Properties

Label 585.2.bu.b.316.1
Level $585$
Weight $2$
Character 585.316
Analytic conductor $4.671$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(316,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.316"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.bu (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-6,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.56070144.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 316.1
Root \(0.500000 - 1.56488i\) of defining polynomial
Character \(\chi\) \(=\) 585.316
Dual form 585.2.bu.b.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.10523 - 1.21545i) q^{2} +(1.95466 + 3.38556i) q^{4} +1.00000i q^{5} +(1.12682 - 0.650571i) q^{7} -4.64136i q^{8} +(1.21545 - 2.10523i) q^{10} +(2.75159 + 1.58863i) q^{11} +(-3.40216 + 1.19386i) q^{13} -3.16296 q^{14} +(-1.73205 + 3.00000i) q^{16} +(-0.325680 - 0.564094i) q^{17} +(2.17511 - 1.25580i) q^{19} +(-3.38556 + 1.95466i) q^{20} +(-3.86182 - 6.68886i) q^{22} +(-0.889774 + 1.54113i) q^{23} -1.00000 q^{25} +(8.61341 + 1.62182i) q^{26} +(4.40510 + 2.54329i) q^{28} +(-4.18965 + 7.25669i) q^{29} +8.50318i q^{31} +(-0.746354 + 0.430908i) q^{32} +1.58340i q^{34} +(0.650571 + 1.12682i) q^{35} +(1.21046 + 0.698857i) q^{37} -6.10547 q^{38} +4.64136 q^{40} +(10.0658 + 5.81147i) q^{41} +(1.63692 + 2.83522i) q^{43} +12.4209i q^{44} +(3.74635 - 2.16296i) q^{46} -12.2105i q^{47} +(-2.65351 + 4.59602i) q^{49} +(2.10523 + 1.21545i) q^{50} +(-10.6919 - 9.18465i) q^{52} +6.35452 q^{53} +(-1.58863 + 2.75159i) q^{55} +(-3.01954 - 5.22999i) q^{56} +(17.6403 - 10.1847i) q^{58} +(5.18377 - 2.99285i) q^{59} +(-6.49373 - 11.2475i) q^{61} +(10.3352 - 17.9011i) q^{62} +9.02320 q^{64} +(-1.19386 - 3.40216i) q^{65} +(11.3922 + 6.57727i) q^{67} +(1.27318 - 2.20522i) q^{68} -3.16296i q^{70} +(0.949658 - 0.548286i) q^{71} +12.2293i q^{73} +(-1.69886 - 2.94251i) q^{74} +(8.50318 + 4.90931i) q^{76} +4.13407 q^{77} -1.33022 q^{79} +(-3.00000 - 1.73205i) q^{80} +(-14.1272 - 24.4690i) q^{82} +14.2668i q^{83} +(0.564094 - 0.325680i) q^{85} -7.95839i q^{86} +(7.37341 - 12.7711i) q^{88} +(8.31719 + 4.80193i) q^{89} +(-3.05694 + 3.55862i) q^{91} -6.95681 q^{92} +(-14.8412 + 25.7058i) q^{94} +(1.25580 + 2.17511i) q^{95} +(6.88214 - 3.97341i) q^{97} +(11.1725 - 6.45045i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{2} + 4 q^{4} + 6 q^{7} + 2 q^{10} - 12 q^{11} + 6 q^{13} + 4 q^{14} + 2 q^{17} + 12 q^{19} - 4 q^{23} - 8 q^{25} + 4 q^{26} - 12 q^{28} + 6 q^{29} - 12 q^{32} + 6 q^{35} - 12 q^{37} + 16 q^{38}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.10523 1.21545i −1.48862 0.859456i −0.488705 0.872449i \(-0.662531\pi\)
−0.999916 + 0.0129932i \(0.995864\pi\)
\(3\) 0 0
\(4\) 1.95466 + 3.38556i 0.977328 + 1.69278i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 1.12682 0.650571i 0.425899 0.245893i −0.271699 0.962382i \(-0.587586\pi\)
0.697598 + 0.716489i \(0.254252\pi\)
\(8\) 4.64136i 1.64097i
\(9\) 0 0
\(10\) 1.21545 2.10523i 0.384360 0.665732i
\(11\) 2.75159 + 1.58863i 0.829636 + 0.478990i 0.853728 0.520719i \(-0.174336\pi\)
−0.0240923 + 0.999710i \(0.507670\pi\)
\(12\) 0 0
\(13\) −3.40216 + 1.19386i −0.943590 + 0.331117i
\(14\) −3.16296 −0.845336
\(15\) 0 0
\(16\) −1.73205 + 3.00000i −0.433013 + 0.750000i
\(17\) −0.325680 0.564094i −0.0789890 0.136813i 0.823825 0.566844i \(-0.191836\pi\)
−0.902814 + 0.430031i \(0.858503\pi\)
\(18\) 0 0
\(19\) 2.17511 1.25580i 0.499004 0.288100i −0.229298 0.973356i \(-0.573643\pi\)
0.728302 + 0.685256i \(0.240310\pi\)
\(20\) −3.38556 + 1.95466i −0.757035 + 0.437074i
\(21\) 0 0
\(22\) −3.86182 6.68886i −0.823342 1.42607i
\(23\) −0.889774 + 1.54113i −0.185531 + 0.321349i −0.943755 0.330645i \(-0.892734\pi\)
0.758225 + 0.651994i \(0.226067\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 8.61341 + 1.62182i 1.68923 + 0.318066i
\(27\) 0 0
\(28\) 4.40510 + 2.54329i 0.832486 + 0.480636i
\(29\) −4.18965 + 7.25669i −0.777998 + 1.34753i 0.155095 + 0.987899i \(0.450431\pi\)
−0.933094 + 0.359633i \(0.882902\pi\)
\(30\) 0 0
\(31\) 8.50318i 1.52722i 0.645680 + 0.763608i \(0.276574\pi\)
−0.645680 + 0.763608i \(0.723426\pi\)
\(32\) −0.746354 + 0.430908i −0.131938 + 0.0761745i
\(33\) 0 0
\(34\) 1.58340i 0.271550i
\(35\) 0.650571 + 1.12682i 0.109967 + 0.190468i
\(36\) 0 0
\(37\) 1.21046 + 0.698857i 0.198998 + 0.114891i 0.596188 0.802845i \(-0.296681\pi\)
−0.397190 + 0.917736i \(0.630015\pi\)
\(38\) −6.10547 −0.990437
\(39\) 0 0
\(40\) 4.64136 0.733864
\(41\) 10.0658 + 5.81147i 1.57201 + 0.907600i 0.995923 + 0.0902108i \(0.0287541\pi\)
0.576086 + 0.817389i \(0.304579\pi\)
\(42\) 0 0
\(43\) 1.63692 + 2.83522i 0.249627 + 0.432367i 0.963422 0.267987i \(-0.0863585\pi\)
−0.713795 + 0.700355i \(0.753025\pi\)
\(44\) 12.4209i 1.87252i
\(45\) 0 0
\(46\) 3.74635 2.16296i 0.552370 0.318911i
\(47\) 12.2105i 1.78108i −0.454907 0.890539i \(-0.650327\pi\)
0.454907 0.890539i \(-0.349673\pi\)
\(48\) 0 0
\(49\) −2.65351 + 4.59602i −0.379073 + 0.656574i
\(50\) 2.10523 + 1.21545i 0.297724 + 0.171891i
\(51\) 0 0
\(52\) −10.6919 9.18465i −1.48271 1.27368i
\(53\) 6.35452 0.872861 0.436431 0.899738i \(-0.356242\pi\)
0.436431 + 0.899738i \(0.356242\pi\)
\(54\) 0 0
\(55\) −1.58863 + 2.75159i −0.214211 + 0.371024i
\(56\) −3.01954 5.22999i −0.403503 0.698887i
\(57\) 0 0
\(58\) 17.6403 10.1847i 2.31629 1.33731i
\(59\) 5.18377 2.99285i 0.674869 0.389636i −0.123050 0.992400i \(-0.539268\pi\)
0.797919 + 0.602765i \(0.205934\pi\)
\(60\) 0 0
\(61\) −6.49373 11.2475i −0.831437 1.44009i −0.896898 0.442237i \(-0.854185\pi\)
0.0654609 0.997855i \(-0.479148\pi\)
\(62\) 10.3352 17.9011i 1.31257 2.27345i
\(63\) 0 0
\(64\) 9.02320 1.12790
\(65\) −1.19386 3.40216i −0.148080 0.421986i
\(66\) 0 0
\(67\) 11.3922 + 6.57727i 1.39177 + 0.803541i 0.993512 0.113730i \(-0.0362799\pi\)
0.398263 + 0.917271i \(0.369613\pi\)
\(68\) 1.27318 2.20522i 0.154396 0.267422i
\(69\) 0 0
\(70\) 3.16296i 0.378046i
\(71\) 0.949658 0.548286i 0.112704 0.0650695i −0.442589 0.896725i \(-0.645940\pi\)
0.555292 + 0.831655i \(0.312606\pi\)
\(72\) 0 0
\(73\) 12.2293i 1.43134i 0.698440 + 0.715668i \(0.253878\pi\)
−0.698440 + 0.715668i \(0.746122\pi\)
\(74\) −1.69886 2.94251i −0.197488 0.342059i
\(75\) 0 0
\(76\) 8.50318 + 4.90931i 0.975382 + 0.563137i
\(77\) 4.13407 0.471121
\(78\) 0 0
\(79\) −1.33022 −0.149662 −0.0748310 0.997196i \(-0.523842\pi\)
−0.0748310 + 0.997196i \(0.523842\pi\)
\(80\) −3.00000 1.73205i −0.335410 0.193649i
\(81\) 0 0
\(82\) −14.1272 24.4690i −1.56008 2.70214i
\(83\) 14.2668i 1.56599i 0.622028 + 0.782995i \(0.286309\pi\)
−0.622028 + 0.782995i \(0.713691\pi\)
\(84\) 0 0
\(85\) 0.564094 0.325680i 0.0611846 0.0353249i
\(86\) 7.95839i 0.858175i
\(87\) 0 0
\(88\) 7.37341 12.7711i 0.786009 1.36141i
\(89\) 8.31719 + 4.80193i 0.881620 + 0.509004i 0.871192 0.490942i \(-0.163347\pi\)
0.0104280 + 0.999946i \(0.496681\pi\)
\(90\) 0 0
\(91\) −3.05694 + 3.55862i −0.320455 + 0.373044i
\(92\) −6.95681 −0.725298
\(93\) 0 0
\(94\) −14.8412 + 25.7058i −1.53076 + 2.65135i
\(95\) 1.25580 + 2.17511i 0.128842 + 0.223161i
\(96\) 0 0
\(97\) 6.88214 3.97341i 0.698776 0.403438i −0.108116 0.994138i \(-0.534482\pi\)
0.806891 + 0.590700i \(0.201148\pi\)
\(98\) 11.1725 6.45045i 1.12859 0.651594i
\(99\) 0 0
\(100\) −1.95466 3.38556i −0.195466 0.338556i
\(101\) 1.06273 1.84070i 0.105745 0.183157i −0.808297 0.588775i \(-0.799610\pi\)
0.914043 + 0.405618i \(0.132944\pi\)
\(102\) 0 0
\(103\) 0.985697 0.0971236 0.0485618 0.998820i \(-0.484536\pi\)
0.0485618 + 0.998820i \(0.484536\pi\)
\(104\) 5.54113 + 15.7907i 0.543353 + 1.54840i
\(105\) 0 0
\(106\) −13.3777 7.72363i −1.29936 0.750185i
\(107\) −6.16796 + 10.6832i −0.596279 + 1.03279i 0.397086 + 0.917781i \(0.370021\pi\)
−0.993365 + 0.115004i \(0.963312\pi\)
\(108\) 0 0
\(109\) 0.870235i 0.0833534i 0.999131 + 0.0416767i \(0.0132700\pi\)
−0.999131 + 0.0416767i \(0.986730\pi\)
\(110\) 6.68886 3.86182i 0.637758 0.368210i
\(111\) 0 0
\(112\) 4.50729i 0.425899i
\(113\) −7.55068 13.0782i −0.710308 1.23029i −0.964742 0.263199i \(-0.915222\pi\)
0.254434 0.967090i \(-0.418111\pi\)
\(114\) 0 0
\(115\) −1.54113 0.889774i −0.143711 0.0829719i
\(116\) −32.7573 −3.04144
\(117\) 0 0
\(118\) −14.5507 −1.33950
\(119\) −0.733967 0.423756i −0.0672827 0.0388457i
\(120\) 0 0
\(121\) −0.452503 0.783758i −0.0411366 0.0712507i
\(122\) 31.5713i 2.85833i
\(123\) 0 0
\(124\) −28.7881 + 16.6208i −2.58524 + 1.49259i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −1.44815 + 2.50828i −0.128503 + 0.222573i −0.923097 0.384568i \(-0.874350\pi\)
0.794594 + 0.607141i \(0.207684\pi\)
\(128\) −17.5032 10.1055i −1.54708 0.893205i
\(129\) 0 0
\(130\) −1.62182 + 8.61341i −0.142243 + 0.755446i
\(131\) −15.7570 −1.37670 −0.688349 0.725380i \(-0.741664\pi\)
−0.688349 + 0.725380i \(0.741664\pi\)
\(132\) 0 0
\(133\) 1.63397 2.83013i 0.141684 0.245403i
\(134\) −15.9887 27.6933i −1.38122 2.39234i
\(135\) 0 0
\(136\) −2.61817 + 1.51160i −0.224506 + 0.129619i
\(137\) −0.638901 + 0.368870i −0.0545850 + 0.0315147i −0.527044 0.849838i \(-0.676700\pi\)
0.472459 + 0.881353i \(0.343366\pi\)
\(138\) 0 0
\(139\) 9.87341 + 17.1013i 0.837452 + 1.45051i 0.892018 + 0.451999i \(0.149289\pi\)
−0.0545661 + 0.998510i \(0.517378\pi\)
\(140\) −2.54329 + 4.40510i −0.214947 + 0.372299i
\(141\) 0 0
\(142\) −2.66566 −0.223697
\(143\) −11.2580 2.11977i −0.941437 0.177264i
\(144\) 0 0
\(145\) −7.25669 4.18965i −0.602635 0.347931i
\(146\) 14.8642 25.7456i 1.23017 2.13072i
\(147\) 0 0
\(148\) 5.46410i 0.449146i
\(149\) 2.74140 1.58275i 0.224584 0.129664i −0.383487 0.923546i \(-0.625277\pi\)
0.608071 + 0.793883i \(0.291944\pi\)
\(150\) 0 0
\(151\) 0.168843i 0.0137402i −0.999976 0.00687011i \(-0.997813\pi\)
0.999976 0.00687011i \(-0.00218684\pi\)
\(152\) −5.82862 10.0955i −0.472764 0.818851i
\(153\) 0 0
\(154\) −8.70316 5.02477i −0.701321 0.404908i
\(155\) −8.50318 −0.682992
\(156\) 0 0
\(157\) 13.5512 1.08150 0.540750 0.841183i \(-0.318141\pi\)
0.540750 + 0.841183i \(0.318141\pi\)
\(158\) 2.80043 + 1.61683i 0.222790 + 0.128628i
\(159\) 0 0
\(160\) −0.430908 0.746354i −0.0340663 0.0590045i
\(161\) 2.31545i 0.182483i
\(162\) 0 0
\(163\) −13.1689 + 7.60307i −1.03147 + 0.595519i −0.917405 0.397955i \(-0.869720\pi\)
−0.114064 + 0.993473i \(0.536387\pi\)
\(164\) 45.4377i 3.54809i
\(165\) 0 0
\(166\) 17.3407 30.0350i 1.34590 2.33117i
\(167\) −6.47429 3.73793i −0.500996 0.289250i 0.228129 0.973631i \(-0.426739\pi\)
−0.729125 + 0.684381i \(0.760073\pi\)
\(168\) 0 0
\(169\) 10.1494 8.12340i 0.780723 0.624877i
\(170\) −1.58340 −0.121441
\(171\) 0 0
\(172\) −6.39922 + 11.0838i −0.487936 + 0.845130i
\(173\) 4.64701 + 8.04886i 0.353306 + 0.611943i 0.986826 0.161782i \(-0.0517242\pi\)
−0.633521 + 0.773726i \(0.718391\pi\)
\(174\) 0 0
\(175\) −1.12682 + 0.650571i −0.0851798 + 0.0491786i
\(176\) −9.53179 + 5.50318i −0.718485 + 0.414818i
\(177\) 0 0
\(178\) −11.6731 20.2183i −0.874932 1.51543i
\(179\) −5.42376 + 9.39422i −0.405391 + 0.702157i −0.994367 0.105993i \(-0.966198\pi\)
0.588976 + 0.808150i \(0.299531\pi\)
\(180\) 0 0
\(181\) −0.759361 −0.0564428 −0.0282214 0.999602i \(-0.508984\pi\)
−0.0282214 + 0.999602i \(0.508984\pi\)
\(182\) 10.7609 3.77613i 0.797651 0.279905i
\(183\) 0 0
\(184\) 7.15296 + 4.12976i 0.527323 + 0.304450i
\(185\) −0.698857 + 1.21046i −0.0513810 + 0.0889945i
\(186\) 0 0
\(187\) 2.06954i 0.151340i
\(188\) 41.3393 23.8672i 3.01498 1.74070i
\(189\) 0 0
\(190\) 6.10547i 0.442937i
\(191\) 3.34149 + 5.78763i 0.241782 + 0.418778i 0.961222 0.275776i \(-0.0889349\pi\)
−0.719440 + 0.694554i \(0.755602\pi\)
\(192\) 0 0
\(193\) −13.7082 7.91441i −0.986735 0.569692i −0.0824381 0.996596i \(-0.526271\pi\)
−0.904297 + 0.426905i \(0.859604\pi\)
\(194\) −19.3180 −1.38695
\(195\) 0 0
\(196\) −20.7468 −1.48192
\(197\) −5.91886 3.41725i −0.421701 0.243469i 0.274104 0.961700i \(-0.411619\pi\)
−0.695805 + 0.718231i \(0.744952\pi\)
\(198\) 0 0
\(199\) −8.62135 14.9326i −0.611151 1.05854i −0.991047 0.133515i \(-0.957373\pi\)
0.379896 0.925029i \(-0.375960\pi\)
\(200\) 4.64136i 0.328194i
\(201\) 0 0
\(202\) −4.47457 + 2.58340i −0.314830 + 0.181767i
\(203\) 10.9027i 0.765217i
\(204\) 0 0
\(205\) −5.81147 + 10.0658i −0.405891 + 0.703024i
\(206\) −2.07512 1.19807i −0.144580 0.0834734i
\(207\) 0 0
\(208\) 2.31114 12.2743i 0.160249 0.851070i
\(209\) 7.98001 0.551989
\(210\) 0 0
\(211\) 11.9066 20.6229i 0.819685 1.41974i −0.0862299 0.996275i \(-0.527482\pi\)
0.905915 0.423460i \(-0.139185\pi\)
\(212\) 12.4209 + 21.5137i 0.853072 + 1.47756i
\(213\) 0 0
\(214\) 25.9699 14.9937i 1.77527 1.02495i
\(215\) −2.83522 + 1.63692i −0.193361 + 0.111637i
\(216\) 0 0
\(217\) 5.53193 + 9.58158i 0.375532 + 0.650440i
\(218\) 1.05773 1.83204i 0.0716386 0.124082i
\(219\) 0 0
\(220\) −12.4209 −0.837418
\(221\) 1.78146 + 1.53032i 0.119834 + 0.102941i
\(222\) 0 0
\(223\) −9.34911 5.39771i −0.626063 0.361458i 0.153163 0.988201i \(-0.451054\pi\)
−0.779226 + 0.626743i \(0.784387\pi\)
\(224\) −0.560673 + 0.971114i −0.0374615 + 0.0648853i
\(225\) 0 0
\(226\) 36.7100i 2.44191i
\(227\) 9.13935 5.27661i 0.606600 0.350221i −0.165034 0.986288i \(-0.552773\pi\)
0.771634 + 0.636067i \(0.219440\pi\)
\(228\) 0 0
\(229\) 15.3248i 1.01269i −0.862330 0.506346i \(-0.830996\pi\)
0.862330 0.506346i \(-0.169004\pi\)
\(230\) 2.16296 + 3.74635i 0.142621 + 0.247027i
\(231\) 0 0
\(232\) 33.6809 + 19.4457i 2.21126 + 1.27667i
\(233\) −9.96092 −0.652562 −0.326281 0.945273i \(-0.605796\pi\)
−0.326281 + 0.945273i \(0.605796\pi\)
\(234\) 0 0
\(235\) 12.2105 0.796522
\(236\) 20.2650 + 11.7000i 1.31914 + 0.761604i
\(237\) 0 0
\(238\) 1.03011 + 1.78421i 0.0667722 + 0.115653i
\(239\) 2.47998i 0.160417i −0.996778 0.0802083i \(-0.974441\pi\)
0.996778 0.0802083i \(-0.0255586\pi\)
\(240\) 0 0
\(241\) 24.6599 14.2374i 1.58848 0.917111i 0.594924 0.803782i \(-0.297182\pi\)
0.993558 0.113329i \(-0.0361514\pi\)
\(242\) 2.19999i 0.141420i
\(243\) 0 0
\(244\) 25.3860 43.9699i 1.62517 2.81489i
\(245\) −4.59602 2.65351i −0.293629 0.169527i
\(246\) 0 0
\(247\) −5.90082 + 6.86920i −0.375460 + 0.437077i
\(248\) 39.4663 2.50612
\(249\) 0 0
\(250\) −1.21545 + 2.10523i −0.0768721 + 0.133146i
\(251\) −13.4795 23.3472i −0.850820 1.47366i −0.880469 0.474104i \(-0.842772\pi\)
0.0296488 0.999560i \(-0.490561\pi\)
\(252\) 0 0
\(253\) −4.89659 + 2.82705i −0.307846 + 0.177735i
\(254\) 6.09739 3.52033i 0.382584 0.220885i
\(255\) 0 0
\(256\) 15.5423 + 26.9200i 0.971391 + 1.68250i
\(257\) 4.29614 7.44114i 0.267986 0.464166i −0.700356 0.713794i \(-0.746975\pi\)
0.968342 + 0.249629i \(0.0803085\pi\)
\(258\) 0 0
\(259\) 1.81863 0.113004
\(260\) 9.18465 10.6919i 0.569608 0.663086i
\(261\) 0 0
\(262\) 33.1721 + 19.1519i 2.04938 + 1.18321i
\(263\) −7.31726 + 12.6739i −0.451202 + 0.781504i −0.998461 0.0554590i \(-0.982338\pi\)
0.547259 + 0.836963i \(0.315671\pi\)
\(264\) 0 0
\(265\) 6.35452i 0.390355i
\(266\) −6.87978 + 3.97204i −0.421826 + 0.243541i
\(267\) 0 0
\(268\) 51.4252i 3.14129i
\(269\) 3.68759 + 6.38710i 0.224837 + 0.389428i 0.956270 0.292484i \(-0.0944819\pi\)
−0.731434 + 0.681912i \(0.761149\pi\)
\(270\) 0 0
\(271\) −10.2106 5.89511i −0.620251 0.358102i 0.156716 0.987644i \(-0.449909\pi\)
−0.776967 + 0.629542i \(0.783243\pi\)
\(272\) 2.25638 0.136813
\(273\) 0 0
\(274\) 1.79338 0.108342
\(275\) −2.75159 1.58863i −0.165927 0.0957981i
\(276\) 0 0
\(277\) −9.62548 16.6718i −0.578339 1.00171i −0.995670 0.0929583i \(-0.970368\pi\)
0.417331 0.908755i \(-0.362966\pi\)
\(278\) 48.0027i 2.87901i
\(279\) 0 0
\(280\) 5.22999 3.01954i 0.312552 0.180452i
\(281\) 25.4911i 1.52067i −0.649529 0.760336i \(-0.725034\pi\)
0.649529 0.760336i \(-0.274966\pi\)
\(282\) 0 0
\(283\) −2.58634 + 4.47967i −0.153742 + 0.266289i −0.932600 0.360911i \(-0.882466\pi\)
0.778858 + 0.627200i \(0.215799\pi\)
\(284\) 3.71251 + 2.14342i 0.220297 + 0.127189i
\(285\) 0 0
\(286\) 21.1241 + 18.1461i 1.24909 + 1.07300i
\(287\) 15.1231 0.892689
\(288\) 0 0
\(289\) 8.28787 14.3550i 0.487521 0.844412i
\(290\) 10.1847 + 17.6403i 0.598063 + 1.03588i
\(291\) 0 0
\(292\) −41.4032 + 23.9042i −2.42294 + 1.39889i
\(293\) 22.5099 12.9961i 1.31505 0.759242i 0.332118 0.943238i \(-0.392237\pi\)
0.982927 + 0.183996i \(0.0589033\pi\)
\(294\) 0 0
\(295\) 2.99285 + 5.18377i 0.174250 + 0.301810i
\(296\) 3.24365 5.61817i 0.188533 0.326549i
\(297\) 0 0
\(298\) −7.69502 −0.445761
\(299\) 1.18726 6.30545i 0.0686609 0.364654i
\(300\) 0 0
\(301\) 3.68903 + 2.12986i 0.212632 + 0.122763i
\(302\) −0.205220 + 0.355452i −0.0118091 + 0.0204540i
\(303\) 0 0
\(304\) 8.70043i 0.499004i
\(305\) 11.2475 6.49373i 0.644029 0.371830i
\(306\) 0 0
\(307\) 20.7454i 1.18400i 0.805937 + 0.592001i \(0.201662\pi\)
−0.805937 + 0.592001i \(0.798338\pi\)
\(308\) 8.08069 + 13.9962i 0.460440 + 0.797506i
\(309\) 0 0
\(310\) 17.9011 + 10.3352i 1.01672 + 0.587001i
\(311\) −1.72617 −0.0978819 −0.0489410 0.998802i \(-0.515585\pi\)
−0.0489410 + 0.998802i \(0.515585\pi\)
\(312\) 0 0
\(313\) 6.29703 0.355929 0.177965 0.984037i \(-0.443049\pi\)
0.177965 + 0.984037i \(0.443049\pi\)
\(314\) −28.5283 16.4708i −1.60994 0.929501i
\(315\) 0 0
\(316\) −2.60013 4.50356i −0.146269 0.253345i
\(317\) 10.5750i 0.593950i 0.954885 + 0.296975i \(0.0959778\pi\)
−0.954885 + 0.296975i \(0.904022\pi\)
\(318\) 0 0
\(319\) −23.0564 + 13.3116i −1.29091 + 0.745307i
\(320\) 9.02320i 0.504412i
\(321\) 0 0
\(322\) 2.81432 4.87454i 0.156836 0.271648i
\(323\) −1.41678 0.817977i −0.0788316 0.0455135i
\(324\) 0 0
\(325\) 3.40216 1.19386i 0.188718 0.0662234i
\(326\) 36.9647 2.04729
\(327\) 0 0
\(328\) 26.9732 46.7189i 1.48934 2.57962i
\(329\) −7.94377 13.7590i −0.437954 0.758559i
\(330\) 0 0
\(331\) −4.99907 + 2.88621i −0.274774 + 0.158641i −0.631055 0.775738i \(-0.717378\pi\)
0.356281 + 0.934379i \(0.384044\pi\)
\(332\) −48.3013 + 27.8868i −2.65088 + 1.53049i
\(333\) 0 0
\(334\) 9.08658 + 15.7384i 0.497195 + 0.861167i
\(335\) −6.57727 + 11.3922i −0.359355 + 0.622420i
\(336\) 0 0
\(337\) 2.08610 0.113637 0.0568186 0.998385i \(-0.481904\pi\)
0.0568186 + 0.998385i \(0.481904\pi\)
\(338\) −31.2404 + 4.76548i −1.69926 + 0.259208i
\(339\) 0 0
\(340\) 2.20522 + 1.27318i 0.119595 + 0.0690481i
\(341\) −13.5084 + 23.3973i −0.731522 + 1.26703i
\(342\) 0 0
\(343\) 16.0132i 0.864632i
\(344\) 13.1593 7.59753i 0.709502 0.409631i
\(345\) 0 0
\(346\) 22.5929i 1.21460i
\(347\) −3.84163 6.65390i −0.206229 0.357200i 0.744294 0.667852i \(-0.232786\pi\)
−0.950524 + 0.310652i \(0.899453\pi\)
\(348\) 0 0
\(349\) −14.5469 8.39867i −0.778679 0.449570i 0.0572831 0.998358i \(-0.481756\pi\)
−0.835962 + 0.548788i \(0.815090\pi\)
\(350\) 3.16296 0.169067
\(351\) 0 0
\(352\) −2.73821 −0.145947
\(353\) −0.140884 0.0813396i −0.00749851 0.00432927i 0.496246 0.868182i \(-0.334711\pi\)
−0.503745 + 0.863853i \(0.668045\pi\)
\(354\) 0 0
\(355\) 0.548286 + 0.949658i 0.0291000 + 0.0504026i
\(356\) 37.5445i 1.98985i
\(357\) 0 0
\(358\) 22.8365 13.1847i 1.20695 0.696830i
\(359\) 19.3374i 1.02059i −0.860000 0.510295i \(-0.829536\pi\)
0.860000 0.510295i \(-0.170464\pi\)
\(360\) 0 0
\(361\) −6.34594 + 10.9915i −0.333997 + 0.578499i
\(362\) 1.59863 + 0.922968i 0.0840220 + 0.0485101i
\(363\) 0 0
\(364\) −18.0232 3.39360i −0.944672 0.177873i
\(365\) −12.2293 −0.640113
\(366\) 0 0
\(367\) 1.13421 1.96451i 0.0592054 0.102547i −0.834904 0.550396i \(-0.814477\pi\)
0.894109 + 0.447850i \(0.147810\pi\)
\(368\) −3.08227 5.33864i −0.160674 0.278296i
\(369\) 0 0
\(370\) 2.94251 1.69886i 0.152974 0.0883194i
\(371\) 7.16042 4.13407i 0.371751 0.214630i
\(372\) 0 0
\(373\) 5.96434 + 10.3305i 0.308822 + 0.534895i 0.978105 0.208112i \(-0.0667320\pi\)
−0.669283 + 0.743007i \(0.733399\pi\)
\(374\) −2.51543 + 4.35686i −0.130070 + 0.225288i
\(375\) 0 0
\(376\) −56.6732 −2.92270
\(377\) 5.59040 29.6903i 0.287920 1.52913i
\(378\) 0 0
\(379\) −9.97692 5.76018i −0.512480 0.295880i 0.221372 0.975189i \(-0.428946\pi\)
−0.733853 + 0.679309i \(0.762280\pi\)
\(380\) −4.90931 + 8.50318i −0.251842 + 0.436204i
\(381\) 0 0
\(382\) 16.2457i 0.831202i
\(383\) 11.9602 6.90524i 0.611139 0.352841i −0.162272 0.986746i \(-0.551882\pi\)
0.773411 + 0.633905i \(0.218549\pi\)
\(384\) 0 0
\(385\) 4.13407i 0.210692i
\(386\) 19.2392 + 33.3233i 0.979249 + 1.69611i
\(387\) 0 0
\(388\) 26.9044 + 15.5333i 1.36587 + 0.788583i
\(389\) 13.9037 0.704946 0.352473 0.935822i \(-0.385341\pi\)
0.352473 + 0.935822i \(0.385341\pi\)
\(390\) 0 0
\(391\) 1.15913 0.0586195
\(392\) 21.3318 + 12.3159i 1.07742 + 0.622048i
\(393\) 0 0
\(394\) 8.30703 + 14.3882i 0.418502 + 0.724867i
\(395\) 1.33022i 0.0669309i
\(396\) 0 0
\(397\) 21.6274 12.4866i 1.08545 0.626684i 0.153087 0.988213i \(-0.451079\pi\)
0.932361 + 0.361529i \(0.117745\pi\)
\(398\) 41.9154i 2.10103i
\(399\) 0 0
\(400\) 1.73205 3.00000i 0.0866025 0.150000i
\(401\) 7.91663 + 4.57067i 0.395338 + 0.228248i 0.684470 0.729041i \(-0.260034\pi\)
−0.289133 + 0.957289i \(0.593367\pi\)
\(402\) 0 0
\(403\) −10.1516 28.9292i −0.505687 1.44107i
\(404\) 8.30908 0.413392
\(405\) 0 0
\(406\) 13.2517 22.9526i 0.657670 1.13912i
\(407\) 2.22045 + 3.84594i 0.110064 + 0.190636i
\(408\) 0 0
\(409\) −21.1456 + 12.2084i −1.04558 + 0.603667i −0.921409 0.388594i \(-0.872961\pi\)
−0.124172 + 0.992261i \(0.539627\pi\)
\(410\) 24.4690 14.1272i 1.20844 0.697691i
\(411\) 0 0
\(412\) 1.92670 + 3.33714i 0.0949216 + 0.164409i
\(413\) 3.89412 6.74482i 0.191617 0.331891i
\(414\) 0 0
\(415\) −14.2668 −0.700332
\(416\) 2.02477 2.35706i 0.0992727 0.115564i
\(417\) 0 0
\(418\) −16.7997 9.69933i −0.821702 0.474410i
\(419\) 3.48713 6.03989i 0.170358 0.295068i −0.768187 0.640225i \(-0.778841\pi\)
0.938545 + 0.345157i \(0.112174\pi\)
\(420\) 0 0
\(421\) 0.673176i 0.0328086i −0.999865 0.0164043i \(-0.994778\pi\)
0.999865 0.0164043i \(-0.00522189\pi\)
\(422\) −50.1322 + 28.9439i −2.44040 + 1.40897i
\(423\) 0 0
\(424\) 29.4937i 1.43234i
\(425\) 0.325680 + 0.564094i 0.0157978 + 0.0273626i
\(426\) 0 0
\(427\) −14.6346 8.44928i −0.708217 0.408889i
\(428\) −48.2249 −2.33104
\(429\) 0 0
\(430\) 7.95839 0.383787
\(431\) −24.2754 14.0154i −1.16931 0.675099i −0.215790 0.976440i \(-0.569233\pi\)
−0.953517 + 0.301340i \(0.902566\pi\)
\(432\) 0 0
\(433\) 1.33317 + 2.30911i 0.0640679 + 0.110969i 0.896280 0.443488i \(-0.146259\pi\)
−0.832212 + 0.554457i \(0.812926\pi\)
\(434\) 26.8952i 1.29101i
\(435\) 0 0
\(436\) −2.94624 + 1.70101i −0.141099 + 0.0814636i
\(437\) 4.46951i 0.213806i
\(438\) 0 0
\(439\) 11.0370 19.1166i 0.526765 0.912384i −0.472749 0.881197i \(-0.656738\pi\)
0.999514 0.0311863i \(-0.00992851\pi\)
\(440\) 12.7711 + 7.37341i 0.608840 + 0.351514i
\(441\) 0 0
\(442\) −1.89035 5.38697i −0.0899148 0.256232i
\(443\) −14.6927 −0.698070 −0.349035 0.937110i \(-0.613491\pi\)
−0.349035 + 0.937110i \(0.613491\pi\)
\(444\) 0 0
\(445\) −4.80193 + 8.31719i −0.227633 + 0.394273i
\(446\) 13.1213 + 22.7268i 0.621314 + 1.07615i
\(447\) 0 0
\(448\) 10.1675 5.87024i 0.480371 0.277343i
\(449\) 4.88200 2.81863i 0.230396 0.133019i −0.380359 0.924839i \(-0.624199\pi\)
0.610755 + 0.791820i \(0.290866\pi\)
\(450\) 0 0
\(451\) 18.4646 + 31.9816i 0.869463 + 1.50595i
\(452\) 29.5180 51.1266i 1.38841 2.40479i
\(453\) 0 0
\(454\) −25.6539 −1.20400
\(455\) −3.55862 3.05694i −0.166831 0.143312i
\(456\) 0 0
\(457\) −4.39355 2.53662i −0.205521 0.118658i 0.393707 0.919236i \(-0.371192\pi\)
−0.599228 + 0.800578i \(0.704526\pi\)
\(458\) −18.6266 + 32.2622i −0.870364 + 1.50751i
\(459\) 0 0
\(460\) 6.95681i 0.324363i
\(461\) −28.6562 + 16.5446i −1.33465 + 0.770561i −0.986009 0.166695i \(-0.946691\pi\)
−0.348642 + 0.937256i \(0.613357\pi\)
\(462\) 0 0
\(463\) 24.4976i 1.13850i −0.822164 0.569251i \(-0.807233\pi\)
0.822164 0.569251i \(-0.192767\pi\)
\(464\) −14.5134 25.1379i −0.673766 1.16700i
\(465\) 0 0
\(466\) 20.9700 + 12.1070i 0.971417 + 0.560848i
\(467\) 30.5932 1.41569 0.707843 0.706370i \(-0.249668\pi\)
0.707843 + 0.706370i \(0.249668\pi\)
\(468\) 0 0
\(469\) 17.1159 0.790341
\(470\) −25.7058 14.8412i −1.18572 0.684576i
\(471\) 0 0
\(472\) −13.8909 24.0597i −0.639380 1.10744i
\(473\) 10.4018i 0.478276i
\(474\) 0 0
\(475\) −2.17511 + 1.25580i −0.0998008 + 0.0576200i
\(476\) 3.31319i 0.151860i
\(477\) 0 0
\(478\) −3.01430 + 5.22093i −0.137871 + 0.238800i
\(479\) −12.0534 6.95901i −0.550732 0.317965i 0.198685 0.980063i \(-0.436333\pi\)
−0.749417 + 0.662098i \(0.769666\pi\)
\(480\) 0 0
\(481\) −4.95250 0.932511i −0.225815 0.0425188i
\(482\) −69.2195 −3.15286
\(483\) 0 0
\(484\) 1.76897 3.06395i 0.0804079 0.139271i
\(485\) 3.97341 + 6.88214i 0.180423 + 0.312502i
\(486\) 0 0
\(487\) −26.4585 + 15.2758i −1.19895 + 0.692213i −0.960321 0.278898i \(-0.910031\pi\)
−0.238628 + 0.971111i \(0.576698\pi\)
\(488\) −52.2036 + 30.1398i −2.36315 + 1.36436i
\(489\) 0 0
\(490\) 6.45045 + 11.1725i 0.291401 + 0.504722i
\(491\) 7.34214 12.7170i 0.331346 0.573908i −0.651430 0.758709i \(-0.725831\pi\)
0.982776 + 0.184801i \(0.0591639\pi\)
\(492\) 0 0
\(493\) 5.45794 0.245813
\(494\) 20.7718 7.28906i 0.934566 0.327951i
\(495\) 0 0
\(496\) −25.5095 14.7279i −1.14541 0.661304i
\(497\) 0.713398 1.23564i 0.0320003 0.0554261i
\(498\) 0 0
\(499\) 16.1489i 0.722922i −0.932387 0.361461i \(-0.882278\pi\)
0.932387 0.361461i \(-0.117722\pi\)
\(500\) 3.38556 1.95466i 0.151407 0.0874149i
\(501\) 0 0
\(502\) 65.5350i 2.92497i
\(503\) −1.00431 1.73951i −0.0447799 0.0775610i 0.842767 0.538279i \(-0.180925\pi\)
−0.887547 + 0.460718i \(0.847592\pi\)
\(504\) 0 0
\(505\) 1.84070 + 1.06273i 0.0819101 + 0.0472908i
\(506\) 13.7446 0.611021
\(507\) 0 0
\(508\) −11.3226 −0.502358
\(509\) 33.2529 + 19.1986i 1.47391 + 0.850962i 0.999568 0.0293796i \(-0.00935315\pi\)
0.474341 + 0.880341i \(0.342686\pi\)
\(510\) 0 0
\(511\) 7.95606 + 13.7803i 0.351956 + 0.609605i
\(512\) 35.1417i 1.55306i
\(513\) 0 0
\(514\) −18.0887 + 10.4435i −0.797860 + 0.460644i
\(515\) 0.985697i 0.0434350i
\(516\) 0 0
\(517\) 19.3979 33.5982i 0.853119 1.47765i
\(518\) −3.82862 2.21046i −0.168220 0.0971219i
\(519\) 0 0
\(520\) −15.7907 + 5.54113i −0.692467 + 0.242995i
\(521\) −31.2138 −1.36750 −0.683751 0.729716i \(-0.739652\pi\)
−0.683751 + 0.729716i \(0.739652\pi\)
\(522\) 0 0
\(523\) −16.6041 + 28.7591i −0.726045 + 1.25755i 0.232498 + 0.972597i \(0.425310\pi\)
−0.958543 + 0.284949i \(0.908023\pi\)
\(524\) −30.7996 53.3464i −1.34549 2.33045i
\(525\) 0 0
\(526\) 30.8090 17.7876i 1.34334 0.775576i
\(527\) 4.79659 2.76931i 0.208943 0.120633i
\(528\) 0 0
\(529\) 9.91660 + 17.1761i 0.431157 + 0.746785i
\(530\) 7.72363 13.3777i 0.335493 0.581091i
\(531\) 0 0
\(532\) 12.7754 0.553885
\(533\) −41.1834 7.75446i −1.78385 0.335883i
\(534\) 0 0
\(535\) −10.6832 6.16796i −0.461876 0.266664i
\(536\) 30.5275 52.8752i 1.31859 2.28386i
\(537\) 0 0
\(538\) 17.9284i 0.772948i
\(539\) −14.6028 + 8.43091i −0.628985 + 0.363145i
\(540\) 0 0
\(541\) 39.1911i 1.68496i −0.538731 0.842478i \(-0.681096\pi\)
0.538731 0.842478i \(-0.318904\pi\)
\(542\) 14.3305 + 24.8211i 0.615546 + 1.06616i
\(543\) 0 0
\(544\) 0.486145 + 0.280676i 0.0208433 + 0.0120339i
\(545\) −0.870235 −0.0372768
\(546\) 0 0
\(547\) 8.26842 0.353532 0.176766 0.984253i \(-0.443436\pi\)
0.176766 + 0.984253i \(0.443436\pi\)
\(548\) −2.49766 1.44203i −0.106695 0.0616004i
\(549\) 0 0
\(550\) 3.86182 + 6.68886i 0.164668 + 0.285214i
\(551\) 21.0454i 0.896566i
\(552\) 0 0
\(553\) −1.49893 + 0.865406i −0.0637409 + 0.0368008i
\(554\) 46.7973i 1.98823i
\(555\) 0 0
\(556\) −38.5983 + 66.8542i −1.63693 + 2.83525i
\(557\) 39.0259 + 22.5316i 1.65358 + 0.954695i 0.975583 + 0.219631i \(0.0704852\pi\)
0.677997 + 0.735064i \(0.262848\pi\)
\(558\) 0 0
\(559\) −8.95391 7.69164i −0.378710 0.325322i
\(560\) −4.50729 −0.190468
\(561\) 0 0
\(562\) −30.9833 + 53.6646i −1.30695 + 2.26371i
\(563\) 22.9389 + 39.7313i 0.966758 + 1.67447i 0.704816 + 0.709391i \(0.251030\pi\)
0.261943 + 0.965083i \(0.415637\pi\)
\(564\) 0 0
\(565\) 13.0782 7.55068i 0.550202 0.317659i
\(566\) 10.8897 6.28715i 0.457727 0.264269i
\(567\) 0 0
\(568\) −2.54479 4.40771i −0.106777 0.184943i
\(569\) −3.06034 + 5.30066i −0.128296 + 0.222215i −0.923017 0.384760i \(-0.874284\pi\)
0.794720 + 0.606976i \(0.207617\pi\)
\(570\) 0 0
\(571\) −19.2267 −0.804611 −0.402306 0.915505i \(-0.631791\pi\)
−0.402306 + 0.915505i \(0.631791\pi\)
\(572\) −14.8288 42.2579i −0.620024 1.76689i
\(573\) 0 0
\(574\) −31.8376 18.3815i −1.32888 0.767227i
\(575\) 0.889774 1.54113i 0.0371061 0.0642697i
\(576\) 0 0
\(577\) 9.40689i 0.391614i 0.980642 + 0.195807i \(0.0627326\pi\)
−0.980642 + 0.195807i \(0.937267\pi\)
\(578\) −34.8957 + 20.1470i −1.45147 + 0.838006i
\(579\) 0 0
\(580\) 32.7573i 1.36017i
\(581\) 9.28160 + 16.0762i 0.385066 + 0.666954i
\(582\) 0 0
\(583\) 17.4850 + 10.0950i 0.724157 + 0.418092i
\(584\) 56.7608 2.34878
\(585\) 0 0
\(586\) −63.1848 −2.61014
\(587\) 32.2409 + 18.6143i 1.33072 + 0.768294i 0.985411 0.170193i \(-0.0544392\pi\)
0.345314 + 0.938487i \(0.387773\pi\)
\(588\) 0 0
\(589\) 10.6783 + 18.4953i 0.439991 + 0.762087i
\(590\) 14.5507i 0.599042i
\(591\) 0 0
\(592\) −4.19314 + 2.42091i −0.172337 + 0.0994989i
\(593\) 18.1214i 0.744157i −0.928201 0.372078i \(-0.878645\pi\)
0.928201 0.372078i \(-0.121355\pi\)
\(594\) 0 0
\(595\) 0.423756 0.733967i 0.0173723 0.0300897i
\(596\) 10.7170 + 6.18745i 0.438985 + 0.253448i
\(597\) 0 0
\(598\) −10.1634 + 11.8314i −0.415614 + 0.483820i
\(599\) 7.18204 0.293450 0.146725 0.989177i \(-0.453127\pi\)
0.146725 + 0.989177i \(0.453127\pi\)
\(600\) 0 0
\(601\) 16.5370 28.6428i 0.674556 1.16837i −0.302042 0.953295i \(-0.597668\pi\)
0.976598 0.215071i \(-0.0689983\pi\)
\(602\) −5.17750 8.96769i −0.211019 0.365496i
\(603\) 0 0
\(604\) 0.571628 0.330029i 0.0232592 0.0134287i
\(605\) 0.783758 0.452503i 0.0318643 0.0183969i
\(606\) 0 0
\(607\) −10.8071 18.7185i −0.438648 0.759760i 0.558938 0.829210i \(-0.311209\pi\)
−0.997585 + 0.0694496i \(0.977876\pi\)
\(608\) −1.08227 + 1.87454i −0.0438917 + 0.0760227i
\(609\) 0 0
\(610\) −31.5713 −1.27829
\(611\) 14.5776 + 41.5419i 0.589745 + 1.68061i
\(612\) 0 0
\(613\) −23.6890 13.6769i −0.956790 0.552403i −0.0616062 0.998101i \(-0.519622\pi\)
−0.895184 + 0.445698i \(0.852956\pi\)
\(614\) 25.2151 43.6738i 1.01760 1.76253i
\(615\) 0 0
\(616\) 19.1877i 0.773096i
\(617\) 14.1425 8.16518i 0.569356 0.328718i −0.187536 0.982258i \(-0.560050\pi\)
0.756892 + 0.653540i \(0.226717\pi\)
\(618\) 0 0
\(619\) 35.8801i 1.44214i 0.692860 + 0.721072i \(0.256350\pi\)
−0.692860 + 0.721072i \(0.743650\pi\)
\(620\) −16.6208 28.7881i −0.667507 1.15616i
\(621\) 0 0
\(622\) 3.63397 + 2.09808i 0.145709 + 0.0841252i
\(623\) 12.4960 0.500642
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −13.2567 7.65375i −0.529844 0.305905i
\(627\) 0 0
\(628\) 26.4878 + 45.8783i 1.05698 + 1.83074i
\(629\) 0.910415i 0.0363006i
\(630\) 0 0
\(631\) −6.10348 + 3.52385i −0.242976 + 0.140282i −0.616544 0.787321i \(-0.711468\pi\)
0.373568 + 0.927603i \(0.378134\pi\)
\(632\) 6.17406i 0.245591i
\(633\) 0 0
\(634\) 12.8534 22.2627i 0.510474 0.884166i
\(635\) −2.50828 1.44815i −0.0995379 0.0574682i
\(636\) 0 0
\(637\) 3.54068 18.8043i 0.140287 0.745054i
\(638\) 64.7186 2.56223
\(639\) 0 0
\(640\) 10.1055 17.5032i 0.399454 0.691874i
\(641\) −20.4752 35.4641i −0.808723 1.40075i −0.913749 0.406279i \(-0.866826\pi\)
0.105026 0.994469i \(-0.466507\pi\)
\(642\) 0 0
\(643\) 30.5004 17.6094i 1.20282 0.694448i 0.241638 0.970366i \(-0.422315\pi\)
0.961181 + 0.275918i \(0.0889819\pi\)
\(644\) −7.83909 + 4.52590i −0.308904 + 0.178346i
\(645\) 0 0
\(646\) 1.98843 + 3.44406i 0.0782336 + 0.135505i
\(647\) −14.2359 + 24.6573i −0.559670 + 0.969377i 0.437854 + 0.899046i \(0.355739\pi\)
−0.997524 + 0.0703308i \(0.977595\pi\)
\(648\) 0 0
\(649\) 19.0181 0.746527
\(650\) −8.61341 1.62182i −0.337846 0.0636132i
\(651\) 0 0
\(652\) −51.4814 29.7228i −2.01617 1.16403i
\(653\) 15.6332 27.0775i 0.611774 1.05962i −0.379168 0.925328i \(-0.623790\pi\)
0.990941 0.134295i \(-0.0428770\pi\)
\(654\) 0 0
\(655\) 15.7570i 0.615678i
\(656\) −34.8688 + 20.1315i −1.36140 + 0.786004i
\(657\) 0 0
\(658\) 38.6212i 1.50561i
\(659\) −1.61118 2.79065i −0.0627627 0.108708i 0.832937 0.553368i \(-0.186658\pi\)
−0.895699 + 0.444660i \(0.853324\pi\)
\(660\) 0 0
\(661\) 25.9416 + 14.9774i 1.00901 + 0.582552i 0.910902 0.412623i \(-0.135387\pi\)
0.0981086 + 0.995176i \(0.468721\pi\)
\(662\) 14.0322 0.545378
\(663\) 0 0
\(664\) 66.2176 2.56974
\(665\) 2.83013 + 1.63397i 0.109748 + 0.0633628i
\(666\) 0 0
\(667\) −7.45568 12.9136i −0.288685 0.500017i
\(668\) 29.2255i 1.13077i
\(669\) 0 0
\(670\) 27.6933 15.9887i 1.06989 0.617699i
\(671\) 41.2646i 1.59300i
\(672\) 0 0
\(673\) −14.8836 + 25.7792i −0.573722 + 0.993716i 0.422457 + 0.906383i \(0.361168\pi\)
−0.996179 + 0.0873333i \(0.972165\pi\)
\(674\) −4.39172 2.53556i −0.169163 0.0976661i
\(675\) 0 0
\(676\) 47.3409 + 18.4830i 1.82080 + 0.710884i
\(677\) −24.8749 −0.956019 −0.478010 0.878355i \(-0.658642\pi\)
−0.478010 + 0.878355i \(0.658642\pi\)
\(678\) 0 0
\(679\) 5.16997 8.95465i 0.198405 0.343648i
\(680\) −1.51160 2.61817i −0.0579672 0.100402i
\(681\) 0 0
\(682\) 56.8766 32.8377i 2.17792 1.25742i
\(683\) 7.90797 4.56567i 0.302590 0.174701i −0.341016 0.940058i \(-0.610771\pi\)
0.643606 + 0.765357i \(0.277438\pi\)
\(684\) 0 0
\(685\) −0.368870 0.638901i −0.0140938 0.0244112i
\(686\) 19.4633 33.7114i 0.743113 1.28711i
\(687\) 0 0
\(688\) −11.3409 −0.432367
\(689\) −21.6191 + 7.58641i −0.823623 + 0.289019i
\(690\) 0 0
\(691\) −28.5679 16.4937i −1.08677 0.627449i −0.154057 0.988062i \(-0.549234\pi\)
−0.932715 + 0.360613i \(0.882567\pi\)
\(692\) −18.1666 + 31.4655i −0.690591 + 1.19614i
\(693\) 0 0
\(694\) 18.6773i 0.708980i
\(695\) −17.1013 + 9.87341i −0.648688 + 0.374520i
\(696\) 0 0
\(697\) 7.57072i 0.286762i
\(698\) 20.4164 + 35.3622i 0.772772 + 1.33848i
\(699\) 0 0
\(700\) −4.40510 2.54329i −0.166497 0.0961272i
\(701\) 24.6223 0.929971 0.464985 0.885318i \(-0.346060\pi\)
0.464985 + 0.885318i \(0.346060\pi\)
\(702\) 0 0
\(703\) 3.51050 0.132401
\(704\) 24.8281 + 14.3345i 0.935746 + 0.540253i
\(705\) 0 0
\(706\) 0.197729 + 0.342477i 0.00744163 + 0.0128893i
\(707\) 2.76552i 0.104008i
\(708\) 0 0
\(709\) 43.1727 24.9258i 1.62138 0.936107i 0.634834 0.772648i \(-0.281068\pi\)
0.986550 0.163458i \(-0.0522650\pi\)
\(710\) 2.66566i 0.100041i
\(711\) 0 0
\(712\) 22.2875 38.6031i 0.835260 1.44671i
\(713\) −13.1045 7.56591i −0.490769 0.283345i
\(714\) 0 0
\(715\) 2.11977 11.2580i 0.0792749 0.421024i
\(716\) −42.4063 −1.58480
\(717\) 0 0
\(718\) −23.5037 + 40.7096i −0.877151 + 1.51927i
\(719\) 6.33625 + 10.9747i 0.236302 + 0.409288i 0.959650 0.281196i \(-0.0907311\pi\)
−0.723348 + 0.690484i \(0.757398\pi\)
\(720\) 0 0
\(721\) 1.11071 0.641266i 0.0413648 0.0238820i
\(722\) 26.7193 15.4264i 0.994389 0.574111i
\(723\) 0 0
\(724\) −1.48429 2.57086i −0.0551632 0.0955454i
\(725\) 4.18965 7.25669i 0.155600 0.269507i
\(726\) 0 0
\(727\) 26.0757 0.967093 0.483547 0.875319i \(-0.339348\pi\)
0.483547 + 0.875319i \(0.339348\pi\)
\(728\) 16.5168 + 14.1884i 0.612155 + 0.525856i
\(729\) 0 0
\(730\) 25.7456 + 14.8642i 0.952886 + 0.550149i
\(731\) 1.06622 1.84675i 0.0394356 0.0683045i
\(732\) 0 0
\(733\) 3.39408i 0.125363i −0.998034 0.0626815i \(-0.980035\pi\)
0.998034 0.0626815i \(-0.0199652\pi\)
\(734\) −4.77555 + 2.75716i −0.176269 + 0.101769i
\(735\) 0 0
\(736\) 1.53364i 0.0565308i
\(737\) 20.8977 + 36.1959i 0.769777 + 1.33329i
\(738\) 0 0
\(739\) −5.88277 3.39642i −0.216401 0.124939i 0.387882 0.921709i \(-0.373207\pi\)
−0.604283 + 0.796770i \(0.706540\pi\)
\(740\) −5.46410 −0.200864
\(741\) 0 0
\(742\) −20.0991 −0.737861
\(743\) 11.8937 + 6.86681i 0.436336 + 0.251919i 0.702042 0.712135i \(-0.252272\pi\)
−0.265706 + 0.964054i \(0.585605\pi\)
\(744\) 0 0
\(745\) 1.58275 + 2.74140i 0.0579874 + 0.100437i
\(746\) 28.9975i 1.06167i
\(747\) 0 0
\(748\) 7.00656 4.04524i 0.256185 0.147909i
\(749\) 16.0508i 0.586483i
\(750\) 0 0
\(751\) −20.3873 + 35.3119i −0.743944 + 1.28855i 0.206742 + 0.978396i \(0.433714\pi\)
−0.950686 + 0.310154i \(0.899619\pi\)
\(752\) 36.6314 + 21.1491i 1.33581 + 0.771229i
\(753\) 0 0
\(754\) −47.8562 + 55.7099i −1.74282 + 2.02883i
\(755\) 0.168843 0.00614481
\(756\) 0 0
\(757\) 6.79693 11.7726i 0.247039 0.427884i −0.715664 0.698445i \(-0.753876\pi\)
0.962703 + 0.270561i \(0.0872092\pi\)
\(758\) 14.0025 + 24.2530i 0.508592 + 0.880908i
\(759\) 0 0
\(760\) 10.0955 5.82862i 0.366201 0.211426i
\(761\) −8.49411 + 4.90408i −0.307911 + 0.177773i −0.645991 0.763345i \(-0.723556\pi\)
0.338080 + 0.941117i \(0.390223\pi\)
\(762\) 0 0
\(763\) 0.566150 + 0.980601i 0.0204960 + 0.0355001i
\(764\) −13.0629 + 22.6256i −0.472600 + 0.818567i
\(765\) 0 0
\(766\) −33.5720 −1.21301
\(767\) −14.0630 + 16.3708i −0.507784 + 0.591117i
\(768\) 0 0
\(769\) 37.4841 + 21.6415i 1.35171 + 0.780411i 0.988489 0.151292i \(-0.0483433\pi\)
0.363222 + 0.931703i \(0.381677\pi\)
\(770\) 5.02477 8.70316i 0.181080 0.313640i
\(771\) 0 0
\(772\) 61.8798i 2.22710i
\(773\) 20.9759 12.1104i 0.754449 0.435582i −0.0728499 0.997343i \(-0.523209\pi\)
0.827299 + 0.561761i \(0.189876\pi\)
\(774\) 0 0
\(775\) 8.50318i 0.305443i
\(776\) −18.4420 31.9425i −0.662030 1.14667i
\(777\) 0 0
\(778\) −29.2705 16.8993i −1.04940 0.605870i
\(779\) 29.1922 1.04592
\(780\) 0 0
\(781\) 3.48409 0.124671
\(782\) −2.44022 1.40886i −0.0872623 0.0503809i
\(783\) 0 0
\(784\) −9.19204 15.9211i −0.328287 0.568610i
\(785\) 13.5512i 0.483661i
\(786\) 0 0
\(787\) 9.07378 5.23875i 0.323445 0.186741i −0.329482 0.944162i \(-0.606874\pi\)
0.652927 + 0.757421i \(0.273541\pi\)
\(788\) 26.7182i 0.951797i
\(789\) 0 0
\(790\) −1.61683 + 2.80043i −0.0575241 + 0.0996347i
\(791\) −17.0166 9.82451i −0.605039 0.349319i
\(792\) 0 0
\(793\) 35.5206 + 30.5131i 1.26137 + 1.08355i
\(794\) −60.7075 −2.15443
\(795\) 0 0
\(796\) 33.7035 58.3762i 1.19459 2.06909i
\(797\) −23.1068 40.0222i −0.818486 1.41766i −0.906798 0.421566i \(-0.861481\pi\)
0.0883119 0.996093i \(-0.471853\pi\)
\(798\) 0 0
\(799\) −6.88785 + 3.97670i −0.243674 + 0.140686i
\(800\) 0.746354 0.430908i 0.0263876 0.0152349i
\(801\) 0 0
\(802\) −11.1109 19.2446i −0.392339 0.679550i
\(803\) −19.4279 + 33.6501i −0.685596 + 1.18749i
\(804\) 0 0
\(805\) −2.31545 −0.0816088
\(806\) −13.7907 + 73.2413i −0.485756 + 2.57982i
\(807\) 0 0
\(808\) −8.54336 4.93251i −0.300554 0.173525i
\(809\) 3.60640 6.24646i 0.126794 0.219614i −0.795639 0.605772i \(-0.792865\pi\)
0.922433 + 0.386158i \(0.126198\pi\)
\(810\) 0 0
\(811\) 44.8652i 1.57543i 0.616040 + 0.787714i \(0.288736\pi\)
−0.616040 + 0.787714i \(0.711264\pi\)
\(812\) −36.9117 + 21.3110i −1.29535 + 0.747868i
\(813\) 0 0
\(814\) 10.7954i 0.378380i
\(815\) −7.60307 13.1689i −0.266324 0.461287i
\(816\) 0 0
\(817\) 7.12094 + 4.11128i 0.249130 + 0.143835i
\(818\) 59.3550 2.07530
\(819\) 0 0
\(820\) −45.4377 −1.58675
\(821\) −39.5195 22.8166i −1.37924 0.796304i −0.387171 0.922008i \(-0.626548\pi\)
−0.992068 + 0.125704i \(0.959881\pi\)
\(822\) 0 0
\(823\) −6.96523 12.0641i −0.242793 0.420529i 0.718716 0.695304i \(-0.244730\pi\)
−0.961509 + 0.274775i \(0.911397\pi\)
\(824\) 4.57498i 0.159377i
\(825\) 0 0
\(826\) −16.3960 + 9.46626i −0.570491 + 0.329373i
\(827\) 17.8737i 0.621530i −0.950487 0.310765i \(-0.899415\pi\)
0.950487 0.310765i \(-0.100585\pi\)
\(828\) 0 0
\(829\) −17.7236 + 30.6981i −0.615565 + 1.06619i 0.374721 + 0.927138i \(0.377739\pi\)
−0.990285 + 0.139051i \(0.955595\pi\)
\(830\) 30.0350 + 17.3407i 1.04253 + 0.601904i
\(831\) 0 0
\(832\) −30.6984 + 10.7724i −1.06427 + 0.373467i
\(833\) 3.45678 0.119770
\(834\) 0 0
\(835\) 3.73793 6.47429i 0.129357 0.224052i
\(836\) 15.5982 + 27.0168i 0.539474 + 0.934397i
\(837\) 0 0
\(838\) −14.6824 + 8.47690i −0.507196 + 0.292830i
\(839\) 6.08860 3.51526i 0.210202 0.121360i −0.391203 0.920304i \(-0.627941\pi\)
0.601405 + 0.798944i \(0.294608\pi\)
\(840\) 0 0
\(841\) −20.6063 35.6912i −0.710563 1.23073i
\(842\) −0.818215 + 1.41719i −0.0281975 + 0.0488396i
\(843\) 0 0
\(844\) 93.0933 3.20440
\(845\) 8.12340 + 10.1494i 0.279454 + 0.349150i
\(846\) 0 0
\(847\) −1.01978 0.588771i −0.0350401 0.0202304i
\(848\) −11.0064 + 19.0636i −0.377960 + 0.654646i
\(849\) 0 0
\(850\) 1.58340i 0.0543100i
\(851\) −2.15406 + 1.24365i −0.0738404 + 0.0426318i
\(852\) 0 0
\(853\) 25.7138i 0.880425i −0.897894 0.440212i \(-0.854903\pi\)
0.897894 0.440212i \(-0.145097\pi\)
\(854\) 20.5394 + 35.5753i 0.702844 + 1.21736i
\(855\) 0 0
\(856\) 49.5847 + 28.6277i 1.69477 + 0.978476i
\(857\) 20.7578 0.709072 0.354536 0.935042i \(-0.384639\pi\)
0.354536 + 0.935042i \(0.384639\pi\)
\(858\) 0 0
\(859\) −9.79466 −0.334190 −0.167095 0.985941i \(-0.553439\pi\)
−0.167095 + 0.985941i \(0.553439\pi\)
\(860\) −11.0838 6.39922i −0.377954 0.218212i
\(861\) 0 0
\(862\) 34.0702 + 59.0113i 1.16044 + 2.00993i
\(863\) 23.1995i 0.789720i 0.918741 + 0.394860i \(0.129207\pi\)
−0.918741 + 0.394860i \(0.870793\pi\)
\(864\) 0 0
\(865\) −8.04886 + 4.64701i −0.273669 + 0.158003i
\(866\) 6.48161i 0.220254i
\(867\) 0 0
\(868\) −21.6260 + 37.4574i −0.734035 + 1.27139i
\(869\) −3.66023 2.11324i −0.124165 0.0716866i
\(870\) 0 0
\(871\) −46.6103 8.77629i −1.57933 0.297373i
\(872\) 4.03908 0.136780
\(873\) 0 0
\(874\) 5.43248 9.40934i 0.183757 0.318276i
\(875\) −0.650571 1.12682i −0.0219933 0.0380936i
\(876\) 0 0
\(877\) −49.7414 + 28.7182i −1.67965 + 0.969745i −0.717765 + 0.696285i \(0.754835\pi\)
−0.961883 + 0.273460i \(0.911832\pi\)
\(878\) −46.4706 + 26.8298i −1.56831 + 0.905462i
\(879\) 0 0
\(880\) −5.50318 9.53179i −0.185512 0.321316i
\(881\) −10.4314 + 18.0677i −0.351442 + 0.608716i −0.986502 0.163747i \(-0.947642\pi\)
0.635060 + 0.772463i \(0.280975\pi\)
\(882\) 0 0
\(883\) 39.9752 1.34527 0.672637 0.739973i \(-0.265162\pi\)
0.672637 + 0.739973i \(0.265162\pi\)
\(884\) −1.69886 + 9.02252i −0.0571387 + 0.303460i
\(885\) 0 0
\(886\) 30.9314 + 17.8583i 1.03916 + 0.599961i
\(887\) 4.85794 8.41420i 0.163114 0.282521i −0.772870 0.634564i \(-0.781180\pi\)
0.935984 + 0.352043i \(0.114513\pi\)
\(888\) 0 0
\(889\) 3.76851i 0.126392i
\(890\) 20.2183 11.6731i 0.677720 0.391282i
\(891\) 0 0
\(892\) 42.2027i 1.41305i
\(893\) −15.3339 26.5591i −0.513129 0.888765i
\(894\) 0 0
\(895\) −9.39422 5.42376i −0.314014 0.181296i
\(896\) −26.2973 −0.878531
\(897\) 0 0
\(898\) −13.7036 −0.457296
\(899\) −61.7049 35.6253i −2.05797 1.18817i
\(900\) 0 0
\(901\) −2.06954 3.58455i −0.0689464 0.119419i
\(902\) 89.7714i 2.98906i
\(903\) 0 0
\(904\) −60.7005 + 35.0454i −2.01887 + 1.16559i
\(905\) 0.759361i 0.0252420i
\(906\) 0 0
\(907\) 4.94812 8.57040i 0.164300 0.284576i −0.772107 0.635493i \(-0.780797\pi\)
0.936406 + 0.350917i \(0.114130\pi\)
\(908\) 35.7286 + 20.6279i 1.18569 + 0.684561i
\(909\) 0 0
\(910\) 3.77613 + 10.7609i 0.125177 + 0.356720i
\(911\) 48.9981 1.62338 0.811690 0.584088i \(-0.198548\pi\)
0.811690 + 0.584088i \(0.198548\pi\)
\(912\) 0 0
\(913\) −22.6648 + 39.2565i −0.750094 + 1.29920i
\(914\) 6.16628 + 10.6803i 0.203962 + 0.353273i
\(915\) 0 0
\(916\) 51.8831 29.9547i 1.71427 0.989733i
\(917\) −17.7554 + 10.2511i −0.586334 + 0.338520i
\(918\) 0 0
\(919\) −2.80648 4.86096i −0.0925771 0.160348i 0.816018 0.578027i \(-0.196177\pi\)
−0.908595 + 0.417679i \(0.862844\pi\)
\(920\) −4.12976 + 7.15296i −0.136154 + 0.235826i
\(921\) 0 0
\(922\) 80.4370 2.64905
\(923\) −2.57632 + 2.99911i −0.0848005 + 0.0987170i
\(924\) 0 0
\(925\) −1.21046 0.698857i −0.0397995 0.0229783i
\(926\) −29.7757 + 51.5731i −0.978492 + 1.69480i
\(927\) 0 0
\(928\) 7.22141i 0.237054i
\(929\) 0.661356 0.381834i 0.0216984 0.0125276i −0.489112 0.872221i \(-0.662679\pi\)
0.510810 + 0.859694i \(0.329346\pi\)
\(930\) 0 0
\(931\) 13.3291i 0.436844i
\(932\) −19.4702 33.7233i −0.637767 1.10464i
\(933\) 0 0
\(934\) −64.4057 37.1847i −2.10742 1.21672i
\(935\) 2.06954 0.0676812
\(936\) 0 0
\(937\) −23.8968 −0.780674 −0.390337 0.920672i \(-0.627641\pi\)
−0.390337 + 0.920672i \(0.627641\pi\)
\(938\) −36.0329 20.8036i −1.17652 0.679263i
\(939\) 0 0
\(940\) 23.8672 + 41.3393i 0.778464 + 1.34834i
\(941\) 5.76615i 0.187971i 0.995574 + 0.0939856i \(0.0299608\pi\)
−0.995574 + 0.0939856i \(0.970039\pi\)
\(942\) 0 0
\(943\) −17.9125 + 10.3418i −0.583312 + 0.336775i
\(944\) 20.7351i 0.674869i
\(945\) 0 0
\(946\) 12.6429 21.8982i 0.411057 0.711972i
\(947\) −28.3284 16.3554i −0.920549 0.531479i −0.0367391 0.999325i \(-0.511697\pi\)
−0.883810 + 0.467845i \(0.845030\pi\)
\(948\) 0 0
\(949\) −14.6001 41.6062i −0.473940 1.35059i
\(950\) 6.10547 0.198087
\(951\) 0 0
\(952\) −1.96681 + 3.40661i −0.0637446 + 0.110409i
\(953\) −21.7005 37.5863i −0.702947 1.21754i −0.967427 0.253148i \(-0.918534\pi\)
0.264481 0.964391i \(-0.414799\pi\)
\(954\) 0 0
\(955\) −5.78763 + 3.34149i −0.187283 + 0.108128i
\(956\) 8.39614 4.84751i 0.271550 0.156780i
\(957\) 0 0
\(958\) 16.9167 + 29.3006i 0.546554 + 0.946659i
\(959\) −0.479952 + 0.831302i −0.0154985 + 0.0268441i
\(960\) 0 0
\(961\) −41.3041 −1.33239
\(962\) 9.29272 + 7.98269i 0.299609 + 0.257372i
\(963\) 0 0
\(964\) 96.4032 + 55.6584i 3.10494 + 1.79264i
\(965\) 7.91441 13.7082i 0.254774 0.441281i
\(966\) 0 0
\(967\) 43.6204i 1.40274i 0.712798 + 0.701369i \(0.247427\pi\)
−0.712798 + 0.701369i \(0.752573\pi\)
\(968\) −3.63770 + 2.10023i −0.116920 + 0.0675039i
\(969\) 0 0
\(970\) 19.3180i 0.620263i
\(971\) 18.5097 + 32.0598i 0.594005 + 1.02885i 0.993686 + 0.112193i \(0.0357874\pi\)
−0.399682 + 0.916654i \(0.630879\pi\)
\(972\) 0 0
\(973\) 22.2512 + 12.8467i 0.713340 + 0.411847i
\(974\) 74.2682 2.37971
\(975\) 0 0
\(976\) 44.9899 1.44009
\(977\) −21.7180 12.5389i −0.694821 0.401155i 0.110594 0.993866i \(-0.464725\pi\)
−0.805416 + 0.592710i \(0.798058\pi\)
\(978\) 0 0
\(979\) 15.2570 + 26.4259i 0.487616 + 0.844575i
\(980\) 20.7468i 0.662733i
\(981\) 0 0
\(982\) −30.9137 + 17.8481i −0.986497 + 0.569554i
\(983\) 21.0019i 0.669857i 0.942244 + 0.334928i \(0.108712\pi\)
−0.942244 + 0.334928i \(0.891288\pi\)
\(984\) 0 0
\(985\) 3.41725 5.91886i 0.108883 0.188590i
\(986\) −11.4902 6.63387i −0.365923 0.211266i
\(987\) 0 0
\(988\) −34.7902 6.55068i −1.10682 0.208405i
\(989\) −5.82594 −0.185254
\(990\) 0 0
\(991\) −1.51944 + 2.63175i −0.0482666 + 0.0836003i −0.889149 0.457617i \(-0.848703\pi\)
0.840883 + 0.541217i \(0.182036\pi\)
\(992\) −3.66409 6.34638i −0.116335 0.201498i
\(993\) 0 0
\(994\) −3.00373 + 1.73420i −0.0952725 + 0.0550056i
\(995\) 14.9326 8.62135i 0.473396 0.273315i
\(996\) 0 0
\(997\) −5.15872 8.93516i −0.163378 0.282979i 0.772700 0.634771i \(-0.218906\pi\)
−0.936078 + 0.351792i \(0.885572\pi\)
\(998\) −19.6282 + 33.9970i −0.621319 + 1.07616i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.bu.b.316.1 8
3.2 odd 2 195.2.bb.c.121.4 8
13.6 odd 12 7605.2.a.ck.1.4 4
13.7 odd 12 7605.2.a.cg.1.1 4
13.10 even 6 inner 585.2.bu.b.361.1 8
15.2 even 4 975.2.w.g.199.1 8
15.8 even 4 975.2.w.j.199.4 8
15.14 odd 2 975.2.bc.i.901.1 8
39.20 even 12 2535.2.a.bl.1.4 4
39.23 odd 6 195.2.bb.c.166.4 yes 8
39.32 even 12 2535.2.a.bi.1.1 4
195.23 even 12 975.2.w.g.49.1 8
195.62 even 12 975.2.w.j.49.4 8
195.179 odd 6 975.2.bc.i.751.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bb.c.121.4 8 3.2 odd 2
195.2.bb.c.166.4 yes 8 39.23 odd 6
585.2.bu.b.316.1 8 1.1 even 1 trivial
585.2.bu.b.361.1 8 13.10 even 6 inner
975.2.w.g.49.1 8 195.23 even 12
975.2.w.g.199.1 8 15.2 even 4
975.2.w.j.49.4 8 195.62 even 12
975.2.w.j.199.4 8 15.8 even 4
975.2.bc.i.751.1 8 195.179 odd 6
975.2.bc.i.901.1 8 15.14 odd 2
2535.2.a.bi.1.1 4 39.32 even 12
2535.2.a.bl.1.4 4 39.20 even 12
7605.2.a.cg.1.1 4 13.7 odd 12
7605.2.a.ck.1.4 4 13.6 odd 12