Properties

Label 588.2.be.a.341.1
Level $588$
Weight $2$
Character 588.341
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(5,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 21, 29])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.be (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{42}]$

Embedding invariants

Embedding label 341.1
Root \(-0.988831 + 0.149042i\) of defining polynomial
Character \(\chi\) \(=\) 588.341
Dual form 588.2.be.a.269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61232 + 0.632789i) q^{3} +(1.40061 + 2.24461i) q^{7} +(2.19916 + 2.04052i) q^{9} +(-0.652626 + 0.148958i) q^{13} +(0.824595 + 0.476080i) q^{19} +(0.837874 + 4.50533i) q^{21} +(-4.77786 + 1.47378i) q^{25} +(2.25453 + 4.68157i) q^{27} +(5.48475 - 3.16662i) q^{31} +(6.32579 - 4.31285i) q^{37} +(-1.14650 - 0.172807i) q^{39} +(-0.750774 + 0.941440i) q^{43} +(-3.07656 + 6.28767i) q^{49} +(1.02825 + 1.28939i) q^{57} +(-6.93811 - 10.1763i) q^{61} +(-1.50000 + 7.79423i) q^{63} +(-7.65250 - 13.2545i) q^{67} +(2.63409 + 8.53952i) q^{73} +(-8.63604 - 0.647182i) q^{75} +(6.53097 - 11.3120i) q^{79} +(0.672571 + 8.97483i) q^{81} +(-1.24843 - 1.25626i) q^{91} +(10.8470 - 1.63492i) q^{93} +10.5657i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 5 q^{7} - 3 q^{9} + 15 q^{19} + 6 q^{21} - 5 q^{25} + 3 q^{31} - 4 q^{37} - 30 q^{39} - 26 q^{43} - 11 q^{49} + 30 q^{57} + 19 q^{61} - 18 q^{63} + 5 q^{67} + 3 q^{73} - 15 q^{75} + 17 q^{79}+ \cdots + 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61232 + 0.632789i 0.930874 + 0.365341i
\(4\) 0 0
\(5\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(6\) 0 0
\(7\) 1.40061 + 2.24461i 0.529383 + 0.848383i
\(8\) 0 0
\(9\) 2.19916 + 2.04052i 0.733052 + 0.680173i
\(10\) 0 0
\(11\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(12\) 0 0
\(13\) −0.652626 + 0.148958i −0.181006 + 0.0413134i −0.312063 0.950061i \(-0.601020\pi\)
0.131057 + 0.991375i \(0.458163\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(18\) 0 0
\(19\) 0.824595 + 0.476080i 0.189175 + 0.109220i 0.591596 0.806234i \(-0.298498\pi\)
−0.402421 + 0.915455i \(0.631831\pi\)
\(20\) 0 0
\(21\) 0.837874 + 4.50533i 0.182839 + 0.983143i
\(22\) 0 0
\(23\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(24\) 0 0
\(25\) −4.77786 + 1.47378i −0.955573 + 0.294755i
\(26\) 0 0
\(27\) 2.25453 + 4.68157i 0.433884 + 0.900969i
\(28\) 0 0
\(29\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(30\) 0 0
\(31\) 5.48475 3.16662i 0.985090 0.568742i 0.0812873 0.996691i \(-0.474097\pi\)
0.903803 + 0.427949i \(0.140764\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.32579 4.31285i 1.03995 0.709029i 0.0821995 0.996616i \(-0.473806\pi\)
0.957754 + 0.287587i \(0.0928532\pi\)
\(38\) 0 0
\(39\) −1.14650 0.172807i −0.183587 0.0276713i
\(40\) 0 0
\(41\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(42\) 0 0
\(43\) −0.750774 + 0.941440i −0.114492 + 0.143568i −0.835775 0.549072i \(-0.814981\pi\)
0.721283 + 0.692640i \(0.243553\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(48\) 0 0
\(49\) −3.07656 + 6.28767i −0.439508 + 0.898239i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.02825 + 1.28939i 0.136195 + 0.170784i
\(58\) 0 0
\(59\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(60\) 0 0
\(61\) −6.93811 10.1763i −0.888334 1.30295i −0.952353 0.304999i \(-0.901344\pi\)
0.0640184 0.997949i \(-0.479608\pi\)
\(62\) 0 0
\(63\) −1.50000 + 7.79423i −0.188982 + 0.981981i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.65250 13.2545i −0.934901 1.61930i −0.774810 0.632195i \(-0.782154\pi\)
−0.160092 0.987102i \(-0.551179\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(72\) 0 0
\(73\) 2.63409 + 8.53952i 0.308297 + 0.999475i 0.968631 + 0.248503i \(0.0799386\pi\)
−0.660334 + 0.750972i \(0.729585\pi\)
\(74\) 0 0
\(75\) −8.63604 0.647182i −0.997204 0.0747301i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.53097 11.3120i 0.734792 1.27270i −0.220023 0.975495i \(-0.570613\pi\)
0.954815 0.297202i \(-0.0960535\pi\)
\(80\) 0 0
\(81\) 0.672571 + 8.97483i 0.0747301 + 0.997204i
\(82\) 0 0
\(83\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(90\) 0 0
\(91\) −1.24843 1.25626i −0.130871 0.131692i
\(92\) 0 0
\(93\) 10.8470 1.63492i 1.12478 0.169533i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.5657i 1.07278i 0.843970 + 0.536390i \(0.180212\pi\)
−0.843970 + 0.536390i \(0.819788\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(102\) 0 0
\(103\) −2.40596 15.9625i −0.237067 1.57283i −0.717979 0.696065i \(-0.754933\pi\)
0.480912 0.876769i \(-0.340306\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(108\) 0 0
\(109\) −3.72057 + 3.45218i −0.356366 + 0.330659i −0.837956 0.545737i \(-0.816250\pi\)
0.481591 + 0.876396i \(0.340059\pi\)
\(110\) 0 0
\(111\) 12.9283 2.95081i 1.22710 0.280078i
\(112\) 0 0
\(113\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1.73918 1.00411i −0.160787 0.0928304i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.822031 10.9692i 0.0747301 0.997204i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −19.9787 9.62122i −1.77282 0.853745i −0.964095 0.265557i \(-0.914444\pi\)
−0.808724 0.588188i \(-0.799842\pi\)
\(128\) 0 0
\(129\) −1.80622 + 1.04282i −0.159029 + 0.0918154i
\(130\) 0 0
\(131\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(132\) 0 0
\(133\) 0.0863251 + 2.51770i 0.00748533 + 0.218312i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(138\) 0 0
\(139\) 11.5261 9.19172i 0.977627 0.779632i 0.00220985 0.999998i \(-0.499297\pi\)
0.975417 + 0.220366i \(0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −8.93917 + 8.19093i −0.737290 + 0.675576i
\(148\) 0 0
\(149\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(150\) 0 0
\(151\) −20.2683 13.8187i −1.64941 1.12455i −0.858999 0.511976i \(-0.828913\pi\)
−0.790413 0.612574i \(-0.790134\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.300074 + 1.99086i −0.0239485 + 0.158888i −0.997609 0.0691164i \(-0.977982\pi\)
0.973660 + 0.228005i \(0.0732201\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.10399 13.0048i −0.399776 1.01861i −0.979076 0.203497i \(-0.934769\pi\)
0.579300 0.815114i \(-0.303326\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(168\) 0 0
\(169\) −11.3089 + 5.44606i −0.869913 + 0.418928i
\(170\) 0 0
\(171\) 0.841962 + 2.72957i 0.0643865 + 0.208736i
\(172\) 0 0
\(173\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(174\) 0 0
\(175\) −10.0000 8.66025i −0.755929 0.654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(180\) 0 0
\(181\) −2.90111 0.662160i −0.215638 0.0492180i 0.113337 0.993557i \(-0.463846\pi\)
−0.328975 + 0.944339i \(0.606703\pi\)
\(182\) 0 0
\(183\) −4.74698 20.7979i −0.350907 1.53742i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −7.35058 + 11.6176i −0.534676 + 0.845057i
\(190\) 0 0
\(191\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(192\) 0 0
\(193\) −9.69170 + 24.6940i −0.697624 + 1.77752i −0.0719816 + 0.997406i \(0.522932\pi\)
−0.625642 + 0.780110i \(0.715163\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) 24.6934 + 9.69145i 1.75047 + 0.687009i 0.999649 + 0.0265041i \(0.00843751\pi\)
0.750822 + 0.660505i \(0.229658\pi\)
\(200\) 0 0
\(201\) −3.95097 26.2129i −0.278680 1.84892i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0.866581 3.79674i 0.0596579 0.261378i −0.936300 0.351202i \(-0.885773\pi\)
0.995958 + 0.0898234i \(0.0286303\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 14.7899 + 7.87591i 1.00400 + 0.534652i
\(218\) 0 0
\(219\) −1.15671 + 15.4353i −0.0781635 + 1.04302i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 1.20863 + 2.50974i 0.0809357 + 0.168065i 0.937509 0.347960i \(-0.113126\pi\)
−0.856574 + 0.516025i \(0.827411\pi\)
\(224\) 0 0
\(225\) −13.5145 6.50826i −0.900969 0.433884i
\(226\) 0 0
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) 28.1124 11.0333i 1.85772 0.729101i 0.904837 0.425757i \(-0.139992\pi\)
0.952881 0.303344i \(-0.0981030\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 17.6881 14.1058i 1.14897 0.916270i
\(238\) 0 0
\(239\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(240\) 0 0
\(241\) −15.8993 + 23.3200i −1.02416 + 1.50217i −0.167787 + 0.985823i \(0.553662\pi\)
−0.856377 + 0.516351i \(0.827290\pi\)
\(242\) 0 0
\(243\) −4.59478 + 14.8959i −0.294755 + 0.955573i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −0.609068 0.187872i −0.0387540 0.0119540i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(258\) 0 0
\(259\) 18.5407 + 8.15830i 1.15206 + 0.506932i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(270\) 0 0
\(271\) 11.0611 + 0.828915i 0.671914 + 0.0503530i 0.406319 0.913731i \(-0.366812\pi\)
0.265596 + 0.964084i \(0.414431\pi\)
\(272\) 0 0
\(273\) −1.21792 2.81548i −0.0737119 0.170401i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.15572 + 28.7661i 0.129525 + 1.72838i 0.562343 + 0.826904i \(0.309900\pi\)
−0.432819 + 0.901481i \(0.642481\pi\)
\(278\) 0 0
\(279\) 18.5234 + 4.22784i 1.10897 + 0.253114i
\(280\) 0 0
\(281\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(282\) 0 0
\(283\) 21.1764 + 22.8228i 1.25881 + 1.35667i 0.907298 + 0.420489i \(0.138141\pi\)
0.351510 + 0.936184i \(0.385668\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.8101 2.53372i 0.988831 0.149042i
\(290\) 0 0
\(291\) −6.68583 + 17.0352i −0.391930 + 0.998622i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −3.16471 0.366600i −0.182411 0.0211304i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 11.6714 2.66392i 0.666121 0.152038i 0.123927 0.992291i \(-0.460451\pi\)
0.542194 + 0.840254i \(0.317594\pi\)
\(308\) 0 0
\(309\) 6.22173 27.2592i 0.353942 1.55072i
\(310\) 0 0
\(311\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(312\) 0 0
\(313\) 30.5624 + 17.6452i 1.72749 + 0.997367i 0.900006 + 0.435878i \(0.143562\pi\)
0.827484 + 0.561489i \(0.189771\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 2.89863 1.67352i 0.160787 0.0928304i
\(326\) 0 0
\(327\) −8.18325 + 3.21169i −0.452535 + 0.177607i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −21.0468 + 14.3495i −1.15684 + 0.788718i −0.980675 0.195643i \(-0.937320\pi\)
−0.176161 + 0.984361i \(0.556368\pi\)
\(332\) 0 0
\(333\) 22.7119 + 3.42326i 1.24460 + 0.187594i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −22.2495 + 27.9000i −1.21201 + 1.51981i −0.422143 + 0.906529i \(0.638722\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −18.4224 + 1.90093i −0.994719 + 0.102641i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(348\) 0 0
\(349\) 16.6978 + 13.3161i 0.893815 + 0.712794i 0.958494 0.285112i \(-0.0920309\pi\)
−0.0646791 + 0.997906i \(0.520602\pi\)
\(350\) 0 0
\(351\) −2.16872 2.71949i −0.115758 0.145155i
\(352\) 0 0
\(353\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(360\) 0 0
\(361\) −9.04670 15.6693i −0.476142 0.824702i
\(362\) 0 0
\(363\) 8.26660 17.1658i 0.433884 0.900969i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.2820 + 36.5752i 0.588913 + 1.90921i 0.337452 + 0.941343i \(0.390435\pi\)
0.251461 + 0.967867i \(0.419089\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 11.5718 20.0429i 0.599165 1.03778i −0.393780 0.919205i \(-0.628833\pi\)
0.992945 0.118579i \(-0.0378340\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 4.20036 + 18.4030i 0.215758 + 0.945298i 0.960573 + 0.278027i \(0.0896806\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) −26.1238 28.1548i −1.33836 1.44241i
\(382\) 0 0
\(383\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.57209 + 0.538407i −0.181580 + 0.0273687i
\(388\) 0 0
\(389\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −5.28477 35.0621i −0.265235 1.75972i −0.583877 0.811842i \(-0.698465\pi\)
0.318642 0.947875i \(-0.396773\pi\)
\(398\) 0 0
\(399\) −1.45399 + 4.11396i −0.0727905 + 0.205956i
\(400\) 0 0
\(401\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(402\) 0 0
\(403\) −3.10780 + 2.88362i −0.154810 + 0.143643i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −9.92962 + 0.744122i −0.490988 + 0.0367945i −0.317924 0.948116i \(-0.602986\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 24.4001 7.52644i 1.19488 0.368571i
\(418\) 0 0
\(419\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(420\) 0 0
\(421\) −21.8115 10.5039i −1.06303 0.511926i −0.181173 0.983451i \(-0.557990\pi\)
−0.881853 + 0.471525i \(0.843704\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 13.1243 29.8265i 0.635130 1.44341i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(432\) 0 0
\(433\) −31.5171 + 25.1341i −1.51462 + 1.20787i −0.602376 + 0.798213i \(0.705779\pi\)
−0.912241 + 0.409654i \(0.865649\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −12.1822 + 39.4936i −0.581423 + 1.88493i −0.132971 + 0.991120i \(0.542452\pi\)
−0.448452 + 0.893807i \(0.648024\pi\)
\(440\) 0 0
\(441\) −19.5959 + 7.54979i −0.933140 + 0.359514i
\(442\) 0 0
\(443\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −23.9347 35.1058i −1.12455 1.64941i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −5.53652 14.1068i −0.258987 0.659889i 0.740944 0.671566i \(-0.234378\pi\)
−0.999932 + 0.0116771i \(0.996283\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(462\) 0 0
\(463\) 22.9350 11.0449i 1.06588 0.513300i 0.183102 0.983094i \(-0.441386\pi\)
0.882776 + 0.469794i \(0.155672\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(468\) 0 0
\(469\) 19.0330 35.7413i 0.878864 1.65038i
\(470\) 0 0
\(471\) −1.74361 + 3.02003i −0.0803415 + 0.139156i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.64144 1.05938i −0.212964 0.0486076i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(480\) 0 0
\(481\) −3.48594 + 3.75695i −0.158945 + 0.171302i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0.0607530 0.154796i 0.00275298 0.00701448i −0.929491 0.368846i \(-0.879753\pi\)
0.932244 + 0.361831i \(0.117848\pi\)
\(488\) 0 0
\(489\) 24.1976i 1.09425i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 6.50735 + 6.03793i 0.291309 + 0.270295i 0.812265 0.583288i \(-0.198234\pi\)
−0.520957 + 0.853583i \(0.674425\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −21.6797 + 1.62467i −0.962830 + 0.0721542i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) −15.4786 + 17.8731i −0.684731 + 0.790659i
\(512\) 0 0
\(513\) −0.369732 + 4.93373i −0.0163241 + 0.217830i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 4.29346 1.68506i 0.187740 0.0736824i −0.269609 0.962970i \(-0.586894\pi\)
0.457349 + 0.889288i \(0.348799\pi\)
\(524\) 0 0
\(525\) −10.6431 20.2910i −0.464503 0.885572i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −22.7431 3.42797i −0.988831 0.149042i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −43.9549 13.5583i −1.88977 0.582916i −0.988847 0.148933i \(-0.952416\pi\)
−0.900921 0.433983i \(-0.857108\pi\)
\(542\) 0 0
\(543\) −4.25852 2.90341i −0.182751 0.124597i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 29.0296 + 36.4020i 1.24122 + 1.55644i 0.695689 + 0.718343i \(0.255099\pi\)
0.545528 + 0.838093i \(0.316329\pi\)
\(548\) 0 0
\(549\) 5.50702 36.5367i 0.235034 1.55935i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 34.5384 1.18423i 1.46872 0.0503585i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0.349740 0.726242i 0.0147924 0.0307168i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −19.2030 + 14.0799i −0.806450 + 0.591302i
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −3.44529 45.9742i −0.144181 1.92396i −0.334790 0.942293i \(-0.608665\pi\)
0.190609 0.981666i \(-0.438954\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −13.9827 15.0698i −0.582108 0.627363i 0.371493 0.928436i \(-0.378846\pi\)
−0.953601 + 0.301073i \(0.902655\pi\)
\(578\) 0 0
\(579\) −31.2522 + 33.6819i −1.29880 + 1.39977i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 6.03026 0.248473
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 33.6811 + 31.2515i 1.37847 + 1.27904i
\(598\) 0 0
\(599\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(600\) 0 0
\(601\) −42.2156 + 9.63544i −1.72201 + 0.393038i −0.965389 0.260815i \(-0.916009\pi\)
−0.756622 + 0.653852i \(0.773152\pi\)
\(602\) 0 0
\(603\) 10.2170 44.7638i 0.416070 1.82292i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.5000 + 19.9186i 1.40031 + 0.808470i 0.994424 0.105453i \(-0.0336291\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 28.7168 8.85796i 1.15986 0.357770i 0.345664 0.938358i \(-0.387654\pi\)
0.814197 + 0.580589i \(0.197178\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(618\) 0 0
\(619\) 40.5000 23.3827i 1.62783 0.939829i 0.643094 0.765787i \(-0.277650\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 20.6560 14.0830i 0.826239 0.563320i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −18.1570 + 22.7681i −0.722817 + 0.906384i −0.998494 0.0548663i \(-0.982527\pi\)
0.275676 + 0.961250i \(0.411098\pi\)
\(632\) 0 0
\(633\) 3.79974 5.57320i 0.151026 0.221515i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.07124 4.56177i 0.0424443 0.180744i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(642\) 0 0
\(643\) −38.0167 30.3173i −1.49923 1.19560i −0.926750 0.375680i \(-0.877409\pi\)
−0.572482 0.819917i \(-0.694019\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 18.8622 + 22.0574i 0.739268 + 0.864496i
\(652\) 0 0
\(653\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −11.6323 + 24.1547i −0.453818 + 0.942363i
\(658\) 0 0
\(659\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) −14.8054 47.9979i −0.575863 1.86690i −0.492353 0.870396i \(-0.663863\pi\)
−0.0835105 0.996507i \(-0.526613\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.360558 + 4.81131i 0.0139400 + 0.186016i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 6.93500 + 30.3842i 0.267325 + 1.17123i 0.913112 + 0.407709i \(0.133672\pi\)
−0.645787 + 0.763517i \(0.723471\pi\)
\(674\) 0 0
\(675\) −17.6714 19.0452i −0.680173 0.733052i
\(676\) 0 0
\(677\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(678\) 0 0
\(679\) −23.7158 + 14.7984i −0.910128 + 0.567911i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 52.3079 1.99567
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −4.90483 32.5414i −0.186588 1.23793i −0.864441 0.502735i \(-0.832327\pi\)
0.677852 0.735198i \(-0.262911\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 7.26948 0.544772i 0.274174 0.0205465i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −3.89919 + 52.0311i −0.146437 + 1.95407i 0.126333 + 0.991988i \(0.459679\pi\)
−0.272770 + 0.962079i \(0.587940\pi\)
\(710\) 0 0
\(711\) 37.4449 11.5502i 1.40429 0.433167i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(720\) 0 0
\(721\) 32.4598 27.7578i 1.20887 1.03375i
\(722\) 0 0
\(723\) −40.3914 + 27.5384i −1.50217 + 1.02416i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −41.9793 + 33.4774i −1.55693 + 1.24161i −0.720654 + 0.693295i \(0.756158\pi\)
−0.836273 + 0.548313i \(0.815270\pi\)
\(728\) 0 0
\(729\) −16.8342 + 21.1095i −0.623490 + 0.781831i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −10.1982 + 33.0618i −0.376680 + 1.22117i 0.546716 + 0.837318i \(0.315878\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −44.7946 30.5404i −1.64780 1.12345i −0.866271 0.499574i \(-0.833490\pi\)
−0.781524 0.623875i \(-0.785558\pi\)
\(740\) 0 0
\(741\) −0.863128 0.688322i −0.0317078 0.0252861i
\(742\) 0 0
\(743\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −18.2304 46.4503i −0.665236 1.69499i −0.717683 0.696370i \(-0.754797\pi\)
0.0524465 0.998624i \(-0.483298\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 48.7672 23.4851i 1.77248 0.853579i 0.808098 0.589048i \(-0.200497\pi\)
0.964377 0.264531i \(-0.0852172\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(762\) 0 0
\(763\) −12.9599 3.51605i −0.469179 0.127289i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −28.7066 6.55210i −1.03519 0.236275i −0.329022 0.944322i \(-0.606719\pi\)
−0.706165 + 0.708047i \(0.749576\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(774\) 0 0
\(775\) −21.5385 + 23.2130i −0.773686 + 0.833835i
\(776\) 0 0
\(777\) 24.7310 + 24.8861i 0.887221 + 0.892785i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −25.5232 10.0171i −0.909804 0.357072i −0.136156 0.990687i \(-0.543475\pi\)
−0.773648 + 0.633616i \(0.781570\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.04384 + 5.60786i 0.214623 + 0.199141i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(810\) 0 0
\(811\) −16.1852 33.6089i −0.568339 1.18017i −0.965011 0.262208i \(-0.915549\pi\)
0.396672 0.917960i \(-0.370165\pi\)
\(812\) 0 0
\(813\) 17.3095 + 8.33583i 0.607071 + 0.292350i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −1.06728 + 0.418878i −0.0373396 + 0.0146547i
\(818\) 0 0
\(819\) −0.182071 5.31015i −0.00636207 0.185552i
\(820\) 0 0
\(821\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(822\) 0 0
\(823\) 11.9348 + 1.79889i 0.416023 + 0.0627053i 0.353719 0.935352i \(-0.384917\pi\)
0.0623041 + 0.998057i \(0.480155\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(828\) 0 0
\(829\) −1.52605 + 2.23830i −0.0530019 + 0.0777395i −0.851825 0.523827i \(-0.824504\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) −14.7271 + 47.7442i −0.510879 + 1.65623i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 27.1903 + 18.5380i 0.939834 + 0.640768i
\(838\) 0 0
\(839\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(840\) 0 0
\(841\) 18.0812 + 22.6731i 0.623490 + 0.781831i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 25.7730 13.5185i 0.885572 0.464503i
\(848\) 0 0
\(849\) 19.7012 + 50.1978i 0.676143 + 1.72279i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −14.9131 + 30.9675i −0.510616 + 1.06031i 0.473172 + 0.880970i \(0.343109\pi\)
−0.983788 + 0.179335i \(0.942605\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(858\) 0 0
\(859\) 58.2867 + 4.36798i 1.98872 + 0.149034i 1.00000 0.000762858i \(-0.000242825\pi\)
0.988717 + 0.149797i \(0.0478619\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 28.7066 + 6.55210i 0.974928 + 0.222521i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 6.96858 + 7.51034i 0.236121 + 0.254478i
\(872\) 0 0
\(873\) −21.5594 + 23.2355i −0.729675 + 0.786403i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.2722 5.91933i 1.32613 0.199882i 0.552495 0.833516i \(-0.313676\pi\)
0.773632 + 0.633635i \(0.218438\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 51.8962 1.74645 0.873223 0.487321i \(-0.162026\pi\)
0.873223 + 0.487321i \(0.162026\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(888\) 0 0
\(889\) −6.38652 58.3199i −0.214197 1.95599i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −4.87055 2.59367i −0.162082 0.0863120i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 54.0223 16.6637i 1.79378 0.553308i 0.795190 0.606360i \(-0.207371\pi\)
0.998592 + 0.0530515i \(0.0168947\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −46.3238 + 31.5830i −1.52808 + 1.04183i −0.549616 + 0.835417i \(0.685226\pi\)
−0.978465 + 0.206411i \(0.933822\pi\)
\(920\) 0 0
\(921\) 20.5037 + 3.09044i 0.675620 + 0.101833i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −23.8676 + 29.9290i −0.784762 + 0.984060i
\(926\) 0 0
\(927\) 27.2807 40.0135i 0.896017 1.31421i
\(928\) 0 0
\(929\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(930\) 0 0
\(931\) −5.53035 + 3.72009i −0.181250 + 0.121921i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 45.5920 + 36.3584i 1.48943 + 1.18778i 0.934544 + 0.355848i \(0.115808\pi\)
0.554882 + 0.831929i \(0.312764\pi\)
\(938\) 0 0
\(939\) 38.1107 + 47.7893i 1.24370 + 1.55955i
\(940\) 0 0
\(941\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(948\) 0 0
\(949\) −2.99110 5.18074i −0.0970954 0.168174i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 4.55500 7.88948i 0.146935 0.254500i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.1755 + 53.3444i 0.391538 + 1.71544i 0.659236 + 0.751936i \(0.270880\pi\)
−0.267698 + 0.963503i \(0.586263\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(972\) 0 0
\(973\) 36.7754 + 12.9974i 1.17897 + 0.416679i
\(974\) 0 0
\(975\) 5.73250 0.864036i 0.183587 0.0276713i
\(976\) 0 0
\(977\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −15.2263 −0.486140
\(982\) 0 0
\(983\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 21.0909 19.5695i 0.669975 0.621646i −0.270011 0.962857i \(-0.587027\pi\)
0.939987 + 0.341211i \(0.110837\pi\)
\(992\) 0 0
\(993\) −43.0144 + 9.81775i −1.36502 + 0.311557i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −22.4537 + 1.68267i −0.711116 + 0.0532908i −0.425376 0.905017i \(-0.639858\pi\)
−0.285739 + 0.958307i \(0.592239\pi\)
\(998\) 0 0
\(999\) 34.4526 + 19.8912i 1.09003 + 0.629330i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.be.a.341.1 yes 12
3.2 odd 2 CM 588.2.be.a.341.1 yes 12
49.24 odd 42 inner 588.2.be.a.269.1 12
147.122 even 42 inner 588.2.be.a.269.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.be.a.269.1 12 49.24 odd 42 inner
588.2.be.a.269.1 12 147.122 even 42 inner
588.2.be.a.341.1 yes 12 1.1 even 1 trivial
588.2.be.a.341.1 yes 12 3.2 odd 2 CM