.964994
\(718\) −178.286 295.850i −0.248309 0.412047i
\(719\) 951.072i 1.32277i −0.750047 0.661385i \(-0.769969\pi\)
0.750047 0.661385i \(-0.230031\pi\)
\(720\) −80.6915 118.304i −0.112072 0.164311i
\(721\) 0 0
\(722\) 205.120 123.610i 0.284100 0.171205i
\(723\) 74.2417i 0.102686i
\(724\) −19.3222 + 36.5678i −0.0266881 + 0.0505081i
\(725\) −316.796 −0.436960
\(726\) −115.438 191.559i −0.159006 0.263856i
\(727\) 531.386i 0.730930i 0.930825 + 0.365465i \(0.119090\pi\)
−0.930825 + 0.365465i \(0.880910\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) −354.472 + 213.613i −0.485578 + 0.292621i
\(731\) 156.926i 0.214673i
\(732\) 20.2604 + 10.7054i 0.0276781 + 0.0146249i
\(733\) 1144.87 1.56189 0.780946 0.624599i \(-0.214737\pi\)
0.780946 + 0.624599i \(0.214737\pi\)
\(734\) 409.074 + 678.821i 0.557321 + 0.924824i
\(735\) 0 0
\(736\) −367.818 + 802.305i −0.499752 + 1.09009i
\(737\) −697.937 −0.946998
\(738\) 159.943 96.3855i 0.216725 0.130604i
\(739\) 317.638i 0.429821i −0.976634 0.214911i \(-0.931054\pi\)
0.976634 0.214911i \(-0.0689460\pi\)
\(740\) −297.809 + 563.612i −0.402444 + 0.761638i
\(741\) 628.072 0.847601
\(742\) 0 0
\(743\) 1138.61i 1.53245i −0.642570 0.766227i \(-0.722132\pi\)
0.642570 0.766227i \(-0.277868\pi\)
\(744\) −22.2477 395.143i −0.0299029 0.531107i
\(745\) 722.964 0.970421
\(746\) 974.586 587.309i 1.30642 0.787277i
\(747\) 255.358i 0.341845i
\(748\) −273.937 144.746i −0.366226 0.193511i
\(749\) 0 0
\(750\) −219.235 363.800i −0.292313 0.485067i
\(751\) 130.959i 0.174379i −0.996192 0.0871894i \(-0.972211\pi\)
0.996192 0.0871894i \(-0.0277885\pi\)
\(752\) −47.9159 + 32.6820i −0.0637180 + 0.0434601i
\(753\) −233.169 −0.309653
\(754\) −786.929 + 474.223i −1.04367 + 0.628942i
\(755\) 338.588i 0.448461i
\(756\) 0 0
\(757\) −899.105 −1.18772 −0.593861 0.804568i \(-0.702397\pi\)
−0.593861 + 0.804568i \(0.702397\pi\)
\(758\) 236.154 + 391.877i 0.311549 + 0.516988i
\(759\) 358.885i 0.472839i
\(760\) 370.128 20.8393i 0.487010 0.0274201i
\(761\) 1048.39 1.37764 0.688821 0.724931i \(-0.258129\pi\)
0.688821 + 0.724931i \(0.258129\pi\)
\(762\) −176.272 + 106.226i −0.231328 + 0.139404i
\(763\) 0 0
\(764\) −110.123 58.1884i −0.144140 0.0761628i
\(765\) −92.2805 −0.120628
\(766\) 61.0688 + 101.338i 0.0797243 + 0.132295i
\(767\) 2644.33i 3.44762i
\(768\) 412.816 + 161.836i 0.537521 + 0.210724i
\(769\) −912.173 −1.18618 −0.593091 0.805136i \(-0.702092\pi\)
−0.593091 + 0.805136i \(0.702092\pi\)
\(770\) 0 0
\(771\) 146.331i 0.189793i
\(772\) −127.466 + 241.234i −0.165112 + 0.312479i
\(773\) 1121.12 1.45035 0.725174 0.688566i \(-0.241759\pi\)
0.725174 + 0.688566i \(0.241759\pi\)
\(774\) −47.1346 78.2157i −0.0608975 0.101054i
\(775\) 459.834i 0.593335i
\(776\) −49.8387 885.187i −0.0642251 1.14070i
\(777\) 0 0
\(778\) 211.736 127.597i 0.272154 0.164007i
\(779\) 483.422i 0.620568i
\(780\) −426.648 225.438i −0.546985 0.289023i
\(781\) 545.307 0.698216
\(782\) 293.560 + 487.137i 0.375397 + 0.622937i
\(783\) 102.247i 0.130584i
\(784\) 0 0
\(785\) −359.642 −0.458142
\(786\) −624.663 + 376.437i −0.794737 + 0.478928i
\(787\) 306.423i 0.389356i 0.980867 + 0.194678i \(0.0623662\pi\)
−0.980867 + 0.194678i \(0.937634\pi\)
\(788\) 211.849 400.930i 0.268844 0.508795i
\(789\) −8.24673 −0.0104521
\(790\) 480.747 + 797.755i 0.608540 + 1.00982i
\(791\) 0 0
\(792\) −180.013 + 10.1353i −0.227290 + 0.0127971i
\(793\) 77.2157 0.0973716
\(794\) −665.944 + 401.314i −0.838720 + 0.505433i
\(795\) 355.818i 0.447570i
\(796\) −546.649 288.845i −0.686745 0.362871i
\(797\) 706.469 0.886410 0.443205 0.896420i \(-0.353841\pi\)
0.443205 + 0.896420i \(0.353841\pi\)
\(798\) 0 0
\(799\) 37.3758i 0.0467782i
\(800\) 468.312 + 214.698i 0.585391 + 0.268373i
\(801\) −51.6640 −0.0644994
\(802\) −146.567 + 88.3248i −0.182752 + 0.110131i
\(803\) 521.070i 0.648904i
\(804\) 300.707 569.098i 0.374014 0.707833i
\(805\) 0 0
\(806\) −688.342 1142.24i −0.854022 1.41717i
\(807\) 191.320i 0.237075i
\(808\) −2.50830 44.5501i −0.00310434 0.0551363i
\(809\) −84.0475 −0.103891 −0.0519453 0.998650i \(-0.516542\pi\)
−0.0519453 + 0.998650i \(0.516542\pi\)
\(810\) −45.9948 + 27.7176i −0.0567837 + 0.0342192i
\(811\) 1393.50i 1.71825i −0.511763 0.859126i \(-0.671008\pi\)
0.511763 0.859126i \(-0.328992\pi\)
\(812\) 0 0
\(813\) 293.461 0.360961
\(814\) 414.252 + 687.414i 0.508909 + 0.844489i
\(815\) 580.937i 0.712806i
\(816\) 236.053 161.004i 0.289280 0.197309i
\(817\) 236.404 0.289356
\(818\) −363.706 + 219.178i −0.444628 + 0.267944i
\(819\) 0 0
\(820\) 173.518 328.388i 0.211607 0.400473i
\(821\) 999.637 1.21758 0.608792 0.793330i \(-0.291654\pi\)
0.608792 + 0.793330i \(0.291654\pi\)
\(822\) 363.906 + 603.869i 0.442708 + 0.734633i
\(823\) 988.093i 1.20060i 0.799775 + 0.600299i \(0.204952\pi\)
−0.799775 + 0.600299i \(0.795048\pi\)
\(824\) −1517.22 + 85.4239i −1.84128 + 0.103670i
\(825\) −209.484 −0.253920
\(826\) 0 0
\(827\) 153.986i 0.186198i −0.995657 0.0930991i \(-0.970323\pi\)
0.995657 0.0930991i \(-0.0296773\pi\)
\(828\) 292.635 + 154.626i 0.353424 + 0.186747i
\(829\) −1239.01 −1.49458 −0.747292 0.664495i \(-0.768647\pi\)
−0.747292 + 0.664495i \(0.768647\pi\)
\(830\) −262.145 435.006i −0.315837 0.524104i
\(831\) 637.527i 0.767181i
\(832\) 1484.69 167.717i 1.78448 0.201582i
\(833\) 0 0
\(834\) −242.183 + 145.945i −0.290387 + 0.174994i
\(835\) 448.983i 0.537704i
\(836\) 218.056 412.678i 0.260833 0.493634i
\(837\) −148.413 −0.177316
\(838\) 424.709 + 704.766i 0.506812 + 0.841009i
\(839\) 629.209i 0.749951i −0.927035 0.374976i \(-0.877651\pi\)
0.927035 0.374976i \(-0.122349\pi\)
\(840\) 0 0
\(841\) −453.797 −0.539592
\(842\) −526.367 + 317.201i −0.625139 + 0.376724i
\(843\) 685.402i 0.813051i
\(844\) 1090.16 + 576.032i 1.29166 + 0.682502i
\(845\) −1121.83 −1.32761
\(846\) 11.2263 + 18.6290i 0.0132698 + 0.0220201i
\(847\) 0 0
\(848\) 620.806 + 910.180i 0.732082 + 1.07333i
\(849\) 167.848 0.197701
\(850\) 284.346 171.354i 0.334524 0.201592i
\(851\) 1473.31i 1.73127i
\(852\) −234.946 + 444.643i −0.275759 + 0.521882i
\(853\) 22.6308 0.0265308 0.0132654 0.999912i \(-0.495777\pi\)
0.0132654 + 0.999912i \(0.495777\pi\)
\(854\) 0 0
\(855\) 139.018i 0.162594i
\(856\) −250.031 + 14.0775i −0.292093 + 0.0164457i
\(857\) −1580.90 −1.84469 −0.922344 0.386370i \(-0.873729\pi\)
−0.922344 + 0.386370i \(0.873729\pi\)
\(858\) −520.365 + 313.584i −0.606486 + 0.365483i
\(859\) 1559.88i 1.81593i −0.419050 0.907963i \(-0.637637\pi\)
0.419050 0.907963i \(-0.362363\pi\)
\(860\) −160.589 84.8540i −0.186731 0.0986674i
\(861\) 0 0
\(862\) 295.738 + 490.751i 0.343084 + 0.569317i
\(863\) 629.122i 0.728994i −0.931205 0.364497i \(-0.881241\pi\)
0.931205 0.364497i \(-0.118759\pi\)
\(864\) 69.2947 151.150i 0.0802022 0.174942i
\(865\) −914.455 −1.05717
\(866\) −271.994 + 163.910i −0.314081 + 0.189272i
\(867\) 316.435i 0.364977i
\(868\) 0 0
\(869\) 1172.69 1.34947
\(870\) 104.965 + 174.179i 0.120649 + 0.200206i
\(871\) 2168.93i 2.49016i
\(872\) −12.1737 216.218i −0.0139607 0.247956i
\(873\) −332.471 −0.380837
\(874\) −733.856 + 442.239i −0.839653 + 0.505995i
\(875\) 0 0
\(876\) −424.881 224.504i −0.485024 0.256283i
\(877\) 531.113 0.605602 0.302801 0.953054i \(-0.402078\pi\)
0.302801 + 0.953054i \(0.402078\pi\)
\(878\) −683.929 1134.92i −0.778962 1.29262i
\(879\) 262.138i 0.298223i
\(880\) −296.250 + 202.063i −0.336648 + 0.229617i
\(881\) 320.493 0.363784 0.181892 0.983319i \(-0.441778\pi\)
0.181892 + 0.983319i \(0.441778\pi\)
\(882\) 0 0
\(883\) 1221.53i 1.38339i −0.722189 0.691696i \(-0.756864\pi\)
0.722189 0.691696i \(-0.243136\pi\)
\(884\) 449.818 851.294i 0.508843 0.963002i
\(885\) 585.296 0.661352
\(886\) 681.634 + 1131.11i 0.769338 + 1.27665i
\(887\) 584.356i 0.658800i −0.944190 0.329400i \(-0.893154\pi\)
0.944190 0.329400i \(-0.106846\pi\)
\(888\) −738.998 + 41.6078i −0.832205 + 0.0468557i
\(889\) 0 0
\(890\) −88.0103 + 53.0371i −0.0988880 + 0.0595923i
\(891\) 67.6119i 0.0758832i
\(892\) −280.630 148.283i −0.314608 0.166237i
\(893\) −56.3055 −0.0630521
\(894\) 433.283 + 718.994i 0.484657 + 0.804244i
\(895\) 655.481i 0.732381i
\(896\) 0 0
\(897\) 1115.28 1.24334
\(898\) −573.362 + 345.522i −0.638488 + 0.384768i
\(899\) 562.031i 0.625174i
\(900\) 90.2567 170.814i 0.100285 0.189793i
\(901\) 709.966 0.787976
\(902\) −241.363 400.521i −0.267587 0.444036i
\(903\) 0 0
\(904\) 72.9090 + 1294.94i 0.0806515 + 1.43245i
\(905\) 30.8473 0.0340854
\(906\) 336.729 202.921i 0.371665 0.223974i
\(907\) 682.918i 0.752941i 0.926429 + 0.376471i \(0.122862\pi\)
−0.926429 + 0.376471i \(0.877138\pi\)
\(908\) 808.032 + 426.958i 0.889903 + 0.470218i
\(909\) −16.7328 −0.0184079
\(910\) 0 0
\(911\) 728.384i 0.799543i 0.916615 + 0.399772i \(0.130911\pi\)
−0.916615 + 0.399772i \(0.869089\pi\)
\(912\) 242.548 + 355.606i 0.265952 + 0.389919i
\(913\) −639.454 −0.700388
\(914\) 674.717 406.601i 0.738202 0.444858i
\(915\) 17.0910i 0.0186786i
\(916\) −524.182 + 992.030i −0.572251 + 1.08300i
\(917\) 0 0
\(918\) −55.3051 91.7738i −0.0602452 0.0999714i
\(919\) 61.5914i 0.0670200i 0.999438 + 0.0335100i \(0.0106686\pi\)
−0.999438 + 0.0335100i \(0.989331\pi\)
\(920\) 657.243 37.0047i 0.714395 0.0402226i
\(921\) 890.842 0.967255
\(922\) −470.544 + 283.561i −0.510351 + 0.307550i
\(923\) 1694.61i 1.83598i
\(924\) 0 0
\(925\) −859.984 −0.929712
\(926\) −29.2966 48.6151i −0.0316378 0.0525001i
\(927\) 569.858i 0.614734i
\(928\) −572.394 262.414i −0.616804 0.282774i
\(929\) 571.504 0.615181 0.307591 0.951519i \(-0.400477\pi\)
0.307591 + 0.951519i \(0.400477\pi\)
\(930\) −252.824 + 152.358i −0.271854 + 0.163826i
\(931\) 0 0
\(932\) −88.9952 + 168.426i −0.0954884 + 0.180715i
\(933\) −233.967 −0.250769
\(934\) 679.493 + 1127.56i 0.727508 + 1.20723i
\(935\) 231.084i 0.247148i
\(936\) −31.4967 559.414i −0.0336503 0.597664i
\(937\) −1535.39 −1.63863 −0.819314 0.573345i \(-0.805645\pi\)
−0.819314 + 0.573345i \(0.805645\pi\)
\(938\) 0 0
\(939\) 499.455i 0.531901i
\(940\) 38.2482 + 20.2101i 0.0406896 + 0.0215001i
\(941\) 1015.93 1.07963 0.539815 0.841783i \(-0.318494\pi\)
0.539815 + 0.841783i \(0.318494\pi\)
\(942\) −215.539 357.667i −0.228809 0.379689i
\(943\) 858.422i 0.910310i
\(944\) −1497.18 + 1021.18i −1.58600 + 1.08176i
\(945\) 0 0
\(946\) −195.863 + 118.032i −0.207044 + 0.124770i
\(947\) 854.866i 0.902710i −0.892345 0.451355i \(-0.850941\pi\)
0.892345 0.451355i \(-0.149059\pi\)
\(948\) −505.256 + 956.213i −0.532971 + 1.00866i
\(949\) −1619.29 −1.70631
\(950\) 258.139 + 428.358i 0.271725 + 0.450903i
\(951\) 276.394i 0.290635i
\(952\) 0 0
\(953\) 451.850 0.474134 0.237067 0.971493i \(-0.423814\pi\)
0.237067 + 0.971493i \(0.423814\pi\)
\(954\) 353.864 213.247i 0.370927 0.223530i
\(955\) 92.8961i 0.0972734i
\(956\) −1412.78 746.502i −1.47780 0.780859i
\(957\) 256.042 0.267546
\(958\) 50.5575 + 83.8955i 0.0527740 + 0.0875736i
\(959\) 0 0
\(960\) −37.1225 328.622i −0.0386692 0.342314i
\(961\) 145.202 0.151095
\(962\) −2136.22 + 1287.34i −2.22061 + 1.33819i
\(963\) 93.9103i 0.0975185i
\(964\) −80.1005 + 151.593i −0.0830918 + 0.157254i
\(965\) 203.496 0.210877
\(966\) 0 0
\(967\) 309.800i 0.320372i −0.987087 0.160186i \(-0.948791\pi\)
0.987087 0.160186i \(-0.0512095\pi\)
\(968\) −29.0349 515.690i −0.0299947 0.532737i
\(969\) 277.383 0.286257
\(970\) −566.368 + 341.307i −0.583885 + 0.351863i
\(971\) 613.433i 0.631754i −0.948800 0.315877i \(-0.897701\pi\)
0.948800 0.315877i \(-0.102299\pi\)
\(972\) −55.1308 29.1307i −0.0567189 0.0299699i
\(973\) 0 0
\(974\) 69.7852 + 115.802i 0.0716481 + 0.118894i
\(975\) 650.998i 0.667691i
\(976\) 29.8190 + 43.7185i 0.0305523 + 0.0447935i
\(977\) −1430.43 −1.46411 −0.732054 0.681246i \(-0.761438\pi\)
−0.732054 + 0.681246i \(0.761438\pi\)
\(978\) 577.747 348.164i 0.590743 0.355996i
\(979\) 129.374i 0.132149i
\(980\) 0 0
\(981\) −81.2101 −0.0827830
\(982\) 327.954 + 544.211i 0.333966 + 0.554186i
\(983\) 686.757i 0.698633i −0.937005 0.349317i \(-0.886414\pi\)
0.937005 0.349317i \(-0.113586\pi\)
\(984\) 430.576 24.2427i 0.437578 0.0246369i
\(985\) −338.211 −0.343361
\(986\) −347.541 + 209.437i −0.352476 + 0.212410i
\(987\) 0 0
\(988\) 1282.45 + 677.636i 1.29802 + 0.685867i
\(989\) 419.787 0.424456
\(990\) 69.4089 + 115.178i 0.0701100 + 0.116341i
\(991\) 801.163i 0.808439i 0.914662 + 0.404219i \(0.132457\pi\)
−0.914662 + 0.404219i \(0.867543\pi\)
\(992\) 380.899 830.839i 0.383970 0.837539i
\(993\) 482.080 0.485479
\(994\) 0 0
\(995\) 461.133i 0.463451i
\(996\) 275.510 521.411i 0.276616 0.523505i
\(997\) −523.638 −0.525214 −0.262607 0.964903i \(-0.584582\pi\)
−0.262607 + 0.964903i \(0.584582\pi\)
\(998\) 369.789 + 613.631i 0.370530 + 0.614861i
\(999\) 277.563i 0.277841i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.3.g.h.295.17 24
4.3 odd 2 inner 588.3.g.h.295.20 yes 24
7.6 odd 2 inner 588.3.g.h.295.18 yes 24
28.27 even 2 inner 588.3.g.h.295.19 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.3.g.h.295.17 24 1.1 even 1 trivial
588.3.g.h.295.18 yes 24 7.6 odd 2 inner
588.3.g.h.295.19 yes 24 28.27 even 2 inner
588.3.g.h.295.20 yes 24 4.3 odd 2 inner