Properties

Label 588.2.be.a.257.1
Level $588$
Weight $2$
Character 588.257
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(5,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([0, 21, 29])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.be (of order \(42\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{42}]$

Embedding invariants

Embedding label 257.1
Root \(0.955573 + 0.294755i\) of defining polynomial
Character \(\chi\) \(=\) 588.257
Dual form 588.2.be.a.437.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.17809 - 1.26968i) q^{3} +(2.62818 + 0.304447i) q^{7} +(-0.224190 + 2.99161i) q^{9} +(1.61335 - 3.35015i) q^{13} +(6.38151 + 3.68437i) q^{19} +(-2.70969 - 3.69562i) q^{21} +(-4.13119 - 2.81660i) q^{25} +(4.06252 - 3.23975i) q^{27} +(6.51271 - 3.76012i) q^{31} +(-3.98985 - 10.1660i) q^{37} +(-6.15430 + 1.89835i) q^{39} +(2.43907 - 10.6863i) q^{43} +(6.81462 + 1.60028i) q^{49} +(-2.84004 - 12.4430i) q^{57} +(6.16795 - 2.42074i) q^{61} +(-1.50000 + 7.79423i) q^{63} +(8.15511 + 14.1251i) q^{67} +(-6.87882 + 10.0894i) q^{73} +(1.29074 + 8.56353i) q^{75} +(-7.33092 + 12.6975i) q^{79} +(-8.89948 - 1.34138i) q^{81} +(5.26011 - 8.31361i) q^{91} +(-12.4467 - 3.83931i) q^{93} -6.40982i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} + 5 q^{7} - 3 q^{9} + 15 q^{19} + 6 q^{21} - 5 q^{25} + 3 q^{31} - 4 q^{37} - 30 q^{39} - 26 q^{43} - 11 q^{49} + 30 q^{57} + 19 q^{61} - 18 q^{63} + 5 q^{67} + 3 q^{73} - 15 q^{75} + 17 q^{79}+ \cdots + 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{11}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.17809 1.26968i −0.680173 0.733052i
\(4\) 0 0
\(5\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(6\) 0 0
\(7\) 2.62818 + 0.304447i 0.993357 + 0.115070i
\(8\) 0 0
\(9\) −0.224190 + 2.99161i −0.0747301 + 0.997204i
\(10\) 0 0
\(11\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(12\) 0 0
\(13\) 1.61335 3.35015i 0.447462 0.929165i −0.548220 0.836334i \(-0.684694\pi\)
0.995682 0.0928304i \(-0.0295914\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(18\) 0 0
\(19\) 6.38151 + 3.68437i 1.46402 + 0.845252i 0.999194 0.0401503i \(-0.0127837\pi\)
0.464826 + 0.885402i \(0.346117\pi\)
\(20\) 0 0
\(21\) −2.70969 3.69562i −0.591302 0.806450i
\(22\) 0 0
\(23\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(24\) 0 0
\(25\) −4.13119 2.81660i −0.826239 0.563320i
\(26\) 0 0
\(27\) 4.06252 3.23975i 0.781831 0.623490i
\(28\) 0 0
\(29\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(30\) 0 0
\(31\) 6.51271 3.76012i 1.16972 0.675337i 0.216104 0.976370i \(-0.430665\pi\)
0.953613 + 0.301034i \(0.0973317\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.98985 10.1660i −0.655928 1.67128i −0.738127 0.674661i \(-0.764290\pi\)
0.0821995 0.996616i \(-0.473806\pi\)
\(38\) 0 0
\(39\) −6.15430 + 1.89835i −0.985477 + 0.303980i
\(40\) 0 0
\(41\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(42\) 0 0
\(43\) 2.43907 10.6863i 0.371955 1.62964i −0.349328 0.937000i \(-0.613590\pi\)
0.721283 0.692640i \(-0.243553\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(48\) 0 0
\(49\) 6.81462 + 1.60028i 0.973518 + 0.228612i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.84004 12.4430i −0.376173 1.64812i
\(58\) 0 0
\(59\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(60\) 0 0
\(61\) 6.16795 2.42074i 0.789725 0.309944i 0.0640184 0.997949i \(-0.479608\pi\)
0.725706 + 0.688005i \(0.241513\pi\)
\(62\) 0 0
\(63\) −1.50000 + 7.79423i −0.188982 + 0.981981i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 8.15511 + 14.1251i 0.996306 + 1.72565i 0.572525 + 0.819887i \(0.305964\pi\)
0.423780 + 0.905765i \(0.360703\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(72\) 0 0
\(73\) −6.87882 + 10.0894i −0.805106 + 1.18087i 0.175422 + 0.984493i \(0.443871\pi\)
−0.980528 + 0.196380i \(0.937081\pi\)
\(74\) 0 0
\(75\) 1.29074 + 8.56353i 0.149042 + 0.988831i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.33092 + 12.6975i −0.824793 + 1.42858i 0.0772843 + 0.997009i \(0.475375\pi\)
−0.902077 + 0.431574i \(0.857958\pi\)
\(80\) 0 0
\(81\) −8.89948 1.34138i −0.988831 0.149042i
\(82\) 0 0
\(83\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(90\) 0 0
\(91\) 5.26011 8.31361i 0.551409 0.871503i
\(92\) 0 0
\(93\) −12.4467 3.83931i −1.29067 0.398118i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 6.40982i 0.650818i −0.945573 0.325409i \(-0.894498\pi\)
0.945573 0.325409i \(-0.105502\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(102\) 0 0
\(103\) −5.80232 + 18.8106i −0.571719 + 1.85347i −0.0528713 + 0.998601i \(0.516837\pi\)
−0.518848 + 0.854867i \(0.673639\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(108\) 0 0
\(109\) 0.315004 + 4.20344i 0.0301719 + 0.402616i 0.991759 + 0.128117i \(0.0408932\pi\)
−0.961587 + 0.274500i \(0.911488\pi\)
\(110\) 0 0
\(111\) −8.20715 + 17.0423i −0.778989 + 1.61759i
\(112\) 0 0
\(113\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.66065 + 5.57758i 0.893128 + 0.515647i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.8771 + 1.63946i −0.988831 + 0.149042i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.65300 8.34260i 0.590358 0.740286i −0.393482 0.919332i \(-0.628730\pi\)
0.983841 + 0.179046i \(0.0573012\pi\)
\(128\) 0 0
\(129\) −16.4416 + 9.49258i −1.44760 + 0.835775i
\(130\) 0 0
\(131\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(132\) 0 0
\(133\) 15.6500 + 11.6260i 1.35703 + 1.00810i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(138\) 0 0
\(139\) 20.7339 4.73237i 1.75862 0.401395i 0.783207 0.621761i \(-0.213582\pi\)
0.975417 + 0.220366i \(0.0707252\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.99641 10.5377i −0.494576 0.869134i
\(148\) 0 0
\(149\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(150\) 0 0
\(151\) −5.16044 + 13.1486i −0.419951 + 1.07002i 0.551794 + 0.833981i \(0.313944\pi\)
−0.971744 + 0.236036i \(0.924152\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −2.65986 8.62307i −0.212280 0.688196i −0.997609 0.0691164i \(-0.977982\pi\)
0.785328 0.619080i \(-0.212494\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −16.0249 14.8690i −1.25517 1.16463i −0.979076 0.203497i \(-0.934769\pi\)
−0.276094 0.961131i \(-0.589040\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(168\) 0 0
\(169\) −0.515253 0.646106i −0.0396348 0.0497005i
\(170\) 0 0
\(171\) −12.4529 + 18.2650i −0.952295 + 1.39676i
\(172\) 0 0
\(173\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(174\) 0 0
\(175\) −10.0000 8.66025i −0.755929 0.654654i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(180\) 0 0
\(181\) 6.19761 + 12.8695i 0.460665 + 0.956580i 0.993866 + 0.110592i \(0.0352746\pi\)
−0.533201 + 0.845989i \(0.679011\pi\)
\(182\) 0 0
\(183\) −10.3400 4.97948i −0.764354 0.368094i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 11.6633 7.27781i 0.848383 0.529383i
\(190\) 0 0
\(191\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(192\) 0 0
\(193\) −14.8924 + 13.8181i −1.07198 + 0.994650i −0.999996 0.00275594i \(-0.999123\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −6.14039 6.61777i −0.435281 0.469121i 0.476871 0.878973i \(-0.341771\pi\)
−0.912152 + 0.409852i \(0.865580\pi\)
\(200\) 0 0
\(201\) 8.32688 26.9951i 0.587333 1.90409i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −26.0689 + 12.5541i −1.79465 + 0.864260i −0.858354 + 0.513058i \(0.828513\pi\)
−0.936300 + 0.351202i \(0.885773\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 18.2613 7.89947i 1.23966 0.536251i
\(218\) 0 0
\(219\) 20.9142 3.15231i 1.41325 0.213013i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 22.1812 17.6889i 1.48536 1.18454i 0.547851 0.836576i \(-0.315446\pi\)
0.937509 0.347960i \(-0.113126\pi\)
\(224\) 0 0
\(225\) 9.35235 11.7275i 0.623490 0.781831i
\(226\) 0 0
\(227\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(228\) 0 0
\(229\) −13.8655 + 14.9434i −0.916257 + 0.987491i −0.999959 0.00900024i \(-0.997135\pi\)
0.0837021 + 0.996491i \(0.473326\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 24.7583 5.65093i 1.60823 0.367067i
\(238\) 0 0
\(239\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(240\) 0 0
\(241\) −18.4459 7.23948i −1.18820 0.466336i −0.312843 0.949805i \(-0.601281\pi\)
−0.875361 + 0.483469i \(0.839377\pi\)
\(242\) 0 0
\(243\) 8.78129 + 12.8798i 0.563320 + 0.826239i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 22.6388 15.4349i 1.44047 0.982097i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(258\) 0 0
\(259\) −7.39103 27.9327i −0.459256 1.73565i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(270\) 0 0
\(271\) 3.49412 + 23.1820i 0.212253 + 1.40820i 0.800408 + 0.599456i \(0.204616\pi\)
−0.588155 + 0.808748i \(0.700146\pi\)
\(272\) 0 0
\(273\) −16.7525 + 3.11554i −1.01391 + 0.188561i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 32.8257 + 4.94768i 1.97230 + 0.297277i 0.997115 + 0.0759082i \(0.0241856\pi\)
0.975190 + 0.221369i \(0.0710525\pi\)
\(278\) 0 0
\(279\) 9.78872 + 20.3265i 0.586035 + 1.21691i
\(280\) 0 0
\(281\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(282\) 0 0
\(283\) 5.49148 0.411530i 0.326435 0.0244629i 0.0894950 0.995987i \(-0.471475\pi\)
0.236940 + 0.971524i \(0.423856\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.2447 5.01084i −0.955573 0.294755i
\(290\) 0 0
\(291\) −8.13844 + 7.55137i −0.477084 + 0.442669i
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 9.66372 27.3428i 0.557007 1.57601i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7.93361 + 16.4743i −0.452795 + 0.940239i 0.542194 + 0.840254i \(0.317594\pi\)
−0.994989 + 0.0999855i \(0.968120\pi\)
\(308\) 0 0
\(309\) 30.7192 14.7936i 1.74756 0.841579i
\(310\) 0 0
\(311\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(312\) 0 0
\(313\) −8.96734 5.17730i −0.506864 0.292638i 0.224680 0.974433i \(-0.427866\pi\)
−0.731544 + 0.681795i \(0.761200\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −16.1011 + 9.29597i −0.893128 + 0.515647i
\(326\) 0 0
\(327\) 4.96593 5.35200i 0.274617 0.295966i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.2241 33.6945i −0.726863 1.85202i −0.458481 0.888704i \(-0.651606\pi\)
−0.268382 0.963312i \(-0.586489\pi\)
\(332\) 0 0
\(333\) 31.3072 9.65698i 1.71562 0.529199i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.32076 + 27.6930i −0.344314 + 1.50854i 0.445552 + 0.895256i \(0.353008\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 17.4228 + 6.28052i 0.940744 + 0.339116i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(348\) 0 0
\(349\) −36.3500 8.29666i −1.94577 0.444110i −0.987279 0.158998i \(-0.949174\pi\)
−0.958494 0.285112i \(-0.907969\pi\)
\(350\) 0 0
\(351\) −4.29939 18.8369i −0.229485 1.00544i
\(352\) 0 0
\(353\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(360\) 0 0
\(361\) 17.6491 + 30.5692i 0.928902 + 1.60890i
\(362\) 0 0
\(363\) 14.8959 + 11.8791i 0.781831 + 0.623490i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 19.8476 29.1110i 1.03603 1.51958i 0.193383 0.981123i \(-0.438054\pi\)
0.842651 0.538460i \(-0.180994\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.87429 + 8.44251i −0.252381 + 0.437137i −0.964181 0.265246i \(-0.914547\pi\)
0.711800 + 0.702382i \(0.247880\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −13.3843 6.44555i −0.687506 0.331085i 0.0573090 0.998356i \(-0.481748\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) −18.4303 + 1.38116i −0.944213 + 0.0707590i
\(382\) 0 0
\(383\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 31.4223 + 9.69251i 1.59729 + 0.492698i
\(388\) 0 0
\(389\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.55160 24.4817i 0.379004 1.22870i −0.542409 0.840115i \(-0.682488\pi\)
0.921413 0.388586i \(-0.127036\pi\)
\(398\) 0 0
\(399\) −3.67588 33.5671i −0.184024 1.68046i
\(400\) 0 0
\(401\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(402\) 0 0
\(403\) −2.08969 27.8849i −0.104095 1.38905i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −6.02660 + 39.9839i −0.297996 + 1.97708i −0.124932 + 0.992165i \(0.539871\pi\)
−0.173064 + 0.984911i \(0.555367\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −30.4351 20.7503i −1.49041 1.01615i
\(418\) 0 0
\(419\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(420\) 0 0
\(421\) −4.63548 + 5.81271i −0.225920 + 0.283294i −0.881853 0.471525i \(-0.843704\pi\)
0.655933 + 0.754819i \(0.272275\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 16.9474 4.48432i 0.820144 0.217011i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(432\) 0 0
\(433\) 32.3866 7.39203i 1.55640 0.355238i 0.644159 0.764892i \(-0.277208\pi\)
0.912241 + 0.409654i \(0.134351\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −19.2855 28.2867i −0.920449 1.35005i −0.936682 0.350182i \(-0.886120\pi\)
0.0162329 0.999868i \(-0.494833\pi\)
\(440\) 0 0
\(441\) −6.31520 + 20.0279i −0.300724 + 0.953711i
\(442\) 0 0
\(443\) 0 0 0.826239 0.563320i \(-0.190476\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 22.7740 8.93815i 1.07002 0.419951i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −31.0441 28.8047i −1.45218 1.34743i −0.819604 0.572930i \(-0.805807\pi\)
−0.632577 0.774498i \(-0.718003\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(462\) 0 0
\(463\) 4.91296 + 6.16066i 0.228325 + 0.286310i 0.882776 0.469794i \(-0.155672\pi\)
−0.654451 + 0.756104i \(0.727100\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(468\) 0 0
\(469\) 17.1327 + 39.6060i 0.791116 + 1.82883i
\(470\) 0 0
\(471\) −7.81500 + 13.5360i −0.360096 + 0.623705i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −15.9859 33.1950i −0.733482 1.52309i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(480\) 0 0
\(481\) −40.4946 3.03465i −1.84639 0.138368i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −31.5156 + 29.2422i −1.42811 + 1.32509i −0.560203 + 0.828355i \(0.689277\pi\)
−0.867903 + 0.496734i \(0.834533\pi\)
\(488\) 0 0
\(489\) 37.8636i 1.71225i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −3.04246 + 40.5988i −0.136199 + 1.81745i 0.342547 + 0.939501i \(0.388710\pi\)
−0.478746 + 0.877953i \(0.658909\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.213334 + 1.41538i −0.00947451 + 0.0628593i
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) −21.1505 + 24.4224i −0.935641 + 1.08039i
\(512\) 0 0
\(513\) 37.8614 5.70669i 1.67162 0.251957i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) −29.4773 + 31.7690i −1.28895 + 1.38916i −0.410121 + 0.912031i \(0.634513\pi\)
−0.878833 + 0.477130i \(0.841677\pi\)
\(524\) 0 0
\(525\) 0.785159 + 22.8994i 0.0342672 + 0.999413i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 21.9782 6.77937i 0.955573 0.294755i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −28.1782 + 19.2116i −1.21148 + 0.825970i −0.988847 0.148933i \(-0.952416\pi\)
−0.222628 + 0.974903i \(0.571464\pi\)
\(542\) 0 0
\(543\) 9.03878 23.0304i 0.387891 0.988331i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.33094 + 5.83123i 0.0569068 + 0.249325i 0.995378 0.0960317i \(-0.0306150\pi\)
−0.938471 + 0.345357i \(0.887758\pi\)
\(548\) 0 0
\(549\) 5.85912 + 18.9948i 0.250061 + 0.810679i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −23.1327 + 31.1395i −0.983702 + 1.32418i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) −31.8655 25.4119i −1.34777 1.07481i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −22.9810 6.23481i −0.965112 0.261837i
\(568\) 0 0
\(569\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(570\) 0 0
\(571\) −22.2815 3.35839i −0.932451 0.140544i −0.334790 0.942293i \(-0.608665\pi\)
−0.597662 + 0.801749i \(0.703903\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −0.317044 + 0.0237591i −0.0131987 + 0.000989106i −0.0813278 0.996687i \(-0.525916\pi\)
0.0681291 + 0.997677i \(0.478297\pi\)
\(578\) 0 0
\(579\) 35.0893 + 2.62958i 1.45826 + 0.109281i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 55.4146 2.28332
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.16851 + 15.5927i −0.0478240 + 0.638167i
\(598\) 0 0
\(599\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(600\) 0 0
\(601\) −18.7877 + 39.0131i −0.766367 + 1.59138i 0.0394563 + 0.999221i \(0.487437\pi\)
−0.805823 + 0.592156i \(0.798277\pi\)
\(602\) 0 0
\(603\) −44.0850 + 21.2302i −1.79528 + 0.864562i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 34.5000 + 19.9186i 1.40031 + 0.808470i 0.994424 0.105453i \(-0.0336291\pi\)
0.405887 + 0.913923i \(0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 26.1768 + 17.8471i 1.05727 + 0.720836i 0.961566 0.274574i \(-0.0885368\pi\)
0.0957060 + 0.995410i \(0.469489\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(618\) 0 0
\(619\) 40.5000 23.3827i 1.62783 0.939829i 0.643094 0.765787i \(-0.277650\pi\)
0.984738 0.174042i \(-0.0556830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9.13353 + 23.2718i 0.365341 + 0.930874i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −10.3232 + 45.2288i −0.410959 + 1.80053i 0.168695 + 0.985668i \(0.446045\pi\)
−0.579654 + 0.814862i \(0.696812\pi\)
\(632\) 0 0
\(633\) 46.6513 + 18.3093i 1.85422 + 0.727728i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 16.3555 20.2482i 0.648030 0.802263i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(642\) 0 0
\(643\) −48.8061 11.1397i −1.92472 0.439306i −0.997974 0.0636258i \(-0.979734\pi\)
−0.926750 0.375680i \(-0.877409\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −31.5434 13.8798i −1.23628 0.543991i
\(652\) 0 0
\(653\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −28.6413 22.8407i −1.11741 0.891101i
\(658\) 0 0
\(659\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(660\) 0 0
\(661\) 28.2953 41.5015i 1.10056 1.61422i 0.373526 0.927620i \(-0.378149\pi\)
0.727033 0.686603i \(-0.240899\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −48.5908 7.32388i −1.87863 0.283158i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −41.5143 19.9922i −1.60026 0.770643i −0.600673 0.799495i \(-0.705101\pi\)
−0.999584 + 0.0288517i \(0.990815\pi\)
\(674\) 0 0
\(675\) −25.9081 + 1.94154i −0.997204 + 0.0747301i
\(676\) 0 0
\(677\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(678\) 0 0
\(679\) 1.95145 16.8461i 0.0748899 0.646495i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 35.3083 1.34710
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −9.70009 + 31.4469i −0.369009 + 1.19630i 0.560706 + 0.828015i \(0.310530\pi\)
−0.929714 + 0.368282i \(0.879946\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(702\) 0 0
\(703\) 11.9939 79.5744i 0.452359 3.00121i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 40.4071 6.09040i 1.51752 0.228730i 0.663188 0.748453i \(-0.269203\pi\)
0.854335 + 0.519723i \(0.173965\pi\)
\(710\) 0 0
\(711\) −36.3425 24.7779i −1.36295 0.929245i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(720\) 0 0
\(721\) −20.9764 + 47.6712i −0.781201 + 1.77537i
\(722\) 0 0
\(723\) 12.5391 + 31.9492i 0.466336 + 1.18820i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 52.3474 11.9479i 1.94146 0.443125i 0.950096 0.311958i \(-0.100985\pi\)
0.991360 0.131167i \(-0.0418725\pi\)
\(728\) 0 0
\(729\) 6.00807 26.3231i 0.222521 0.974928i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −6.19255 9.08280i −0.228727 0.335481i 0.694669 0.719330i \(-0.255551\pi\)
−0.923396 + 0.383849i \(0.874598\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 17.1972 43.8178i 0.632609 1.61186i −0.149529 0.988757i \(-0.547776\pi\)
0.782138 0.623105i \(-0.214129\pi\)
\(740\) 0 0
\(741\) −46.2680 10.5604i −1.69970 0.387945i
\(742\) 0 0
\(743\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 9.81271 + 9.10487i 0.358071 + 0.332241i 0.838610 0.544732i \(-0.183369\pi\)
−0.480539 + 0.876973i \(0.659559\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 33.0868 + 41.4895i 1.20256 + 1.50796i 0.808098 + 0.589048i \(0.200497\pi\)
0.394460 + 0.918913i \(0.370932\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(762\) 0 0
\(763\) −0.451840 + 11.1433i −0.0163577 + 0.403414i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −12.7756 26.5289i −0.460702 0.956657i −0.993860 0.110642i \(-0.964709\pi\)
0.533159 0.846015i \(-0.321005\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(774\) 0 0
\(775\) −37.4960 2.80994i −1.34690 0.100936i
\(776\) 0 0
\(777\) −26.7583 + 42.2916i −0.959950 + 1.51720i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 28.3106 + 30.5116i 1.00917 + 1.08762i 0.996146 + 0.0877066i \(0.0279538\pi\)
0.0130192 + 0.999915i \(0.495856\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.84120 24.5691i 0.0653828 0.872473i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.826239 0.563320i \(-0.809524\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(810\) 0 0
\(811\) 40.8769 32.5982i 1.43538 1.14468i 0.470369 0.882470i \(-0.344121\pi\)
0.965011 0.262208i \(-0.0844506\pi\)
\(812\) 0 0
\(813\) 25.3173 31.7469i 0.887918 1.11341i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 54.9371 59.2081i 1.92201 2.07143i
\(818\) 0 0
\(819\) 23.6918 + 17.6000i 0.827859 + 0.614995i
\(820\) 0 0
\(821\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(822\) 0 0
\(823\) 34.7153 10.7082i 1.21010 0.373266i 0.376907 0.926251i \(-0.376988\pi\)
0.833191 + 0.552986i \(0.186512\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(828\) 0 0
\(829\) 51.6411 + 20.2677i 1.79357 + 0.703925i 0.994748 + 0.102358i \(0.0326389\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) −32.3898 47.5071i −1.12359 1.64800i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 14.2762 36.3751i 0.493456 1.25731i
\(838\) 0 0
\(839\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(840\) 0 0
\(841\) −6.45311 28.2729i −0.222521 0.974928i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −29.0862 + 0.997286i −0.999413 + 0.0342672i
\(848\) 0 0
\(849\) −6.99199 6.48762i −0.239965 0.222655i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −45.6242 36.3841i −1.56214 1.24577i −0.808552 0.588425i \(-0.799748\pi\)
−0.753592 0.657343i \(-0.771680\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(858\) 0 0
\(859\) −5.94719 39.4570i −0.202916 1.34626i −0.825809 0.563950i \(-0.809281\pi\)
0.622893 0.782307i \(-0.285957\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 12.7756 + 26.5289i 0.433884 + 0.900969i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 60.4781 4.53221i 2.04922 0.153568i
\(872\) 0 0
\(873\) 19.1757 + 1.43702i 0.648999 + 0.0486357i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.16461 + 2.82691i 0.309467 + 0.0954579i 0.445599 0.895233i \(-0.352991\pi\)
−0.136132 + 0.990691i \(0.543467\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −34.1908 −1.15061 −0.575306 0.817939i \(-0.695117\pi\)
−0.575306 + 0.817939i \(0.695117\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(888\) 0 0
\(889\) 20.0251 19.9003i 0.671622 0.667436i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −46.1015 + 19.9426i −1.53416 + 0.663647i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −49.5351 33.7725i −1.64479 1.12140i −0.876682 0.481070i \(-0.840248\pi\)
−0.768104 0.640325i \(-0.778800\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 14.7964 + 37.7006i 0.488088 + 1.24363i 0.936773 + 0.349938i \(0.113797\pi\)
−0.448685 + 0.893690i \(0.648107\pi\)
\(920\) 0 0
\(921\) 30.2637 9.33512i 0.997223 0.307603i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −12.1506 + 53.2355i −0.399511 + 1.75037i
\(926\) 0 0
\(927\) −54.9733 21.5754i −1.80556 0.708630i
\(928\) 0 0
\(929\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(930\) 0 0
\(931\) 37.5916 + 35.3198i 1.23201 + 1.15756i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −21.2391 4.84769i −0.693852 0.158367i −0.138971 0.990297i \(-0.544379\pi\)
−0.554882 + 0.831929i \(0.687236\pi\)
\(938\) 0 0
\(939\) 3.99084 + 17.4850i 0.130236 + 0.570602i
\(940\) 0 0
\(941\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(948\) 0 0
\(949\) 22.7030 + 39.3228i 0.736971 + 1.27647i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.7769 22.1303i 0.412159 0.713880i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 51.5629 + 24.8314i 1.65815 + 0.798523i 0.998914 + 0.0465864i \(0.0148343\pi\)
0.659236 + 0.751936i \(0.270880\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(972\) 0 0
\(973\) 55.9331 6.12513i 1.79313 0.196363i
\(974\) 0 0
\(975\) 30.7715 + 9.49176i 0.985477 + 0.303980i
\(976\) 0 0
\(977\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −12.6457 −0.403745
\(982\) 0 0
\(983\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −4.61254 61.5501i −0.146522 1.95520i −0.270011 0.962857i \(-0.587027\pi\)
0.123489 0.992346i \(-0.460592\pi\)
\(992\) 0 0
\(993\) −27.2021 + 56.4857i −0.863232 + 1.79252i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 3.35593 22.2652i 0.106283 0.705145i −0.870698 0.491819i \(-0.836332\pi\)
0.976981 0.213326i \(-0.0684297\pi\)
\(998\) 0 0
\(999\) −49.1441 28.3733i −1.55485 0.897693i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.be.a.257.1 12
3.2 odd 2 CM 588.2.be.a.257.1 12
49.45 odd 42 inner 588.2.be.a.437.1 yes 12
147.143 even 42 inner 588.2.be.a.437.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.be.a.257.1 12 1.1 even 1 trivial
588.2.be.a.257.1 12 3.2 odd 2 CM
588.2.be.a.437.1 yes 12 49.45 odd 42 inner
588.2.be.a.437.1 yes 12 147.143 even 42 inner